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A FINITE ELEMENT ANALYSIS FOR ELASTO-PLASTIC BODIES
OBEYING HENCKY’'S LAW

IvAN HLAVACEK

(Received January 30, 1980)

INTRODUCTION

One of the simplest mathematical models describing the elasto-plastic behaviour
of solid bodies is the constituent law of Hencky (see c.g. [1]) The classical boundary
value problems allow a variational formulation in terms of stresses, known by the
name of Haar-Kdrman principle. In the papers by Mercier [2] and Falk [4], [5],
approximate solutions of the boundary value problems have been studied, which
consists of piccewise constant stress fields. It is the aim of the present paper to employ
piecewise linear approximations of stress fields and to give some convergence results
for them.

Using some results of C. Johnson and Mercier [7], we define both external and
internal approximations of the set of statically admissible stress fields. The set
of plastically admissible stress fields is approximated by the requirement that only
the mean values of stresses over any finite element have to be plastically admissible.

The torsion problem of a twisted cylindrical bar (under Saint-Venant hypotheses)
is solved in terms of stresses by a quite analogous manner. Here we apply piecewise
“quasi-linear” approximations introduced by Raviart and Thomas [11].

1. PRELIMINARY DEFINITIONS

Let Q be a polyhedral bounded domainin R, n = 2, 3; x = (xl, o x,,) a Cartesian
coordinate system. Let R, be the space of symmetric n x n matrices (stress or strain
tensors). A repeated index implics summation over the range 1, ..., n.

Assume that a yield function f: R, — R is given, which is convex and continuous
in R,.

We introduce the following notations:

S={1:2->R,|1;eLy(Q) Vi, j} .

(o, &) = j oijei;dx . ol = <o, 0>,
2
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Let the boundary 02 be decomposed as follows
Q=T,ul,, I'nnl,=0,

where I', and I, are either empty or open in 0Q. Assume that a body force vector

Fe[L,(Q)]", a surface traction vector ge[L,(I',)]" and a displacement vector
u, e [H'(Q)]" be given.

Henceforth H’(Q) = W/*(Q), j = 0, 1,2, denotes the Sobolev space with the

norm ||+ |; o, HY(Q) = Ly(Q). P(M) is the space of polynomials of the k-th degree
on the set M.

In case that I', = 0, the total equilibrium conditions for F and g are assumed
to be satisfied.

In the space S we introduce also the energy scalar product
(0,7) =< o1y, ol = (0,0)"?,
where ¢ : S —» S is the isomorphism defined by the generalized Hooke’s law:
0 = (€< 0;; = Cijpl-
Here ¢;;, € L, (), o and e are the stress and strain tensors respectively,
Ju> 0, <(ce, e = ocHe“(z, Yee S.
The space of virtual displacements is defined as follows
V={ve[H(Q]|v=0o0nTI,}.

The set of statically admissible stress fields is

E(F, g)={teS \ (t,e(v)) = L(v) Vve V},

L(v) = j F;dx + J\ giv;ds.
o ry

We introduce the set of plastically admissible stress tensors

where

B={teR,|f(r) £1}.

It is easy to see that B is convex and closed in R,.

Finally, we define the set of plastically admissible stress fields
P={reS|t(x)eBaec. in Q}.

The set P is convex and closed in S.
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The Hencky’s law can be stated in the following way (cf. [1], [2]). Introducing
the projection ITy(x): R, —» B onto the set B with respect to the scalar product
(¢7'(x) 0);; 7j» then

(1.1) 0 = Iy(x) ce.
Consider the actual strain tensor field e(u) €S,
ei(u) = 3(0u;/ox; + dujlox;),

and the actual stress tensor field o € E(F, g), where u = u, + w is the actual displace-
ment field, w € V. (Suppose the existence of all these fields for the time being.) More-
over, let 7T : S — P be the projection onto the sct P with respect to the energy scalar
product (o, 7). Then

(T7) (%) = 114(x) ()
holds almost everywhere in Q (see [2]). Hence we may write
o = Ilc e(u)
and conscequently, for any 7€ P

(cew)—0,1—0)<0

(1.2) (e(ug) + e(w), 1 — o) — (6,1 —0) £ 0.

