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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

ROUNDOFF ERRORS IN THE FAST COMPUTATION 
OF DISCRETE CONVOLUTIONS 

KAREL SEGETH 

(Received June 20, 1979) 

1. INTRODUCTION 

In many applications, the problem of efficient evaluation of the formula 

( I T ) &* = I </^.-;; / = 0 , . . . , M - 1, 
1 = o 

is often to be solved, where Lis a positive integer and the sequence b is called the 
discrete convolution of the sequences \JJ and q>. The integer M is supposed to be much 
greater than L. 

Computing e.g. the right-hand part b of the system of M linear algebraic equations 
with the Gram matrix in the finite element method and applying an L-point (composite) 
Newton-Cotes quadrature formula, we finally come to the expression (IT), where </> 
is now the vector of the values of the right-hand part of the solved differential equation 
at some M equidistant nodes, and the L components of the vector \J/ depend on the 
values of the basis function and the coefficients of the quadrature formula. 

A very important application of (1.1) is called the linear filtering. Now q> is a se­
quence of measured data and \j/ is a filter. In many branches of science, linear filtering 
is the fundamental way of processing measured data. 

The evaluation of (1.1) can be carried out directly. Such a direct procedure requires 
L multiplications and L additions for each /; the complete sequence b is thus calculated 
with the help of LM multiplications and the same number of additions. 

Choosing an integer N, we will consider a more specific problem, namely the 
problem of evaluating the discrete convolution t = (t0, ..., tN_1), the components 
of which are given as 

(1.2) n = JLgjf^j\ / = o , . . . , N - i , 
j = o 
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where g = (g0, ..., g^-!) and / = (/0, ...,/7V_1) are known vectors and fj+N ~ fP 
i.e.,/represents a "periodic sequence". 

The problem (1.2) possesses two important properties. First, the evaluation of (1.1) 
can be carried out as a repeated substitution into the formula (1.2) with a proper 
choice of N, L ^ N g M, and / and g. Second, we can employ a fast method of 
evaluation of the expression (1.2). Such a method is based on the discrete Fourier 
transform realized through the algorithm of the fast Fourier transform (Cooley 
and Tukey [2]). 

The ways of the fast evaluation of (1.1) requiring an optimum choice of N and 
a repeated fast calculation of a convolution of the type (1.2) have been studied e.g. 
by Helms [6], who presented two methods suitable to this end, the "select-saving" 
method and the "overlap-adding" method. 

The fast evaluation of the convolution (1.2) consists in the fast calculation of the 
discrete Fourier transforms of g and f9 the determination of the "product" (in 
a certain sense) of these transforms, and the fast calculation of the inverse discrete 
Fourier transform of this product. The whole procedure thus requires 0(N log N) 
arithmetic operations. To obtain (VI), we have to repeat this procedure about 
M/(N — L+ l) times. Apparently, we can achieve considerable efficiency of this 
fast convolution procedure only when Lis large. 

Davis and Rabinowitz [3] claim that (p. 201) ''experience has shown that round­
ing error does not generally accumulate in the performance of fast convolutions 
when floating-point arithmetic is used"; they are apparently concerned only with 
the rounded arithmetic. Unfortunately, a series of numerical experiments carried 
out by the author in chopped arithmetic in order to compare the fast and the direct 
procedure for computing convolutions has shown that the fast convolution (being 
sometimes really less time-consuming) is generally much more influenced by round­
off errors. The paper by Thong and Liu [16] concerned with an improvement of the 
algorithm of the fast Fourier transform with the aim of obtaining a less roundoff 
error also indicates that the accumulation of the roundoff error in this algorithm 
may be dangerous in practical computation. ® 

In the present paper we try to analyse the roundoff error in the fast convolution 
as defined by (1.2). To obtain a comparison with the classical (direct) convolution, 
we consider also the problem of the direct computation of 

u,(L) = £ gjft.j , J = 0 , . . . , N - 1 , L^N, 
1=o 

(1.2) being a particular case of this formula with L = N. 
Basic concepts necessary for the treatment of the subject are introduced in Section 

2. We define the discrete and the inverse discrete Fourier transform and present 
Parseval's identity. Further, we state the fundamental assumptions on the arithmetic 
considered and the local roundoff errors. We consider two possibilities of performing 
machine operations, the rounding and chopping. 
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In the whole paper we employ the stochastic approach to the propagation of 
roundoff error. In the conclusion of Section 2, the behavior of the roundoff error in 
the discrete and inverse discrete Fourier transforms is presented as established by 
Kaneko and Liu [10] for the particular algorithm of the fast Fourier transform called 
the decimation in frequency. 

