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SVAZEK 28 (1983) APLIKACE MATEMATIKY CisLo 2

ON PERIODIC SOLUTION
OF A NONLINEAR BEAM EQUATION

MARIE KOPACKOVA

(Received December 24, 1981)

1. INTRODUCTION

The purpose of the paper is to prove the existence of a periodic solution of the
equation

n
(1) l/l” + OCI"lch)c.’c + yuxxxxl - ?uxx! + 6”! - uxx [ﬂ + %J‘ ui(" i)dé +
0

+ UJ" e &) (s &) de:] ~f,

0

satisfying the boundary conditions

2 u(t,0) = u(t, 1) = u(1,0) = u(r,m), 1=0.

This equation governs vibrations of an extensible viscoelastic beam (e.g. [ 1]). Stability
of such equations was studied by J. M. Ball [2] and T. Narazaki [3] for f = 0 and
for f being a small perturbation (under more general conditions than here). The
case y = J = o = 0 was solved by V. Lovicar [4] as an example of a more general
equation.

A periodic solution of the equation (1) is found by using the estimates of Lemma 1
and the Schauder-Tichonov Fixed Point Theorem.

2. APRIORI ESTIMATE

Letfe C([0, T], L,), o € H, 0 HY, y € L,. The function u € C([0, T], H, n HY) n
n C([0, T], L,) is said to be a (generalized) solution of equation (1) with the bound-
ary conditions (2) and initial data ‘

(3) u(0,x) = o(x), u,(0,x)=y(x), xe(0,n)
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if u satisfies (3) and the equation

“ (1), v)o + (u(t). v) + Hu(0). ) +
# Z1OF (0.0 + [ [ 0 +
+ Blu(z), v)y + 8(ut), v)o + *|u(t, W (u(x). v),] dr =
= Jl (f(z), v)o dT + (¥, v)g + (@, v)2 + (e, V),
fora.e. 1€ (0, T) and every ve H, n HY, where

(u(t), v), = fﬂ g;; (t, x) g;—; (x)dx, [u()|* = (u(r), u(t)), -

0
We will suppose throughout the paper:
(5) x>0, 620, y+5=20, y+5+35>0, a4+ >0,
=0 for y+§7=0.

If we denote y, =y — 4(|y| — 7). v = 3(|7| + 7). the conditions (5) imply y; = 0,
i=1,2,9,=0fory=0,y,=0forj<0andy, =7, =0ify + 7 =0.

Lemma 1. If u is a solution of (1)—(3) (in the above sense) and yu,., ju, € L,,
then there are positive constants a, cy, ¢ such that the following estimates hold:

© S(()10) 5 S(op) e+ [ [fte 70 ae
(7) Y1 J\OT [uxxt(t> )‘2 dt +7v, J: luxr(t: )lz dt £

R
0
where

% + aoc l‘/’x|4 .

S, ¥) = |¥ + ag* + o] + Blo.f +

Remarks. S*(¢, ) is nonnegative, as ofp..|> + Blos* = (¢ + B) |os|* = Ofor
p <O0.

Proof. Let u be the solution from Lemma 1 and u € C*([0, T], L,) n C'([0, T],
H,n H?) (for general solution an approximation process is to be used). u satisfies
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the equation
(un(1), v)o + o(u(7), v), + P(ut), v), + Fu(1), v); + 8(u, (1), v)o +
[B + N(u)] (u, v); = (f(1), v)o

for every t € (0, T) and every ve H, n HY, where
M) () = e )+ o) w0 = (x+ £ 2 fute )
Substituting v = 2(u, + au) (a being a positive constant) into this identity we get
S+ auf? + afu? + lasl? + 306 + a0) ) +

(8) + 9l + au)ol? + 5| + auf® + (0~ a) fu, + au’ +
+ 'V'urxxlz + ﬂuxtlz + (5 - a) lutlz - a2(5 - a) Iulz +
+ a(2¢ — ay) ]uxx’z + a(2p — aj) [u.* + Yolu.t]? + 2a x[ux]“ = 2(f, u, + au).