Let us take
teE(F,g)n P.

Since 1 — o€ E(0,0) and we V,
(e(w),t — o) =0.
Thus we obtain
(1.3) (0,1 —0) — C(e(up), t— 0> 20 VieEF, g)nP.

The inequality (1.3) is equivalent with the Haar-Kdrmdn principle: the actual
stress field o minimizes the functional of complementary energy

S(1) = H|<|? — <e(uy), ©> over E(F,g)nP.

In fact, both the functional & and the set E(F, g) n P are convex and the equi-
valence follows easily.

Theorem 1.1. Let the set E(F, g) o P be non-empty. Then the Haar-Kdrmdn
principle has a unique solution o.
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Proof. The sets E(F, g) and P are convex and closed in S, the functional & is
quadratic and strictly convex. Hence the existence and uniqueness follows.

Remark 1.1. The formulation in terms of displacements is much more difficult
to handle (see [1]. [2], [3]), as far as the existence and uniqueness is concerned.

2. APROXIMATIONS BY EQUILIBRIUM FINITE ELEMENT MODELS

Let us consider two-dimensional problems, i.e. let Q = R2. In order to discretize
the problem, one has to replace the set E(F, g) n P by a finite-dimensional approxi-
mation. The simplest possibility is to work with piecewise constant stress fields on
triangulations of the domain Q. An analysis of such a method has been given by
Mercier and Falk in [2], [4], [5]- In the present paper, we employ piecewise linear
stress fields on composite triangles (see Watwood and Hartz [6]).

First we recall some results on the composite triangular block-elements, obtained
by C. Johnson and Mercier [7]. Let us consider a triangle K with vertices a,, a,, a3.
Joining the vertices with the center of gravity O, we obl"in three subtriangles K;,
i = 1,2, 3. Consider a triangulation , of Q and define S,, = {0 € S]a]K e [Py(K)]*

. v is continuous when crossing any side Oa;, i =1,2,3 and a,a,, for all Ke 7},
where v denotes the unit normal with respect to the side under consideration.

In [7] a linear mapping

rp: S [HY(Q)]* - S,

is defined through the following set of conditions:
(1) J.((r,,o) v—o.v).vds=0, Yvel[P()]), (rno).ve[P ()]
1
on every side le 7,
(il J (no — 0)dx = 0 VKeT
K

If 6eSn[H(Q)] j=12, then
(2.1) o = rolo = Chj|a|j,Q

holds for any regular family {7,}, 0 < h < hy, of triangulations, where h is the
maximal length of all sides in 77, and [a]],,, is the seminorm consisting of all deriva-
tives of the j-th order. C is a constant independent of h and o. Although the estimate
(2.1) has bee proven in [7] for j = 2 only, the same argument is applicable to the case
j=1

Let us define external approximations E, of the set E(F, g):

E, = {O'h €S, I (o, e("h)> = L(Vh) Vv, € Vh} >
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where
Vi = {vie V| v,|x e [Pi(K)]* VKeT,} .

Introduce also an approximation P, of the set P:

P,=<{1,eS,|f B 1,dx ) =1 VKeZ,}.
mes K J ¢

In other words, the condition 7,€ B a.e. in Q is replaced by a weaker condition,
that the mean values of 7, on every K € 7, belong (o B. Itis obvious that E, ¢ E(F, g)
and P, ¢ P, in general.

We now define the approximate problem: to find ¢, € E, n P, such that

(2.2) &(0,) = min over E,NP,.

Lemma 2.1. If there exists a stress field

te E(F, g) n P n [HY(Q)]*,

then the problem (2.2) has a unique solution.

