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WITH THREE STATES OF UNITS

ANTONIN LESANOVSKY

(Received May 12, 1980)

Many authors have been interested in various two-unit redundant systems in recent
years — see e.g. [4, 7—11]. Many characteristics of the behaviour of such systems
have been derived. The authors mostly suppose that the state of each unit at a given
moment can be described by one of only two degrees — a unit either is able to operate
or not.

In this paper we shall deal with a redundant system composed of two identical
units. Each unit belongs to one of three qualitative classes (states) at every moment.
Units in state I or II are able to work, units in state [I] cannot work. In the system
three is one repair facility. A unit may operate (0), wait for its repair (W), be repaired
(R) or wait for its operative exploitation — be in reserve (S). Possible changes
of the function of a unit are illustrated in Fig. 1 and are carried out by a switchover.

Units make their quality worse by working and improve it by being repaired.
Thus at certain moments individual units are re-classified and change their states.
We admit only the following state-transitions of a unit: I — II, II — III, I - I,
111 — I. It means that a unit in state I cannot deteriorate in such a way that it enters
state 111 without first being in state II and that each unit is fully restored to the
as-new condition (state I) upon repair.
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About the organization of the system we suppose:

1) The states of units which are outside of the repair facility are monitored conti-
nuously, a unit in repair is keeping the state with which its repair started and at the
moment when its repair finishes it is in state I.

2) An operating unit can stop its operation only at a moment of its change of state.

3) A repair cannot be interrupted.

4) The case of cold reserve is considered.

5) The switchover and the repair facility are perfect and instantaneous.

6) At a moment when a unit deteriorates from I to II and the other one is in state I,
the former is put into repair while the latter one is switched into operation.

7) At the beginning of the operation of the system both units are in state I.

8) The system has only two states — operating and failed. The system is operating
if and only if a unit is operating.

9) All random variables — time of work of a unit in state I and II and time of
repair of a unit of the type II — I and I1] — I (denoted by </, #, .4 and A", respec-
tively) — are positive with probability 1, mutually stochastically independent and
generally distributed.

The development of our system can be described as follows:

1) At the starting instant both units are in state I. We choose one of them. This
one will enter state I1 after time 7.

2),At a moment when one unit deteriorates from I to II:
a) in the case that the other unit is in state I, the former is given into repair and the
latter starts to operate;
b) in the case that the other unit is in repair (and it will stay there because of assump-
tion 3 above), the first unit goes on operating and after time 4 it will deteriorate from
II to I11.

3) At a moment when one unit deteriorates from II to I11I:

a) in the case that the other unit is in state I, the former is given into repair and the
latter starts to operate;
b) in the case that the other unit is in repair, the former starts waiting for its repair
and the system interrupts its operation.

4) At a moment when a unit is waiting for its repair and a repair of the other one
is finished, the former is given into repair, the latter starts to operate and the system
starts its new operative period.

The aim of this paper is to find some characteristics (probabilities, distribution
functions or their Laplace Stieltjes transforms, mathematical expectations) of the
quality of the system described above. We consider probabilities that the first system
failure occurs during a repair of a unit of the type II — I or I1I — I, random variables
time to system failure and time of a non-operating period of the system and stationary
state-probabilities of the couple of units of the system.
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1. NOTATION

* sign of convolution,

A(x) — distribution function (d.f.) of time of work of a unit in state I,
B(x) — d.f. of time of work of a unit in state II,

M(x) — d.f. of time of repair of a unit /T — I,

N(x) — d.f. of time of repair of a unit 1] — I,

A, B, M, # — random variables with distribution functions A4, B, M and N,
respectively,

Zy =max{M; A + B},
Zy =max{AN; A + B},

) = [ M) dap),

B = [ NG ().

F(x) _ rx+0 (j‘x>y+0N(y N Z) dA(Z)> dB(y) ’
c = P(o/ = M) = lim C(x),

d =P + B =)= lim D(x),

e = P(o/ =2 ) = lim E(x),

S =P+ BzN)=IlimF(x),

o B,7, 8, ¢ ¢ — Laplace Stieltjes transforms of functions 4, B, C, D, E and F,
respectively ,

X(I) — the random process describing the development of the system,

{eps egiey; er} — the state-space of the process X(1),

X, — the chain embedded into the proces X(t),

Y,  — the chain describing the phases of the development of the system,
m = {es; e} — the state-space of the chain Y,

|4 — the set of all possible states of the couple of units,

Px(i)forie {P; S; L; R} — the condition that e; was the initial state of the random
process X(1).