The main result of the paper is given in Section 3. The discrete convolution is 
defined here and its roundoff error is examined for the case of the direct as well as 
the fast computation. 

The theoretical results derived in Section 3 are compared with numerical results 
in Section 4, which contains a simple numerical example. The comparison shows 
that the behavior of the roundoff error agrees with that predicted theoretically. 

The problem of efficient evaluation of the discrete convolution is even more 
important in two dimensions. The way of the fast computation shown here can be 
applied also to the two-dimensional case. The analysis of the accumulation of round­
off error is then performed similarly. 

2. THE FAST FOURIER TRANSFORM 

Basic concepts enabling us to formulate our problem and to study it are introduced 
in this section. Further, we present several known statements concerned with the 
roundoff error in the Tast Fourier transform. 

The notation introduced in the following definitions is kept throughout the paper. 

Definition 2.1. Let m be a positive integer and 

(2.1) N = 2m . 

Put 
wjk = exp (2nijkJN) . 

If x = (x0, ..., xjv-i) is a complex vector, i.e. xeCN, the complex vector a = 
= (a0, ..., tfjv-i) e CN defined as 

/ V - 1 

ak = Z wjkxj; k = o , . . . , N - 1 , 
1 = 0 

is called the discrete Fourier transform of x and denoted by a = ^(x). Similarly, 
the vector x given as 

Xj = N'1lJwJkak; j = 0,...,JV - 1 , 
k = 0 

is called the inverse discrete Fourier transform of a and denoted by x = ^~1(a). 
The following trivial statement is very useful in calculations with the discrete 

Fourier transform. 
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Lemma 2.1. We have 
N- 1 

Z vv,.0 = N , 
1 = 0 

N- 1 

Z wjk = 0 for k * 0 . 
1 = o 

Proof is straightforward as the second series is a finite geometrical series. 

R e m a r k 2.1. The discrete Fourier transform J^ introduced in Definition 2.1 is 
apparently a linear continuous mapping from the N-dimensional complex space 
CN into CN. A straightforward computation (based on Lemma 2.1) shows that 
the mapping inverse to <F is the inverse discrete Fourier transform,^" -1 also intro­
duced in Definition 2.1. 

The assumption that N is a power of 2 will be used later for the fast implementa­
tion of the discrete Fourier transform. The discrete Fourier transform itself can be 
defined for any positive integer N. • 

A discrete analog of the well-known ParsevaPs identity is established in the follow­
ing theorem. 

Theorem 2.1. ParsevaVs identity. Putting a = ^(x) for x e CN, we have 

N-l N-l 

(2-2) XW^^IW2-
7 = 0 k = 0 

Proof follows from Lemma 2.1 through a straightforward calculation. • 
The investigation of the accumulation of roundoff errors presented in this and the 

next chapters is based on the well-known book by Wilkinson [17]. We have chosen 
the stochastic approach to the problem, the fundamentals of which are explained 
e.g. by Henrici [7], Hamming [4], and Sterbenz [13]. On the other hand, we are 
aware of the objections to this approach expressed e.g. by Hartree [5] and Huskey [8]. 

Let us formulate the basic assumptions on the arithmetic considered. 

Assumption. Let x and y be real (machine) numbers and let 

fl (x + y) = (x + y) (1 + a) , 

n(xy) = xy(l + / ? ) , 

where f\(x + y) and f 1 (xy) are the results of machine operations and a and fi are 
the local relative roundoff errors, for which 

L+
 = a = U+ , L* = p = U* 

hold with some constants L+, U + , L* and U*. 
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We assume that a and fi are random variables (independent of x and y) with 
their means 

(2.3) E(a) = / i , , E(/?) = ^ 

and their variances 

(2.4) E(a2) - n2 = a2 , E(p2) - p2 = aj . 

We further suppose that the roundoff errors made in individual arithmetic 
operations of an algorithm are independent random variables. 