Proof. Applying the mapping r, to the stress field t, we obtain
(2.3) rtekE,.
In fact,

e(vy)x € [Po(K)]* VKeT,, Vv,eV,.
Consequently, (i) yields
r, e(vy)y = <1, e(vy)y = L(v,) VYv,eV,.

Furthermore,
(2.4) rTeP,.

In fact, T € B a.e. and therefore
— J rytdx = w—J tdxeB VKeJ,
K K

follows from (ii) and the convexity of B.

Hence, the set E, n P, = 0. E, is convex and closed in S, being an affine hyper-
plane in the finite-dimensional space S,. The set P, is also convex and closed in S.
To prove the closedness of P,, we use that both the mean values on K and the yield

function are continuous mappings of their arguments. The convexity of P, follows
from the convexity of f.
The rest of the proof is obvious.
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Theorem 2.1. Let the solution o of the Haar-Kdrmdn principle belong to [H'(Q)]*.
Then

(2.5) e —ou] >0, h=>0
holds for any regular family of triangulations.
Proof. We employ the following abstract proposition on the convergence of the

Ritz-Galerkin approximations (see e.g. [8] — chapter 4).

Proposition 2.1. Let u and u, be the unique solutions of the problems
F(u) = min over A and
F(uy) = min  over X',

respectively, where & is a quadratic functional in a real Hilbert space H, with
positive definite second differential, 4" = H a closed convex set and A, = H a closed
convex subset for any h, 0 < h < h,,.

Assume that:
(H 1) to every he (0, hg > there exists an element v, € A, such that
Hu—vhn—+0 for h-0;
(H2)v,e ), u*e H, v, — u* (weakly) for h - 0 implies u* € A",

Then
lup — u] >0, h->o0. O

We can apply the proposition with # =&, H= S, X = E(F,g)nP , A, =
=E, NPy, u=o0,u,= o0,
To verify the condition (H 1), we realize that

lo = rio| = Chlo], o
by virtue of (2.1) and r,0 € E, 0 P, — see (2.3), (2.4).
Let us consider the condition (H 2). First we show that
(2.6) %€E,, 1, —1 in S (weakly)implies teE(F,g).
In fact, for any v e V there exists a sequence {v,}, v, € V}, such that
Iv=vilia=0, h>0.
Consequently, e(v,) — e(v) in S and (2.6) follows from
(o e = L(wy)

if we pass to the limit with h.
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It remains to verify that
(2.7) 1,eP,, t,—1 (weakly)in S=rteP.

To this end we prove an auxiliary

Lemma 2.2. Denote for any w € S
Y(w)e S

the tensor function such that

1[/,,(0))‘,( - f wdx VKeJ,.
mes K J g

Then 1, — t (weakly) in S for h — 0 implies that
Yi(ty) =~ © (weakly)in S.
Proof. For any s € S we may write
(2:8) [<s, Un(m) = D] = K5, wnlm) = (D] + <5 1) = o] -
It is well-known that:
(2.9 [¥n(x) = 1o =0, h—>0, VieS.
Furthermore, we have

<s, l//h(fh =)= s ‘/’hij(fh - T) dx =

Q2

=Y J. Sij de‘ (th — 1)y (mes K) ™ dx = (fyfs), 1, — 1) .
K K

Kedn

Using (2.9), we conclude that both terms on the right-hand side of (2.8) tends to zero,
which proves the lemma. O

Now we are able to verify (2.7). Recall that
T,€ Py Yy(r,)eP, 1,€8,
follows from the definition of P,. By virtue of Lemma 2.2, we have
Yu(ty) =7 in S.
Since P is weakly closed, 7 € P. Q.E.D.

Next let us employ internal approximations of the set E(F, g). To this end,
assume that the body forces F and the surface tractions g are piecewise constant and
piecewise linear with respect to a fixed triangulation 7, , respectively.
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Then a stress field y € E(F, g) exists, which is piecewise lincar with respect
to T4,

Inserting ¢ = y + 7 into the Haar-Kdrmdn principle, we obtain the following
equivalent problem:

(2.10) J(r) = min over X,

where
J(@) = 4[7|* + (z, 2) — <e(uo), T,
A =E0,0)n(—x+ P).

