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A PROOF OF MONOTONY OF THE TEMPLE QUOTIENTS -
IN EIGENVALUE PROBLEMS

KAREL REKTORYS

(Received September 20, 1983)

When applying the so-called Collatz method for twosided estimates of the first
eigenvalue 1, (see, e.g., [2], [3]), two special sequences are constructed, that of the
so-called Schwarz quotients (which are upper bounds for 4,) and that of the so-
called Temple ones (which are lower bounds). While the monotony of the first
sequence was proved many years ago, the proof of monotony of the second one has
been given only recently by F. Goerisch and J. Albrecht in their common paper [1],
prepared for ZAMM, and announced on the Conference on Eigenvalue Problems
in Oberwolfach this year. The proofis based on some properties of certain matrices.
In the present paper, an other proof of this monotony is given — let us call it an ele-
mentary one. . ) :

Throughout the paper, the same notation is being used as in our common paper [3]
with Z. Vospél, or in my monography [2]

Thus let us investigate the eigenvalue problem

(1) Au — ABu =0 in Q,
(2) Bu=0 onl, j=1,..,u,
(3) Cu=0 onl', j=1,...k—p.

Here, Qis a bounded d&)main in E, with a Lipschitzian boundary I', 4, or Bis a linear
differential operator of order 2k, or 2I, respectively,

4) A= % (-1)"Di(a;D),
: ' it i
©) B= % (=1)"Dib;D)),
lit, A<t - ‘

I < k, with bounded measurable coefficients, (2), or (3) are linear boundary condi-
tions stable (i.e. containing derivatives of orders <k — 1), or unstable for the
operator A, respectively. Denote

(6) V= {v;ve WP(Q), Bjv = 0 on I in the sense of traces} , -
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(7) Vs = {v; ve WP(Q), Do = 0 on I in the sense of traces} ,

where W{(Q), W(Q) are the well-known Sobolev spaces, D;v = 0 on I are such
of the boundary conditions (2) which are stable for the operator B (thus containing
derivatives of orders <[ — 1).

Evidently, V, < V.

In the weak formulation, the problem (1)—(3) consists in finding all values of 4
such that to each of them there exists a nonzero function u € V, satisfying the integral
identity
(8) (v, u))s — (v, u)g =0 YoeV,,
where ((v, u)) 4, ((v, u))p are bilinear forms corresponding, in the usual sense, to the
operators 4 and B and to the given boundary conditions.!)

In what follows, we assume that the forms ((v, u)) 4, ((v, u))p are symmetric on
V,, Vg, i.e. that there holds

©) (v, ))a = ((w, 0))4 Vu,veVy,
(10) ((v, w))s = ((u, v))s Vu,veVy,

and that they are on V,, V; bounded and V,- and Vj-elliptic, i.e. that such positive
constants Ky, K, ay, a, (not depending on u, v) exist that the inequalities

(11) (0, )| = Killollya [ullv, Yu,veVy,
(12) (v, w)s| < Kalollvy [ullvs Yu,ve Vs,
(13) (OD) XA U
(14) (v, 0)s 2 aafo]7, VoeVs

hold. (Here [v]|y,, or |v]y, means |[v]w,c00) O [v]w,r ) for veVy, or ve Vg,
respectively.)?

Under the assumptions (9)—(14), the eigenvalue problem (8) has a countable set
of (positive) eigenvalues

(15) ME<Ah<A<.. limi=+0.

n-*o0

1y Multiplying (1) by an arbitrary function ve V4 and using the Green theorem (with (2)
and (3)) in the usual way, one comes to (8). For details see [2], Chap. 32, or 39.

2) In [1] a slightly different approach to the problematics considered has been chosen: Instead
of imposing certain requirements on the bilinear forms ((v, v)) 4, ((v, 4))g, some properties of
symmetry and positive definiteness of the operators 4 and B on their domains of definition are
required. Each of these two aproaches has its preferences. However, they are in a very closed
connection together. Let us note that the way of our proof of monotony of the Temple quotients,
which we are going to give in the following text, is well applicable in both the cases. (In essential,

only (31) is needed, and this holds under very general assumptions.)