194



2. PROBABILITIES OF TYPES OF THE FIRST SYSTEM FAILURE

The behaviour of the system in question can be described by means of a random
process X (1) with four states (ep, es, €1, er), which can change its state only a moments
of the following three types: 1) when a unit deteriorates from I to II and the other
one is in state I; 2) when a unit deteriorates from I1 to I1I; 3) when a repair of a unit
is finished and the other unit is in state II1 (hence it waits for its repair). Let ¢, be
such a moment. We define that at 1, the process X(r) enters the state:

e, — if at ¢, the development of the system starts and both units are in state /;

eg — if t, is a time instant of the type 1;

e, — if t, is a time instant of the type 3 or if ¢, is a time instant of the type 2 and the
other unit is in state I at t,;

ep — if ty is a time instant of the type 2 and the other unit is not in state I at 1,,.

In such a way the state of the process X(1) has been determined with probability 1
at each moment except the moments when X(¢) changes its state. Let us define for
the sake of completeness that the trajectories of X(1) are right-continuous. Changes
of states of X(¢) having positive probability are illustrated in Fig. 2.

It is easy to see that the moments when the process X(t) enters the state eg or e
have the property that the development of X(7) after ¢, does not depend on the history
of X (1) until 7, because at 1, a unit starts to operate and the other one is given into
repair and because of the assumption 9 about the organization of the system. On the
other hand, let the process X(r) enter the state ey at 1,. Then at #, a unit starts to wait
for its repair and a rcpair of the other one is in progress, i.c. it started before ¢, and
will be finished after t,. The sojourn time of X(¢) in the state e, (from t) is hence
equal to the time necessary for the completion of the repair of the second unit at ¢,
and is thus dependent both on the preceding state of X(f) (i.e. on the type of the repair
of the second unit) and on the sojourn time of X(7) in the preceding state. Altogether
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we obtain that the process X(t) has the semi-Markov property on each time interval
where it is operating.

Let X, be the random chain embedded into the process X(f), i.e. X, = e; if and
only if X(t) enters the state e;, i e {P; S; L; R}, after its n-th change of state. We
know that if X, = e, then P(X,,, = e,) = 1 irrespective of the values X, ..., X, _,.
Thus the transitions of the chain X, from the states e, have the Markov property.
The semi-Markov property of the process X(t) on each time interval where the system
is operating implies the Markov property of the chain X, with transitions from
states e, eg and e;. Summarily, we obtain that the chain X, is markovian. Tts matrix
of transition probabilities has the form

AN

0 1 0 0

0Pt = M)P(f < M <A+ B)P(d + B < M)
OP(Ad 2 N)P(L <N S +B)P(AL +B<N)|
0 0 1 0

1) X=

Let x(2, y® 22 and x®), y3) z(3 be probabilities of events that the first system
failure occurs during the repair of a unit of the type II — I or III — I under the con-
ditions 2,(P), Z#x(S) and 2,(L), respectively.

Supplementary assumption: We shall consider only the case that a failure of the
system comes with probability | under each of the conditions Z(P), Z(S) and (L),
i.e. we shall suppose that the following condition is fulfilled:

(2.2) x4 X3 = @) ) = ) g B
It can be easily seen that (2.2) is equivalent to
(2.3) (I—=¢.(1=f)+e.(1=d)+0.
The restriction connected with this supplementary assumption is essential neither

from the point of view of real systems, nor of the statements of this paper.

Theorem 1. The probabilities x?, y2) 2 x3) 3 gnd 23 have the values
p b y 9’ b b y

£@ = @ — (l;d).(l—l—e—f) )
(24) 2 =y (l—c).(l—f)+e.(1—d)’

T I (1—d).e
(2.5) ( (90 -hre i i

x® =y = ,@_.:f),;,(,l,f,f ) o
(2.6) 3 = ) (I_C)_(l_f)+e_(l_d)’
(2.7) 2 (1-¢.(1—=)

T (-o.(l—f)te. (1—d)
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Proof. The Markov property of the chain X, implies following equations
(2.8) x?) = y(ZJ ,
(29) y* =P«
(2.10) z® = P(o/

1\%

M) YD + P <M £ A+ B). 2P+ P(A+ B < M),

v

N) Y + P <N oA+ HB). 2P,

and

(2.11) x =y,

(212) O =Pt Z M)y + P < M = A + B). 2,

(213) 2 =P =2 N). YO + P <N = A+ B). 2D + P + B < N)

The solution of the systems of equations (2.8) to (2.10) and (2.11) to (2.13) has the
form (2.4) to (2.7).