R e m a r k 2.2. The nature of the random variables a and (3 (in particular, their 
distribution) is studied in more detail e.g. by Kaneko and Liu [11], Sterbenz [13], 
and Hamming [4]. For our further purposes, only the above assumption with the 
relations (2.3) and (2.4) is essential. 

Definition 2.2. We consider the following possibilities of performing machine 
operations: 

1. If na = ftp = 0 we speak about the rounded arithmetic (or rounding), 
2. If na 4= 0 and \i$ #= 0 the arithmetic is called chopped (we speak about 

chopping). 

R e m a r k 2.3. It is well-known that the stochastic treatment of the propagation 
of roundoff errors is advantageous in the case of rounding while for the chopped 
arithmetic (which is the case of the example in Section 4) it can hardly give anything 
better that the deterministic approach (see e.g. Sterbenz [13]). • 

The usual machine arithmetic is real. The complex arithmetic is realized through 
real operations with real and imaginary parts of the operands. The following state­
ment is concerned with the roundoff errors in such complex arithmetic and we will 
use it later. 

Lemma 2.2. Let a be a real number, let x = x{ + x2i and y = yi + y2- be 
complex numbers. Then 

fj (x + y) = (x + y)(l +y), 

fl (ay) = ay(\ + rj) , 

(2.5) f] (xy) = xy(l + S), 

where fl (x + y), fl (ay) and fl (xy) are the computed values of x + y, ay and xy, 
respectively, and y, r\ and & are random variables with their means and variances 
given by 

E(y) = I** , 

E(M2) - ft = cl , 
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E(l) = Ve, 

E(H2) - ů = o) , 

(2.6) E(<5) = (xa + fip = nó, 

(2.7) E(|<3|2) - ú = a2
a+aj = o 2 

ð • 

The equality sign in (2.6) and (2.7) is used in an approximate sense since the 
error terms of higher orders are neglected. 

Proof. The statement of the lemma is an easy consequence of Assumption. We 
will establish only the relations (2.6) and (2.7) for the complex multiplication (2.5). 
The other relations can be proved in a similar way. 

Put 

xy = z = zl + z2i , fl (xy) = z' = z[ + z2i . 

The equality (2.5) is apparently true for z = 0. Suppose thus z 4= 0. We have 

z\ = xiyx(\ + p%) (1 + a,) - x2y2(l + fi2) (1 + a t ) , 

z2 = Xiy2(l + fi3) (1 + a2) + x2yx(\ + /J4) (1 + a 2 ) , 

i.e., after neglecting the error terms of higher orders, 

z' - z = x1y1(a1 + /5X) - x 2 y 2 ( a i + /?2) + 

+ (^iy2(a2 + P3) + ^2yi(a2 + /?4)) i, 

|z' - z|2 = xfr?(a t + ^ x ) 2 - 2x1x2^1y2(a1 + P1)(al + £2) + 

+ ^ y ^ i + p2)
2 + x?y2(a2 + p3)

2 + 

+ 2x1x2y1 y2(a2 + p3) (a2 + £4) + x2y2(a2 + £4)2 . 

Now 

E(z' - z) = Zi(ua + lip) + z2(jua + /i^) i = z(/ia + /i^), 

E(|z' - z|2) = (fi\ + o\ + 2/i^p + ill + o-2) (x2y2 + x2y2 + 

+ Ay\ + *2y2) = H 2 ((A*. + JO2 + ^2 + 4) -

On the other hand, 
E(z' - z) = E(zO-) = z E(<5), 

E ( | z ' - z | 2 ) = | z | 2 E ( H 2 ) , 

from which (2.6) and (2.7) finally follow. The last statement of the lemma has been 
proved. • 

A very efficient way of computing the discrete (or inverse discrete) Fourier trans­
form is based on the fact that N can be written as a product of a great number 

246 



of factors. The particular case N = 2m was first studied by Cooley and Tukey [2]. 
The efficient algorithm is called the fast Fourier transform. The number of arithmetic 
operations needed for the computation of <F(a) or SF~^(x) is of order N log2 N 
while the usual computation of the transform requires 2/V2 operations (the values 
wjk are supposed to be known). 

In the whole paper we consider a particular algorithm of the fast Fourier transform 
called the decimation in frequency [10]. There is another commonly used version 
of the fast Fourier transform known as the decimation in time [2], [14]. 