As
Poel* + Fles? + (6 = a) o2 2 (v + 7+ 5 = a) o]

and
Powe? + Foef? Z 71 ]vee]? + 72Joe]?

for ve H, n HY, the left hand side of (8) is greater than
d
5 S*u,u) + (y +7 + 0 — a) |u, + au,2 + a[(2a — ay) |uw|* +

+ (28 = af) fuul* — a(s — a) [u]? + 2oefu ]*] + 2 [uerd® + 72|ue?) -

Due to the assumptions (5) positive constants a, ¢, may be chosen so that the second
and the third member of the above expression is bounded from below by 2¢,S*(u, u,)

a, ¢, may be found to satisfy the inequalities:

a§min(”+7+‘5 2 o+ B c<g+aa>’

2 ’ y’ y+)7+5’ = 4xa

a@ [y +F+6 vy N N
a—cog—-mln —.‘:—E—,— s Coé (y+}’+5-—a).
‘ o

Then both sides of (8) may be estimated and we get

d
O L 550 0) 4 260520 1) + Uliuel? + el = 200] S ),
which implies
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ad~ S2(u, u,) + 2¢0S*(u, u) < 2|f(1, ) |S(u, u,) for 1€[0,T],
. .

T T
J(wwmf-+nhwﬂdrgzj [£(t. +)| S(u, u,)dr .
0

0

The estimates (6), (7) easily follow from the last two inequalities.

3. A SOLUTION OF THE INITIAL-BOUNDARY VALUE PROBLEM
The solution u of (1), (2) and (3) may be written in the form
2 & .
u(t,x) = [= Y u,(1)sin nx
Tn=1
and u,(7) satisfy the system of equations

(10) up + b, + (a, + ® Nw))u, =f,, te(0,7T)

and the initial data u,(0) = ¢,, u,(0) = ¥,, n = 1,2, ..., where b, = yn* + §n* 1 4,
a, = an* + pn?; @,, ¥, and f, are the Fourier coefficients of ¢, i and f, respectively.
The equation (10) with the initial data is equivalent to the system

u (i) = Ru(t) 9 + K1) Yo + j K1 = D [A() — N () (0] dr,
(11) te(0,T), n=1,2,.., |

where

Ky(f) = e (01 — G20y | R (1) = KJ(1) + b, K (),

() — (ﬂ/)z
(ln)l,Z = %(_bn i \/(br? - 40")) .
Denoting the right hand side of (11) by 4, u(r) and setting
Au(t,x) =Y (4,u)(t)sin nx ,
n=1

we infer that the solution u is a fixed point of the mapping 4.

Lemma 2. Let f € C([0, T], L,), ¢ € H, n H?, y € L,. Then there exists a unique
solution u of (1), (2) and (3) on (0, T) x (0, n).

Proof. Denote by X, = C'([0, T], L,) n C([0, T], H, n HY) the Banach space
with the norm [u|%, = (sup |u(t, -)[)*> + (sup |u.(t, -)|)*-
te[0,T] te[0,T]

111



The proof of Lemma 2 consists of three parts:
(a) the operator A maps X into X,
(b) there exists § € (0, T] such that A is a contractive mapping in X,. Then 4 has
a fixed point, which solves (1)—(3) on [0, ] x [0, ],
(¢) this solution may be continued onto [0, T] x [0, «].
The function N(v) () is continuous on [0, T'] and

(12) [N@) (1) = Now) ()] = G+ o) (ol + [wl) o= w

for te[0,T]. v, weXy.

E)

It is easy to calculate the following estimates:

(13)

L

n

K], |n* K (1), K(t)

by K1) < ¢,

y

where the constant ¢ does not depend on n. Then
[k A o(1)])* = [Ru0)]? ko + [K* K(0)]* v +
+ I;Kf(r) g J' ;[fz(f) K N(e) (1) o3(0)] dr <
<c ((k"(p,f +Yr+ tff,f(r) dt + t|]u“4J"k4 ve(r) dr),
LA 5 [ R | K0t + KO v2 +
* J K o _r [f(x) + k* N*(0) (1) (1)) de <

s oWt + vt v j Jiw)ar + rnvu‘*j' ki) de)
0 0

which implies

3 (@) e -5, () a0 s

(sup V(3 [4OPF = ¢ 3, (Kol + ) + celswp ( 3, 2O) +

— (supy/ ¥ A2 k) +
t k=n+1

2
Xr

+ e o]* (sup /(3 K ui(1)*
t k=n+1
which tends to zero as m, n — oo.