3. TIME TO SYSTEM FAILURE
We denote the random variables ‘‘time to system failure under the conditions

Px(P), 2x(S) and Z4(L)” by 2, & and 2. respectively. The semi-Markov property
of the process X() implies the relations

(3.1) P=oAd + 9,
ST+ S, i A=,
(3.2) S =T+ P, il A<M AR,
T sr s if o +3B < .M,

T+ S, 0 A=A
/7‘9.1"‘_%5(/’ if «9/<JV’:\"(/+%’
'7LR’ l[‘.,QV4+%<‘/{/‘,

il

(3.3) 2

where 7 ;; for i € {S; L} and j € {S; L; R} is the random variable sojourn time of the
process X(1) in the state e; under the condition that after this time X(¢) will enter
the state e;, the right hand sides are sums of independent random variables and the
meaning of the symbols .7, %, ./ and A" is as follows: .#(.4") is the time of the repair
which started at the moment when the system was activated in the state eg(e;);
and 4 are the times of work in state I and II of that unit which started to operate
at the moment when the system was activated. Let P(x), S(x) and L(x) be the distri-
bution functions of 2, % and %, respectively, and let n(t), o(t) and A(t) be their
Laplace Stieltjes transforms.

Now we calculate the distribution functions of the random variables .7 ;;:

P(Tss £ x) = P(o < x|t 2 M) =
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fx+op(ﬂ > M|t = 1)dA(y )

P za) P =)

P(7 s < x) = E@E_(“:)m) ,

P(Tso<x)=PA + BEx|od <l <o + B) =
f r : 0[M(y + z) — M(2)] dA(z)> dB(y)

P(d < M < o + B)

_ D) - (B*O)(x)
P < M < oA + B)

and similarly

and similarly

oy, < ) = )= (BB ()
e Pt <N <o +B)

P(Tsp Sx)=P(d + B < x|l + B < .ll) =

_ fm <ffo[‘ = M(y + 2)] dA(z)> dB(y)

— 0

P + B < &)
_ (4xB)(x) = D(x)
Pof + B <)

and similarly
P(Tir £ X) = (4 B)(x) = F(x)
P(od + B < N)

After passing to the Laplace Stieltjes transforms we get from the formula (3.1)
(34) n(t) = ot) . o(1)
and from (3.2) and (3.3)
(35) o)) = 5(1). o(0) + [50) = A®)- 5] . A1) + o) . ) = 5(0) -
(36) A0 = o(0). o(0) + [p)) = A0 . 0] A1) + (1) B0) — (1)
Theorem 2. The Laplace Stieltjes transforms of the distributions of the random
variables #,9 and ¥ have the form

any <[y B =0).(1 =0+ pe) + (2B = ¢). (6 — )
@ [ (1=9).(1—9+pe)—c.(6— py) 1’

3.7)
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o(ry = [@B = 0).(1 — ¢ + Be) + (2B — ¢). (5 — By)

(3.8) (r)[ (1—7).(0—p+pe)—c.(6— By ]
[ (=) . (B — @) + e(ap — 9)

(3.9) A(t) [(1_y).(1_(p+ﬁg)—8.(5‘,B?)]z’

where o, B, v, 6, ¢ and ¢ are the Laplace Stieltjes transforms of the functions A, B,
C, D, E and F determined in Section 1.

Theorem 3. Let the random variables of and & have finite mathematical expecta-

tions. Then the mathematical expectations of the random variables 2, ¥ and ¥
have the form

- > (l—c+d+e—f).Ed +(d—c).EB
(3.10) EP = Eod + E@ + o9 G ofrei—3 ,
(1) EyzE%+(1—c+d+e—f).Eesz¢+(d—c).E~@

(t—c¢).(I=f)+e.(1 —d '
(3.12) Eg:(l—c—}—e).Edﬁ-(l—c).E_é’J_
: (I=c).(1=f)+e.(1 =4

4. TIME OF NON-OPERATING STATE OF THE SYSTEM

We denote the random variables ‘“‘the length of time of the first non-operating
period of the system under the conditions 2(P), 2x(S) and 2(L)” by 0p, 05 and C,,

respectively. Let us note that from the semi-Markov property of the process X(f)
and from Figure 2 the following two results are obvious:

1) The random variables 0p and Og have the same distribution.