The study of the accumulation of roundoff errors in the fast Fourier transform 
is the first step of our investigation. This problem has been solved by Ramos [12] 
by deterministic means and by Kaneko and Liu [10], Thong and Liu [15], and 
Alt [ l ] by stochastic means. We present here a theorem based on the main result of 
Kaneko and Liu [10]. We wish to point out that in the formulae expressing the 
error, the error terms of higher orders are neglected both here and in the subsequent 
statements. 

Theorem 2.2. Let a = F(x) and let a'p be the value of ap computed by the decima-
tion-in-frequency algorithm, where 

p = 2m"1p0 + ... + 2pm_2 + pm_t 

and ph is a binary digit. Put 

(2.8) F_ = 0 for rounding , 

ra— 1 

(2.9) F_ = J_ ykp for chopping , 
k = 0 

where 

(2.10) ykp = 1 + Pm_r_,(l + ii,\iia), 0 S k __ m - 3 , 

= 1, k = m — 2 , m — 1 . 

Put further 
m-\ 1 1 

(2.11) R\a,p)^Z2-»> + > + lclp _ ) . . . Z k ' . P . I 2 ' 
1 = 0 i ( + i = 0 « m - l = 0 

where 

(2.12) clp = 1 + Pm_1_/(1 + o\\a\), 0 ^ l ^ m - 3 , 

= 1, I = m — 2 , m — 1 , 
and 

(2.13) I(l,p) = 2m-1 im_1 + ... + 2 ' + , i i + 1 + 2 ,_v.1_. l + ... + * „ - _ . 

Then 

(2.14) E(O_ - a'p) = -apfiarp, 

(2.15) E(|a_ - a;|2) = \ap\
2 ^ F 2 + a2 R2(a, p) . 
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Let x = 3F x(a) and let x'p be the computed value of xp. Analogously, then 

(2.16) E(xp - x'p) = -Xpiijp , 

(2.17) E(\xp - x'p\
2) = \xp\

2 £Fl + Oa
2F(x, p) , 

where 

(2A8) rp = 0 for rounding, 

(2.19) Fp = /^//L, + Fp for chopping , 

and 

(2.20) R\x,p) = \xpYojjol + R\x,p). 

Proof. The expressions (2A4) and (2.15) were proved by Kaneko and Liu [10]. 
The equality sign in (2A4) as well in (2.15) is used in a rather approximate sense 
since the error terms of higher orders are neglected. 

The inverse Fourier transform is calculated with the help of the fast Fourier 
transform algorithm. Writting 

A ' - 1 

yP = Hwpk^k; p = o, ...,N - I , 
k = 0 

and denoting the computed value by yf
p, we then have from (2.14) and (2.15) that 

(2.2i) z(yP-y'P) = -yPn«rp, 

(2.22) Eflj,, - y'PY) = \yp\> p\Tp + oj R\y, p) . 

The last step consists in the multiplication of the complex number yP by 1V"""1, i.e. 

xP =K-lyp. 

Denote the exact result of the multiplication of y'p by N"1 by 

** =N-1y'p 

and the computed value of x* by x'p. Then 

(2.23) xp - x'p = xp - x*p + x * ™ x'p . 

We will study these two differences separately. From (2.21) and (2.22) we obtain 

KXP ~ xt) = -xpP*rp> 

E(\xp-xp*\2)=\xp\2rfr2p+a2
aR

2(x,p), 

where we employed also (2.H). 

Further, the multiplication performed gives 

E(X*P ~ X'P) = -WP ' 

E(|X* - *;|2) = (pi + oj) \xp >ř 
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where we put approximately x* ~ xp, i.e., we neglect the error terms of higher 
orders. 

In fact, x* is a random variable with its mean E(x*) = E(x* — xp + xp) = 
= E(x* — xp) + xp = xp(fiaFp + 1). Putting now //aFp + 1 ~ 1, we come to the 
above formula. We proceed in an analogous way in all similar situations. 

Using finally (2.23), we obtain (2A6) and (2A7) by a straightforward calculation. • 
In the following section we will need a result on the discrete Fourier transform 

of a vector with a random perturbation. This result is presented in the next theorem. 