Hence Y ./(2n7') A,(7) sin kx converges in X to Av, and Av e X;. Now, we have
K=1
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to find & e(O, T] such that A is a contractive mapping on X,. First, summing the
above estimates for k24,0 and A,v over k = 1,2, ... we get

l4vlx s = ello"]? + [W* + [ f[ewn)'? + cofe]z,. se[0.T].
The estimates (12) and (13) give
40 — Avl, 5 ¢3(lolz, + Wl [0 = vl 1€00.7.
Let |o”|* + |[¢|* < R} and q €(0, 1). Then for
2c
2—-9q

R = (Rg + T?|f|éw,y)"'* and 6 = q(2CR?)™!

the operator A will be contractive in X, and
o]y, < R for [o]s, < R.

Hence there exists a unique function u € X; such that u = Au.
As

T
pi* + yn® < b, and b, f [a, K3() + (Ki()] dr < e
0

we get
T T
(0t O a7 [ el o ae <
0 0

< o’ + [ + TIIZ + T[0]?)
which means that y,(Av).., + 72(4v,), € Ly((0, T) x (0, m)). Thus, we proved that u
is a solution of (1), (2) and (3) on (0, §) x (0, rr). Estimate (6) gives
def
Hu“Xt é cG(p""' + l‘pl + ‘(pxx’z + “f”Lz) = RO fOl‘ every t é O

for which the solution exists. Hence, we can continue the above process for t = 6
with the same R, § and find a solution u on [0, T] x [0, n]. As A4 is contractive
on every interval of the length d, the solution is unique.

4. PERIODIC SOLUTION

Theorem. Let fe C([0, T]. L,) be w-periodic in t function. Then there exists
an w-periodic solution of equation (1) with boundary conditions (2).

Proof. Denote K = {® = (¢, ), p e H, n HY, y € L,, S(p, ) < r}, where

r=(l- e—mlz)—l . c”Nf||«¢<[o,m],Lz) .
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K is a nonempty closed bounded convex set from H = H, N HY x L,. Now, we
define a mapping T: K — K, T® = (u(w, *), u (o, +)), where u is a solution from
Lemma 2 satisfying the initial data (3), ¢ = (¢, ). The mapping T will have a fixed
point in K, if Tis weakly continuous on K (by the Schauder-Tichonov Fixed Point
Theorem, see e.g. [5], p. 456). Let ¢* € K, #* — &. By (6) the sequence is bounded,
that is, T¢* = (u"(w, *), v¥(®, *)) is bounded in H. In order to prove the weak
convergence of T, it is sufficient to establish the convergence of (T@*, ¢) for
every ¢ from a dense set of H. Thus it is sufficient to prove that the sequences uj(w),
(uy) (w) converge for n = 1,2, ....

Relation (11) gives

(14) ul(w) = K, (o) ¢k + K, (0) Yy + JW St = ) [fulr) = n? N(@u¥) ul(r)] dr

(ur) (o) = Ki(w) ok + Ki(w) yh + J‘: K (t = 1) [fr) — n? N(u") u’,j(r)] dr.

By the estimates (6) and (7) the sequences {ou%,}, {uf,} and {u}} are bounded
in Ly((0, w) x (0, m)), {us}izy, {(uh)}e=; are compact in C([0, w]), hence there is
a subsequence u*" such that u¥" weakly converges in L,((0, @) x (0, ), u’ conver-
ges in L,((0, w) x (0, 7)), ufm, (us) uniformly converge in C([0, T]). Then the
limits of (14) for m — oo exist. It follows from the uniqueness of the solution of (l),
(2) and (3) that

lim (u*(w, x), (1) (o, x)) =

m-— oo

Hence, from every subsequence of T®* it is possible to choose a sequence weakly
converging to T®. Then T®* — Td in H. There is (by Schauder-Tichonov theorem)
a fixed point #° of T in H, ie. (¢% y°) = ¢° = TP = (u%(w, *), u)(w, *)). The
function u°(1, x) is an w-periodic solution of (1) and (2).
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Souhrn

O PERIODICKEM RESEN[ NELINEARNI ROVNICE TYCE

Marie KOPACKOVA

V ¢lédnku je dokdzdna existence w-periodického feSeni rovnice

0%u o*u o%u 5 3u (?u
P T L O S ou _
or? ox* ox* ot ox* 0t at

L, c)dc] —

s okrajovymi podminkami

o Ox Ot

u(t, 0) = u(s, n)_‘l‘i( £0) = %@,@:o

pro kazdou w-periodickou funkci f € C([0, w], L,).
Author’s address: RNDr. Marie Kopdckovd, CSc., Matematicky ustav CSAV, Zitna 25,
115 67 Praha 1.
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