2) The distribution of 0, and of the length of time of the second and all further

non-operating periods of the system under an arbitrary condition about its initial
state are the same.

Hence we can restrict our interest only to the variables 0p and 0, .

Let the first system failure occur at t,, then the process X(f) enters the state ey at .
This transition can come either from eg or from e;. Let it come {rom eg and let the
last change of state of X(t) before t, occur at a moment ¢,. Thus at the same instant
t, a unit began to operate in state I and a repair of the other one from state II started.
Before this repair is finished such two deteriorations of the first unit occured that it
changed its state from I to II and from II to III. At the moment 7, of the second
deterioration the system interrupts its operation. Hence

to=t, +A +B.
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On the other hand, the repair of the second unit will be finished at t; + .# and the
system will operate again since this moment. The non-operating period lasts from
t, + & + #tot, + 4. Thus under the condition that the first system failure occurs
during a repair of a unit from state II we have

(4.1) Op=0,=.M —f &,

where the random variables o/, # and .# must fulfil the inequality o/ + # < /.
Under the condition that the first system failure occurs during a repair of a unit
from state III we similarly have

(4.2) 0p =0, =N —od — B,

where the random variables o7, # and 4 must fulfil the inequality & + 4 < A .
We obtain

(4.3) PO < 1) =x® Pl — oA —BSt|od + B < M)+
+xO PN~ A —BEMA+B<N),
(4.4) POL= )=z P(Ml —of — B St|od + B < M)+

+z(3’.P(./V—.sz¢—%§t/.9/+<”Z<JV).

Theorem 4. Let P(s/ + % < M) > 0 and P(o/ + B < A") > 0. Then for every
t<0

(4.5) P(0, < 1) = P(O, < 1) = 0

and for everyt = 0

@6) POrsn=14x», 90=1 o M)=L
/ P + B < M) Pl + B < N)

and

7)) PO =1+ :® U NS (U et

P+ B < M) Pt + A <. W)

where the numbers x2), x3, z() and z® have been determined by Theorem 1 and
the functions g(t) and h(t) have for all t = 0 the following expressions

(4.8) at) - f °° < J :M(t byt z)dB(z)) dAQ),

(4.9) W) = f ’ < J C NGty + ) dB(z)) dA(y).

— 0 - 0

Proof. The random variables @, and 0, are evidently non-negative. This fact
proves (4.5) for all negative t. For all non-negative ¢ we have

Pl — oA — B < t|d + B < M) =
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Jw<rWM“+y+ﬂ—MO+ﬂhm@>Mo)
P(of + B < M)

g(t) — P(M < o + B)
P(o/ + B < M)

and consequently,

(4.10) %%—ﬂ—%§ﬂd+%<%%ﬂ+~—ﬂg:ym.
P(of + B < M)

Similarly

@i) PN — A — Bt +B<h) =1 4O
P(of + B < N)

The relations (4.6) and (4.7) can be obtained by substituting from (4.10) and (4.11)

into (4.3) and (4.4) with help of (2.2).

Note: If P(«/ + # < M) =0 and P(o/ + # < A) > 0, then by Theorem 1

x2) = () — 0
x3) = 23— |
and it is easy to find that forallt > 0

(4.12) PO < 1) = PO, < 1) =1 + - () —1

P(of + B < V)
On the other hand, if P(«/ + # < #) > 0and P(«/ + # < A") = 0 then similarly
forallt =0

(4.13) POr <) =P, =0)=1+_ 901

P(of + B < .l)
The case P(«/ + B < M) = P(o/ + # < N) = 0is not possible because of Supple-
mentary assumption {2.3).