Theorem 2.3. Let a = J^(x). Putting O* = J^(x*), where 

(2.24) x* = xj + Aj\ j = 0 , . . . , N - 1 , 

and A j are mutually independent random variables with 

E(Aj) = //,., E(|zly-|
2) -co2; j = 0, . . . , N - 1 , 

we obtain that 
N- 1 

(2.25) E(ak - a*) = X wjfc/J;, 
j = o 

(2.26) E(|a4 - a*|2) = f l w ^ , | 2 + " l > J
2 - ^ V . V > fc = °> ->N ~ l • 

j=0 7 = 0 7 = 0 

O/i t/ie Other hand, /el x = ^r~~1(a). Putting x** = J ^ - 1 ^ * * ) , where 

at* = ak + Ak; k = 0 , . . . , N - 1 , 

tftiti A^ are mutually independent random variables with 

E(A~) = & , E(|Afc|
2) = OJ2 ; k =- 0, . . . ,N - 1 , 

we now obtain that 

(2.27) E(Xj-xr) = N-^wJkflk, 
k = 0 

(2.28) E(|x, - x** \2) = iV- 2 ( f l ^ t |
2 + Z&1 -i)M') > lc = 0,..., iV - 1. 

/c = 0 fc = 0 fc = 0 

Proof. Substituting (2.24) into the expression for ak — a*, we readily obtain (2.25). 
Employing moreover the independence of Ay, we establish (2.26) as well. The relations 
(2.27) and (2.28) follow by the same argument. 

3. DISCRETE CONVOLUTION 

We now turn to the calculation of the discrete convolution of the form considered 
in the introduction. We first define the discrete convolution directly and then show 
that it can be calculated with the help of the discrete and inverse discrete Fourier 
transforms. 
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Definition 3.1. Let J) and gj9 j = 0, . . . ,N - 1, be complex numbers. Putting 

(3.1) fj + N=fj 

for any integer] and choosing a positive integer L such that L ̂  N, we write 

(3.2) u{L) = igjfi-j; / = o , . . . ,N -1 . 

j = 0 

Definition 3.2. Let f- and gj be the complex numbers from Definition 3A . Put 

(3.3) q = H O , r = ^(a), 
(3.4) sk = qkrk, k = 0,...,N-l, 

and 
(3.5) t = &~\s). 

Theorem 3.1. Let u and t be given by Definitions 3A and 3.2. Then t = u(N). 

Proof. The statement of the theorem can be verified by a straightforward calcula­
tion. Substituting (3.4) and (3.3) into (3.5) and using Definition 2.V we obtain 

V - l / V - l J V - l 

U = N~l £ Wu{ Z Wpkfp Z WjhQj) = 
k=0 p=0 j=0 

V - l V - l N-! 

= A r l Z E^/pIw*.p+i-i-
j=0p=0 fc=0 

Applying now Lemma 2A, we finally have 

h = igjfi-j, / = o , . . . , N - 1 , 

j = o 

which is (3.2) with L= N. The theorem has been proved. 

R e m a r k 3.1. For L= N, the formulae (3.2) and (3.5) thus represent the same 
unique quantity. It is advantageous to keep both the notations of Definitions 3.1 
and 3.2 since we are interested in the numerical evaluation of this quantity which is 
different in the two individual cases mentioned. 

The parameter L introduced in (3.2) plays an important role. Formally, u/(L) 
can be expressed for L < N as u/(N) with a particular choice of the values g}, i.e., as 

N-i 

Hojfi-j 
i=o 

with gj = 0 for j = L,..., N — 1. Nobody, however, would really compute the 
convolution u(L) in this way since it costs many superfluous arithmetic operations. 
The notation introduced in (3.2) is thus quite justified from this computational 
point of view. 
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On the other hand, computing the convolution t via the discrete Fourier transform 
(see Definition 3.2), we are not able to make use of the information that gj = 0 
for j ^ L, where L is an integer less than N. We must always work with all the N 
components of g. No parameter Lthus appears in this algorithm. • 

We will show the influence of the roundoff error on the values computed according 
to Definitions 3A and 3.2. 