It is not necessary to say that the priority in proving the monotony belongs to F. Go:nsch
and J. Albrecht. Only the idea of our proof is different.
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The corresponding system
(16) g, Uy, U3,y enn b)
of eigenfunctions, orthonormalized in the sense of the form ((v, u)) 4, i-e.

((v50,))a = S

is complete in V. The system of functions

(17) On=VyJAy, B =123, ...,

is then orthonormalized in the sense of the form ((v, u))s and is complete in V.
Let the last eigenvalue 1, be simple. (This assumption can be weakened.) The well-

known Collatz method how to obtain two-sided estimates for this 4; consists in the
following:

Choose a nonzero function f, € V and construct, subsequently, the functions

(18) fieVa, j=123,..,
satisfying

(19) (@ f))a=((v-f;-1))s VeeV.
Let us construct, further, the so-called Schwarz coefficients

(20) a;=(fo.f))s>0, j=0,1,2,...,
Schwarz quotients

(1) = U7, =123
and Temple quotients

(22 L) = 2=

. aj—l
La;.y — a;

L j=1,273 ..

defined for

(23) : % <L< 2,
(provided

(24) %y < 4y).

Then

(25) ;S A%, j=1,2,3,...

(see e.g. [2], Chap. 40). At the same time,

(26) X Uy 2 Hy = ..

!} The usual convention is chosen for ordering of eigenvalues in order that the correspondance
beiween (15) and (16) be one-to-one.
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([2], [3]; for the case of ordinary differential equations this result was derived by
L. Collatz many years ago). If, moreover, the functions f,, f; are linearly independent,
then the sequence {x;} is even strictly decreasing, i.e. we have

(27) Ry > My > Ky > o> A

In what follows, linear independency of fo, fy is everywhere assumed, so that (27)
holds. o
Under the given assumptions, the following theorem is valid:

Theorem 1. The sequence of the Temple quotients is strongly increasing, i.e..we
have

(28) - 7,(L) < 15(L) < 15(L) < ... for every Le(%y,4,). LAY

Proof, In the proof, we utilize the following relation, proved in our work:‘[3]
(eq. (2.26), p. 221): Let

(29) fo =.;oc,-<pi in Vy.
(Thus
(30) %= ((for @)s> i=1,23,...)
Then
o2

!

(31 a; = i

L j=01,2,....

N
~.

To prove (28), we have to show that ’
(32) 7;41(L) — (L) > 0 forevery Le(x,,4,) andforevery j=1.
Thus let j = 1 be fixed, otherwise arbitrary. We have
(33) ‘ tj1(L) = t4(L) =

i Laj—a;_y _ vAL)

_ Lajiy —a;
Laj,;, —ajyy  Lajy —a; (Laji, — aj4q) (Laje, — a;)

>

where ‘
(34) y(L) = (afs1 = aja;52) I + (4,105, — a;a;.0) L+

+ (a} — aj_1a;4,).
Now, "

Laj,, —aj=aj,((L—%j4+,)>0,
because of (27) and (23), and, by the same reasoning, e
Laj+2 - aj+1 > 0.
Thus to prove (32) (for the given j) we have to prove that
(35) yi(L)>0 forall Le(xy,4,).
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The function y; is defined (by (34)) for all (real) L. Because
(36) al —aja;,, =af+1(l——fﬁ—l)<0
Kj+2

il
in virtue of (27), this function is strictly concave elsewhere. Thus to prove (35), it is
sufficient to find two points L,, L, such that

(37) L Sx%, L,z 4,
and that, at the same time, we have

(38) L)z 0, yi(L)z0,
(see Fig. 1).

Fig 1.