Let us approximate the set /¢ by the set

f b (x+r,,)dx>§l VKeT,%,
mes K J ¢

E, = E(0,0)nS,, 7, isa refinement of 7, .

.}if,,={r,,eE,?

where

We define the approximate problem
(2.11) J(t,) = min over X,.

Lemma 2.3. Let a o4 € E(F, g) 0 P exists such that o, — y = 15 [H'(Q)]"
Then the problem (2.11) has a unique solution t,.

Proof. We have 7, € E(0, 0) n [H'(2)]* and
ryto € Ep

follows from [7] — (5.5) and Lemma 2. Morcover, since x|x € [Py(K)]* for all
K e 7, we have

X =X
and consequently

(2.12) x4+ To) = 1+ ThTo -

Since x + 1o € B a.e. in Q, the mean values of y + r,7, in every triangle K belong
to B, by virtue of (2.12), the condition (ii) for r, and the convexity of B. Thus we
conclude that r,to€ X,

The set 7, is convex and closed in S (¢f. an analogous assertion in the proof
of Lemma 2.1). Hence the existence follows. The uniqueness is a consequence of the
strict convexity of the functional J.

Theorem 2.2. Assume that 0 — y = 1€ [H'(Q)]*. Then
”r - r,,H -0, h—-0,

holds for any regular family of triangulations, refining 7.
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The proof is parallel to that of Theorem 2.1. We use also that r,r € ", follows,
like in proving Lemma 2.3.

Remark 2.1. In three-dimensionai problems, we can employ piecewise linecar
stress fields on tetrahedral block-elements composed of four subtetrahedrons.
Estimates parallel to (2.1) hold for an analogous mapping r, (see the forthcoming
paper [10]). Then the above results remain true.

3. TORSION PROBLEM

Let us consider a cylindrical bar subjected to a twisting moment at one end while
keeping the other end fixed. Using the Saint-Venant theory of torsion and the Haar-
Kdrmdn principle, we are led to the following problem in terms of stresses (p; =
= Cr;3, i = 1,2, C = const):

(3.1 Z(p) = ip|* = (¢, ) = min over EnP,

where p € [L,(2)]%, @ = R? represents the cross section of the bar (multiply connect-
ed, in general); (+, -) and ||| are the usual scalar product and the norm in [L,(Q)]?,
respectively,

¢, = —Coxy, @5 = Cox;, C, = const,
E = {pe[L()] | (p. grad v) = 0 Yoe H'(Q)},
P={pe[L(Q))|f(p) £ 1 ae. in Q},

where / is a given continuous and convex function in R?, f(0) < 1.

It is readily seen, that the problem (3.1) has a unique solution. In fact, 0e E N P,
E n P is closed and convex in [L,(Q)]* and & s strictly convex, quadratic.

To approximate the problem (3.1), we employ some finite element spaces, intro-
duced by Raviart and Thomas in [11].

Let us assume that £ is a bounded polygonal domain and consider regular family
of triangulations 7, of Q, h — 0. We construct finite elements on any triangle K € 7,
by means of an affine invertible mapping

Fy :x = Fy(x) = Bgx + by .

such that Fg(K) = K, where K is the unit right reference triangle in the (&, n)-plane.
Introduce the iinear space of vector-functions

Q = ‘{fh =ao+ a;& + an + “35(& + ’7),
4> = by + b, & + by + ban(¢ + ”I)} s

where a;, b; € R are arbitrary coefficients.

457



Then we define
Sy ={pe|L(Q))|VKe T, IpeQ such that
Plx = (det Bx)™! Bxpo Fr';

p . v is continuous, when crossing any side common to two adjacent triangles}.