Theorem 3.2. Let u\(L) be the computed value of ut(L)(cf. Definition 3.1).Neglecting 
the error terms of higher orders, we obtain 

(3.6) £(Ul(L) - u\(L)) = -Y.gjt-j nj(L) ; l = 0,...,N-l, 
7 = 0 

where 
nj(L) = Up + (L~ J + O/ '* ' 

and 

(3.7) E(|«,(L) - M;(L)|2) = Y S W , _ , / , _ p Q%(L); l = 0,...,N-l, 
J = 0 p = 0 

where now 

(3.8) Q%(L) = n„ + (2L - j - p + 2) fiji,, + (L-j+l)(L-p+[) £ + 

+ (L~ j) ol for p<j, Q%(L) = Q2
pj(L), 

(3.9) Q2J(L) = (nf + (L - j + 1) px)
2 + a] + (L - j + 1) a\ . 

Proof. Computing the value of ut(L) in the usual way, we obtain from Wilkinson 
[17] Ch. 1, Sec. 26 that 

L- 1 

u\(L) = £ 0/ ,-X . l +Bj)9 
1 = 0 

where 

1 + 60 = (1 + S0)(l + y x ) . . . ( l + y L _ 0 , 

1 + e . = ( i +<5 .)(i + yJ)...(l + yL„1), j= 1 , . . . , L - 1, 

and yfc and O"fc are the roundoff errors introduced in Lemma 2.2. Neglecting the 
error terms of higher orders and replacing e0 by a slightly more pessimistic expression, 
we come to the formula 

SJ = SJ + yj + yj+i + ••• + VL-I ; J = o, . . . , L - 1. 

Applying now Lemma 2.2 and making use of the independence of the roundoff errors, 
we finally obtain (3.6) and (3.7). • 

The next theorem is concerned with the fast computation of the convolution 
according to Definition 3.2. For the sake of simplicity we suppose that one of the 
two discrete Fourier transforms is computed exactly, i.e. without the roundoff 
error accumulation. Such a situation is common in practice. In the computation 
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of the right-hand part of the system of linear algebraic equations in the finite element 
method it appears in the case when the right-hand part of the solved differential 
equation is simple (e.g. constant). Then the discrete Fourier transform of such 
a sequence is computed very accurately. 

Similarly, the coefficients of a linear filter are usually small integers. The discrete 
Fourier transform of such a filter is then computed without a considerable roundoff 
error accumulation. 

A general theorem taking into account the complete roundoff error accumulation 
in the computation of the discrete Fourier transforms can be proved in an analogous 
way. 

Theorem 3.3. We preserve the notation introduced in Theorem 2.2 and Definition 
3.2 and neglect the error terms of higher orders. Let r'k be the computed value of rk. 
Then we have 

(3.10) E(rfe - r'k) = -rkpj\, 

(3.11) E(|r f e- r'k\
2) = |r fe |

2/i2F2 + a2 R2(r, k) , k = 0, ..., N - 1 , 

where Ffe and R2(r, k) are given by (2.8), (2.9), and (2.11). 
Suppose that qk is computed exactly. Further, Jet s'k be the computed (from r'k) 

value of sk. Then 

( 3 . 1 2 ) E(s f e - s'k) = - 5 f e T f e , 

(3.13) E(|sfe - s'k\
2) = |g f e |

2(E(|r f e - r^|2) + \rk\
2 cpk) , k = 0 , . . . , N - 1, 

where 

(3.14) Tfe =(1 +rjiia + nft 

(3.15) q>k = a2 + oj + (/ia + / ^ ) 2 + 2/LaFfe(/ia + IAP) . 

Denoting finally by t\ the computed (from s'k) value of tt, we find that 

N-l 

(3.16) E(řг - /;) = -JV > £ wklskrk - џj,ľ,, 
k = 0 

(3.17) E ( | / , - / ; | 2 ) = ІV- 2 X І wklwplskšpxkrp + 
k=0p=0 

pфfe 

+ N-2^1 E(\sк - s'к\
2) + џ2\t,\2 ľ2 + o\ R2(t, 1) + 

к = 0 
N-í N-í 

+ N-ҶiJiľt £>fe/sfeтfe + N-^џjf^w^Tj,, 1 = 0, ...,N - 1 , 
к=0 к=0 

where ľi and R2(t, l) are given by (2.18), (2.19), and (2.20). 
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Proof. The formulae (3A0) and (3.11) characterizing the error of r'k follow imme­
diately from Theorem 2.2. Putting 

s* = qkr'k 

and recalling Definition 3.2, we have 

h ~ sk = sk - s* + s* - s'k = gfc(rfc - r;) + s* - s'k . 