Theorem 5. Let P(«/ + % < ) > 0and P(«7 + B < A") > 0and let the random
variables o/, B, M and N have finite mathematical expectations. Then the mathe-
matical expectations of the variables Op and O have the forms

(2) g — — Eg 3) % . — Eof — EY
(4.14) E@P:L,,:@:{M Eot E‘”)_+x (EZy — Eo/ - EZ)

P( + B < M) Pt + B <)
(@1s) g0, = 2 (EZ — ES — E8) | 2V (B2, - E — E)
- P(of + % < M) P+ <)

where the numbers x®, x®, 2 and z® have been given by Theorem 1 and the
random variables &\, and %y have been defined in Section 1.
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Proof. The distribution functions of the random variables ¢p and @, have been
given in (4.4) to (4.6). We have

(4.16) E0p = j [xu) o L—g() FINES Aﬁl_qi')‘ﬁ_:] dr =
0

P+ B <) T P+ B<N)
x(2) © x3 o
PRyt J O aace o | e,
where
(417) r [ — g(t)] dt =r (F [1 = M(t + »)] d(A*B}(y)) di =

[* 00

_ ( j "t - M) dz> d(4 % B) () =

_ : qz:[l ~ M(z)] d(4 » B) (y)> 2=

— (711 = ME] (4B (2) dz = 2y — E/ — EB

JO

and similarly

(4.18) Jm[l W) di = EZy — Bt — EZ .

0

By substituting from (4.17) and (4.18) into (4.16) we get (4.14). The formula (4.15)
can be proved in a similar way.

Note. If P(o/ + # < ) = 0 and P(/ + # < A7) > 0 then

% — Eof — Eg
(4.19) E0, - E0, = v~ ES — EF
Pt + % < &)
and if P(& + # < ) > 0 and P(/ + # < &) = 0 then
EZ, — E/ — EZ

(4.20) EOp = EOp, = M~ —— =,
Pt + 2 < )

5. STATIONARY STATE-PROBABILITIES OF THE COUPLE OF UNITS

Let us observe two regenerative events — those of the random process X(¢)(de-
scribed in Section 2) entering the states eg and e,. Let us denote

M = {eg;e.}.



The time interval between two successive regenerative events i and j, where i, j € M,
will be called the phase of the type i. The random chain Y, which describes the type
of phases is clearly markovian with the matrix of transition probabilities

. Gz -y

Supplementary assumption (2.3) implies that ¢ # 1. Indeed, from the positivity
of the random variable 4 we obtain

c=Pd 2 M)SP(d + B2 4M)=d
and if ¢ = 1, then d = 1 and
(l=¢).(1=f)+e.(1 —d)=0,

so that the assumption (2.3) would not be fulfilled. Thus the chain Y, has exactly
one class of recurrent states. It is periodical oniy in the case that

(5.2) c=0 and e=1.

But what is the meaning of (5.2)? We shall see that under the condition (5.2) the times
A and A" of repairs of the type II — I and of the type [II — I are in the unrealistic
relation

(5.3) A > N with probability 1 .

Indeed,

54y Pl >N)y=Pll >N, oA <M, d2N)=Pld <M A =N)=1
In this section we shall suppose that (5.2) does not hold. i.e., we shall assume that
(5.5) l—c+e+0.

Thus the Markov chain Y, is ergodic and has a uniquely determined stationary distri-
bution (e, 7, )', Where

e
5.6 Moy = ———— ,
( ) ’ l—c+e
I —c
5.7 Mo = —
G-7) Yl—cte

The random variables g and /", — the lengths of phases of the types e and ¢,
respectively — fulfil the relations

pE:4 it =,
(5.8) Hs=—Ad +B if 4 <l <A+ F,
N4 if o +4 < .4,
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Table 1

N The type of repair of a unit

N

e
AN

The state of the operating unit

No unit is repaired

t, o > 1)dt +

’—T-f P( <
4

(0]
1

T, @

+ =t | P/ St >1)dt
A 0

Tes | Pt <1, < M,

4 Jo

[ A+ B>t <1)dt +
11

No unit is
operating

St < A

+?—J P(s#
4

0

oA+ B>, N < 1)dt

Column sums

Ei.f P(.«
4 Jo

y ”
i e f (1
4 Jo

t,o + B> t)dt +

St + #>1)dt
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Table 1 (Continued)