I being fixed, let us choose

(39) ' L=, Ly="%"%"
A@jpq — a;

Both the requirements (37) are satisfied. The first one because of (27) (even for j = D).
For the second inequality,

Adjyq — a;

see [3] (inegs. (2.38), (2.39), p. 223). Now, by (34),

Aa; — a;
14 ji—1
2 A2,

2

a;_ a;j_
o J—1Y) _ 2 _ ji—1
(40) yj(%j) =DYj = (aj+1 adj,z) 7 T
a; a;j
a;-
Jj—1 2 _ —
(aj-1aj42 — aja;.,) 2+ (af — a;-,a544) =
aj
1.5 5 2 2 2
= ;i(aj—laj-rl = @514z + 5100545 = G;-445a;4 4 +
i

1
4 2 _ 1 _ 2)2
+aj—aj_laja,u(l)—az((zj_,tlj+l aj)*>0.
J
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In this way, validity of the first inequality in (38) is established. It remains to prove
validity of the second one. However, we have

o (=)

llaj.‘_l - aj

1
= m [(a}sy — aja;.,) (Ala} — 244a;_ya, + aj_,) +
1dj+1 — a,
+ (aj-1a;42 — aja;4,) (Alaja;.y — Aaj — Aa;_ya;,., + a;_,a;) +

+ (af — aj_qa;.,) (AlaF,y — 24a,a;,, + al)] =

1 )
= (ha —T)z [4i(ajajiy — aja;, +
“1%i+1 7

2 2 2 2 3
+ a;_ 10,1003 — @jaj ;1 + ajaj. — a;_yaj.) +
2 2 2
+ Ay(=2a;_ja;a;,, + 2a;_1aja;., — a;_1aja;.; +
3 2 2 3 2
+ aja; = aj_ 14,04, + a;_ya;a;,., — 2aja;,, + 2a;_ya;a;.,) +
2 2 2 2 2
+a;_4a5,y —a;_1Q;054 + aj_1a;a;,5, — ;105044 +
4 2 _
+ aj — a;_yaja;.,)] =
1
=
(41841 — a;)

2 3 2 2
+ }.l(aj_lajaj“ —ajaj, — aj_1aj4,a;,; + aj_lajaj”) +

2 3 3 2.2
[#1(a;-1aa541a;402 = @ajes — @; 10741 + ajajeq) +

+ (aj-1a] s — 20,187, + a})] =
_ 1
(M1a541 — aj)’?

+ (aj-1a502 = a;aj1) 4y + (@] = a;-40;4,)] =

(aj = aj-ya;01) [(afer — aja;02) A7 +

2
=aj—aj_,aj+l " .
(,llaj,,l - ”j)zil( X

In the same way as in (36) we obtain a} — a;_,a;,, < 0. Consequently, to prove
validity of the second inequality in (38), it is sufficient to prove that

(42) ‘ y() £0.

Having proved (42), the proof of Theorem 1 will be completed.
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By definition (cf. (33), (34)), we have

(43) yit) =

Aai, — a; Aa; —a;._
=(}”1aj+2—aj+l)(’llaj+1—aj)<( L L2 ’ l)'

Majry — @y M@y — 4;

However,
Mayy = Qjyy = aj+2("~l - xj+2) <0,

and, in the same way,

Majey —a; <0, Aa;—a;- <0.
Thus, to prove (42), we have to prove that
Majey —a;  Aa; —ajoy <0

MAjir — iy Ay —a
or, because each of the two fractions is positive, that

A@j — a;

Aa; — a;
14j+2 +1
Q___J___,i_< 1’

Aa;—a;_y
j.laj.‘_l - aj

or, what is the same, that

a; — Alaj+1

(44) 0 = Jit1 = Mliea
aj_y — Aa;

a; — MGy

To this purpose, (31), i.e. the relation

on (12
(45) a; = .';1 ;:‘ »
will be applied. Because
Yoal <o
i=1
and 4; tend to infinity for i - oo, we have
(46) Q0 =1limQ,,

p—x©
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where Q,, is obtained from Q if in (45) only the finite number p of summands is taken,
ie.