Using now (3.10) and (3.H) and applying Lemma 2.2, we come to (3A2) and (3A3) 
after a straightforward calculation. We neglect error terms of higher orders in the 
whole proof. 

Putting finally 

t* = &'\s'), 

we can write 

(3.18) f, - t\ = t t - tf + t* - t\. 

Employing now Theorem 2.3 and the formulae (3.12) and (3.13), we readily obtain 

N- 1 

E(tt - tf) = - r ^ w , , 
k = 0 

E(|/. - tf\2) = N~2Z X VV*,»VS*WP + !^"2 I E(|s, - h\2). 
fc = 0 p = 0 fc = 0 

p * / c 

/ = 0, . . . ,N - 1 . 

Moreover, the error tf — t\ is characterized by Theorem 2.2. Combining these 
errors according to (3.18), we finally obtain (3A6) and (3.17). 

4. AN EXAMPLE 

We established Theorems 3.2 and 3.3 in order to compare the accumulation 
of roundoff errors in the direct calculation of the discrete convolution according 
to Definition 3.1 and in the fast calculation according to Definition 3.2. The formulae 
presented, however, are so complex that we can obtain such a comparison only 
for a relatively simple example. The theoretical statements are supported by numerical 
results computed on an IBM System/370 Model 135 computer. Since this machine 
has chopped arithmetic we consider only chopping throughout this section. 

We first show some bounds for the quantities appearing in Theorem 3,3. 

Lemma 4.1. Consider the chopped arithmetic. Let Fp, Fp, Tp, and cpp be given by 
(2.9), (2.19), (3.14) and (3.15). Then there exist positive constants Cr, Cr, CT and C^ 
independent of N and p such that, for p = 0, . . . ,N — 1, 
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(4.1) m ^ i'p ^ C,m , 

(4-2) rp ^ C,m , 

(4-3) xp <, Cxm , 

(4-4) <Pp g C^m . 

Further, let R2(a, p) and R2(x, p) be given by (2.11) and (2.20). Then there exist 
positive constants CXR and C1R independent of N such that 

(4-5) NlR2(y,P) = CzRmZ\yp\
2, 

P=0 p=o 

(4-6) "l&2(y,p)£CXRmJ:\yp\
2. 

p=0 p=0 

If, moreover, 

(4-7) \y,\2£ C , , p = 0,...,N- 1, 
then 

R2(y, P) g mcycIR, 

^2(y , P) g mCyCIK , p = 0, . . . , N - 1 . 

Proof. Putting Cr = 2 + /^///a and considering the relations (2.9) and (2.10), 
we immediately obtain (4.1). Further, (4.2) holds with Cr = 2(1 + /^//LJ with 
respect to (2.19) and (4.1). Now putting Cr = 3/ja + 2/ifi and Cip = o2

a + o2
p + 

+ 5fi2 + Sfiafip + 3fij, and taking (3.14), (3.15) and (4A) into account, we come 
to (4.3) and (4.4). 

To proceed further, we use the relation (Kaneko and Liu [10]) 

(4.8) Y i ... i |aJ(,,p)|
2 = 2"- ' - 'Yh | 2 , l = 0,...,m-l, 

p = 0 i i + , = 0 im - i = 0 p = 0 

where I(l, p) is given by (2.13). Considering the definition (2.11) of R2 and (2A2), 
and putting CIR = 2 + ajla2, we obtain (4.5). Analogously, using (2.20), (4.5) and 
(4.8), we establish (4.6) with CIR = 2(1 + a}\o2

a). 
The Jast two inequaJities foJlow directly from (2.11) (and (2.20)) if we apply the 

assumption (4.7) to each term appearing in the sum over I and also employ (2.12). 

We now give an example iJJustrating the statements of the previous section. 
Choosing positive integers P and N, P rg N, and turning to Definitions 3.1 and 

3.2, we put 

(4.9) fj =j; j = 0, . . . ,N - 1 , 

(4.10) 9j= \\P; j = 0, ...,P - 1 , 

= 0 ; j = P,...,N- 1 . 
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For this choice off and g, all the quantities introduced in Definitions 3.2 and 3A 
are presented in the following lemma. 