I -1

i -1

%L‘ f P(e > 1,4 > 1) dt

0

Tes | Pt + 28 <1,
4 Jo
M > 1) dt
Tes El
4

Row sums

Teo | P <1, | SEB.(1—m,.c—
4 ) 1
oA+ B>, A > 1)dt — 7, . ©)
nes g
) R +
lf Pl + B <1, .
4 Jo + =t EZy —
4
A > t)dt §
' 1
| — ~ (B« + EA)
‘ 4
— — i — .
nel. /
—=£ EA 1
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pz T
(5.9) Hy=L-d+ B i 4 <N+ B
NV if o+ % <N

Let us calculate the distribution of A 'g:
(5.10) P(As<x)=Pod Sx, 2 M)+
+P(Ad + BEx, A <M ME A+ B)+P(MEX, A+ B < M) =

Il

P Sx, e = M)+ P + B x, M0 £+ B)+
+ Pl Ex, A+ B<M)-P(Ad +BEx, ME A+ B, A2 M=

x+0
- '[ P(of 2 ]t = ) dAQY) + P(Zy < x) -

- w0

- JM GHWP(% > M)t =z B = y)dA(z)) dB(y) =

- w0 -

= C(x) + P(Zy < x) — (B*C)(x).
The mathematical expectation of /g has the form

(5.11) EX'g =EZy — c.EA

and similarly

(5.12) EX|, = EZy —e.EX.

Thus the mean length of a phase is

(5.13) Ad=n, EXg+m, EX =

= Al-»:lc—:; e EZy + (1 —¢) . EZy — e . EH].

Let us now be interested in the possible states of the couple of units of our system.

They form the set
(5.14) V= {(k:l); k, le (I I} N {(LT; 1)}

where the first component expresses the state of the operating unit (for k = 1, 1)
or the fact that no unit is operating (for k = IIT) and the second component expresses
the type of the repair which is being carried out (for [ = II, I1I) or the fact that no
unit is being repaired (for I = I). The couple (II1; I) cannot be an element of the set V

because of the assumption 5 about the organization of the system.

By the paper [ 1] we know that if the mathematical expectations of all the variables
oA, B, A and A" are finite and if the distribution functions of the distance between
two successive i-events (for bothie ETJI) are non-lattice, then the stationary probability

p; of the state j, j € V, of the couple of units has the form
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1 [eed
(5.15) p; =~ Zni.f Qu, j) du,
A iem 0

where Q(u, j) is the probability that a phase is longer than u and after time u from
the beginning of this phase the couple of units is in the state j under the condition
that the period in question is of the type i.

The full list of formulas for computing the stationary probabilities p; for je}
is given in Table 1. The row and column sums are very essential characteristics of
availability of the system and of the level of use of the repair facility. So the stationary
availability of our system has the form

e

ey alB0mergrER (-0,

while the stationary probability that the repair facility is operating is

(1"—;1_{'_6)2 [e .E + (1 - C) . E./V‘] N

where 4 is determined by (5.13).

Another paper, which is expected to appear in this journal presently, will deal
with stochastic characteristics of the behaviour of the system considered in this
paper in the course of its first operating period. It will be devoted to the following
random variables: the whole time of repairs of units of the type II — I (or 11l — I),
the whole time of operation of units in state I (or I) and the number of finished
repairs of units of the type II — I (or I1I — I).
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Souhrn

ANALYZA SYSTEMU S NEZATIZENOU ZALOHOU SLOZENEHO
ZE DVOU PRVKU, KTERE MOHOU BYT VE TRECH STAVECH

ANTONIN LESANOVSKY

V ¢ldnku je uvazovdn jisty systém s nezatizenou zdlohou sloZeny ze dvou prvka
a jednoho zatizeni pro jejich opravy. Prvky mohou byt ve tfech stavech: bezvadném
(1), zhorseném (II) a poruchovém (III). Pfedpokldddme, Z¢ moZné jsou pouze nd-
sledujici zmény stavu prvka: I — II, II — III,II — I, III - I. Oprava prvku typu
I1 - I muze byt interpretovdana jako jeho preventivni Udrzba, jejiz realizace zdvisi
na stavech obou prvka. V ¢lanku je odvozena fada charakteristik chovdni systému,
napf. rozloZeni a stfedni hodnoty doby do prvni poruchy systému a doby poruchového
prostoje systému, staciondrni pravdépodobnosti moznych dvojic stavl prvka.

Author’s address: RNDr. Antonin Lesanovsky, CSc., Matematicky ustav CSAV, Zitna 25,
115 67 Praha 1.
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