From [11] — proof of Theorem 3 — we conclude that a linear mapping

Pyt [Hl(Q)]2 - S,
exists such that:

(3-2) J (g —9q)dx=0 VKeZT,,
K
(3.3) [ra = ql = CWla,0. j=1,2,
provided that q belongs to [H/(Q)]*
We define

E, = {q,€5, ’ (am grad v,) = 0 Vo, e W},
where
Vh = {thHl(Q)IDh|KeP1(K) ert/r’l}

is the standard finite element space; furthermore, we introduce

f(—l——fq,,dx>§1 VKEF,,}.
mes K | g

The approximate problem will be defined as follows:

th{qhesh

(3.4) &(py) = min over E, N P,.

Lemma 3.1. The problem (3.4) has a unique solution.
Proof. The set E, N P, contains the zero element and is convex and closed. Hence
the existence and uniqueness of the solution follows.
Theorem 3.1. Let the solution p of (3.1) belong to [H*(Q)]*. Then
Ip=pid =0, B0
holds for any regular family of triangulations.

Proof. We employ Proposition 2.1, setting J = ., H = [L,(Q)]*, # = En P,
Ay =Ey0 Py u=p,u, = p,

To verify the condition (H 1), we use the estimate (3.3):
”P - r;,Pll = Ch‘Pll.Q
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and prove that r,p € E, 0 P,. In fact, for any v, € V,, we may write

("I:Pa grad Dh) = (P! grad l’h) =0 )

by virtue of (3.2) and v, € H'(Q). Consequently, ryp € E,.
Second, f(p) < 1 a.e. in Q and therefore

1 1
L pdx)=f(- ix} <1 VKe T
f(mes K .[Kr,P ) f<mes K J‘KP ‘ ) oo

follows from (3.2), the convexity and continuity of /. Thus r,p € P,.
Let us verify (H 2). We have

p.eE,, p,—p (weakly)in H=pekE.

In fact, for any ve H'(Q) there exists a sequence {v,}, v,€ V,, v, —» v in H'(Q),
h — 0. Then

(Plxa grad l“h) =0

and passing to the limit with i — 0, we obtain

(p,gradv) = 0.
It remains to prove that

PhEPh’ Ph_‘P in prGP
We employ Lemma 2.2, where the space S is replaced by H. Thus we have

prePy=y(p)eP, PyeS,,

by virtue of the definition of P,. From Lemma 2.2,

Vi) =P in H, h-0.
Since P is weakly closed, p € P follows. Q.E.D.

Remark. The regularity assumption p € [H'(Q)]? is satisfied if Q is convex — see
" Brezis and Stampacchia [12].

Finally, let us consider internal approximations of the set E, i.e. let us appro-
ximate the set # = E N P by the set

A, = E) O P,
where
E)=EnS,.

It is not difficult to find that (cf. [11])

E;) = {peS,|divp =0 forall Ke7, and p.v = 0 for the sides on 3Q} .
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We define the approximate problem

(3.5) &(py) = min over E; N P,.

Lemma 3.2. The problem (3.5) has a unique solution.

Proof. The set E; m P, contains the zero element, being also closed and convex
in H.

Theorem 3.2. {ssume that p e [H'(Q)]*. Then
lp—p] »0, h—0

holds for the solution p,, of the problem (3.5) and for any regular family of triangu-
lations.

The proof is parallel to that of Theorem 3.1. Note that
peEn[HY(Q)]* = rpekE,

follows from [11] (see Lemma 2 and the proof of Theorem 3 there).
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Souhrn

ANALYZA PRUZNE PLASTICKYCH TELES
PODLE HENCKYOVA MODELU METODOU KONECNYCH PRVKU

IvaN HLAVACEK

Na zdklad¢ variacni formulace v napétich — tzv. principu Haara-Kdrmédna —
Jjsou definovdny po ¢dstech linedrni aproximace pole napéti a dokazuje se jejich kon-
vergence. Vzhledem k podminkam rovnovidhy aproximace jsou jak externi tak
interni, vzhledem k podmince plasticity v3ak jen externi.

Podobné je studovin také problém kroucené vélcové tyce.
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