2
p a‘Z P ¥
Z i A4 Z St 1
i=1 A; i=1 Ay
P 2 p 2
o
1 1 L
L it M,Z FIEE
i=1 A i=1 A3
(47) Ql’: P uZ |4 OC»Z
I R W
i=1 ] i=1 A
P 2 P 2
o o
)
i=1 A5 i=1 /2'

Let us note that, making the differences, the first summands drop out.!) Thus, after
an obvious rearranging, we obtain

' °‘—?1_Z~A)+“_?1~ﬂ>+...+ﬁl_is)
i i) s 4 L)

%3 |t +°C§ ) + ...+ 0."% 1—)”—1)
47 iy) AT A3 At Ay
; 2 2 2 A\
(1 - ’_1) n ‘_jfgl<1 - _1) - 731(1 - _1)
A Ay A 3 A Ap
5 2
21 - 21 hai X I R

(48) Q,=

Bavh + Byv + .. + Bvi
Bovit! + Bvitt + L+ B!
Bovi 't + B+ + ﬂpvi_l

ﬁzvé + By + .+ prllr

Multiplication of the corresponding sums in the composite fraction yields

(49) 2

P . P P
Y Bivi +2 3 BiBvivi
i=2

k=2
Y B+ 3 BBOTTIT v
i=2 ik=2
i<k
1 2 2
) 27 -
E-— Ay E,rl =0, etc
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because
2vivi = vimW] T 2w,
v{:“v{;_l + it = v{“'v,’\."l(vf + vkz)
and
2vv = Vi ovr.

(50) and (46) imply (44), or (42) which simultaneously with (41) yields the second
of the inequalities (38).

This completes the proof of Theorem 1.

Remark. If, moreover, the initial function f,, in the Collatz process is not ortho-
gonal, in the sense of the bilinear form ((v, u)). to the first eigenfunction vy, i.e. if

(51) ((for v1))s # 0,
then (see [3], (2.43), p. 224)
(52) lima; =7, .

This fact implies, by an easy computation, that also

(53) limt,(L) = 4; forevery Le(x,,4,).
jo oo

Thus, in this case, 4, is the limit of two strictly monotonic sequences, the decreasing
sequence of the Schwarz quotients and the increasing sequence of the Temple
quotients.

In the case that 4, is not simple, the condition (51) is to be replaced by the condition
that f, is not orthogonal (in the sense of the bilinear form ((v, u)),) simultaneously
to all eigenfunctions corresponding to 4,.
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JINY DUKAZ MONOTONNOSTI TEMPLEOVYCH KVOCIENTU
V PROBLEMECH VLASTNICH CISEL

KAREL REKTORYS
Aplikujeme-li tzv. Collatzovu metodu k sestrojeni dvoustrannych odhadt prvniho
vlastniho &isla 4, (viz napt. [2], [3]), konstruujeme dv& posloupnosti, posloupnost

tzv. Schwarzovych kvocientii (kterymi odhadujeme &islo 4, shora) a posloupnost
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tzv. Templeovych kvocientl (kterymi odhadujeme 7, zdola). Zatimco monoténnost
prvni z téchto posloupnosti je zndmd fadu let, monotonnost posloupnosti Templeo-
vych kvocienttl byla dokdzdna (za velmi pfirozenych pfedpoklad®) teprve neddvno
F. Goerischem a J. Albrechtem v jejich spole¢né prdci [1], ptipravené pro ZAMM.
O této prdci bylo referovdno letos na konferenci o vlastnich ¢islech v Oberwolfachu.
Diikaz, uvedeny v citované prdci, je zaloZen na uréitych vlastnostech nékterych
matic. ‘

V predloZené prdci je uveden jiny — nazvéme jej elementdrni — dikaz monotdn-
nosti posloupnosti Templeovych kvocientt.

Author’s address: Prof. RNDr. Karel Rektorys, DrSc., Stavebni fakulta éVUT, Thakurova 7,
166 29 Praha 6.
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