Lemma 4.2. Let P and N be positive integers, P :g N. Let f and g be given by (4.9) 
and (4.10). The formulae (3.3), (3.4), (3.5) and (3.2) then read 

(4.11) q0 = iN(N - 1), 

(4.12) qk = — , k = l , . . . , N - 1 , 
V } 1 - exp (2nik\N) 

(4.13) r0= \, 

IA <A\ l - exp (27iikP/N) X1 t 

(AAA) rk = --- L-J- , k = 1, ..., N - 1. , 
V ; P(1-exp(27i/k/N)) 
(4.15) s 0 - i N ( N - 1), 

(4.16) N(l-^P(2nikPjN)) = _ 
V ; P(l - exp (inikJN))2 

(4.17) r, = w,(L) = / - -|P + i + N ( - / + P - 1)/P, / = 0, ..., P - 2 , 

= / - \P + i , / = P - 1, . . . ,N - 1 ; 
forL= P, ...,1V. 

Proof. Using the formulae for the sum of a finite arithmetical-geometrical (Jolley 
[9]) and geometrical series, we readily obtain (4.11) to (4.14). The quantities 
(4.15) or (4.16) are simple products of (4.11) and (4.13) or (4.12) and (4.14). 

We have u(L) = u(N); L= P, ...,N, with respect to (4.10). Finally, t = u(L); 
L= P, ..., N, since Theorem 3.1 states that t = u(N). We can thus use Definition 
3.1 with L = P to calculate (4A7) and obtain 

u-lgjfi-j-p-1 £ fj 
j=0 j = l - P + i 

after the substitution of (4A0). Employing now (3.1) and (4.9) we come to (4A7) 
with the help of a straightforward computation. • 

Several inequalities for qkJ rk and sk are established in the next lemma. 

Lemma 4.3. Let qk, rk and sk, k = 0, ..., N — 1, be given by (AA 1) to (4A6). Then 
there exist positive constants Clq, C2q, Clr, C2r, CIr and CIs independent of N 
such that 

(4.18) | ^ | 2 = C2
2qN\ k = 0 , . . . , N - 1 , 

(4.19) C2X= | g i | 2
? 

(4.20) H 2 = C2
r , k = 0, ...,N - 1 , 
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(4.21) C\r й \rĄ2 , 

(4.22) £ \qk\
2 = І N 4 + 0(N3) as N -> oo , £ |i»|2 = CIřІV , 

k = 0 íc = 0 

(4.23) £ |Sfc| g CXsmN2 

fc = 0 

atlű7 

Z Һľ = łN* + °(NЗ) ClS N ~* °° ' U 
> * 

fc = 0 

Proof. Using elementary trigonometric formulae, we find that 

N2 

(4.24) M 2 = I - 2/ , / ^ k=1>-"Nl2> 
4sin2(7ik/N) 

follows from (4.12). There exist positive constants Cz and CM such that 

0 < Cx = - — = C„ for x G <0, TI/2> sin Л 

as the function S(x) = x/sin x is continuous in <0,7i/2>, has no zeros in this interval, 

and 5(0) = 1, S(nj2) = TT/2. Thus 

(4.25) Q. = ^— = ^ for x G (0, TT/2> . 
x sin x x 

The inequality (4.25) gives now the upper bound (4.18) for |gfc|
2, k = 1, ..., N/2, 

when applied to (4.24). For k = 0, (4.18) is evident. As qN-k = qk, we can choose 
a suitable constant Clq for (4.18) to hold for k = 0, ..., N — 1. Analogously, (4.24) 
and (4.25) imply (4.19). 

To prove (4.20) and (4.21), we proceed similarly. We can rewrite (4.14) as 

(4-26) Ы 2 = ^ Ҫ т ^ ; fc = i , . . . , N - i . 
sin2 (IrkP/N) 

P2 sin2 (nkjN) 

Examining now the behavior of the function T(x) = |sin xP|/sin x in <0, n} and 
considering (4.26), we come finally to (4.20) and (4.21). Recalling the definition 
(3.3) of qk and rk and (4.9), (4.10), we readily obtain (4.22) as a consequence of Par-
seval's identity (2.2). 

According to (3.4) we now combine the expressions (4.24) and (4.26) for \qk\ and 
\rk\ and their upper bounds used above to obtain 

(4.27) |Sfc| ^ C'N2/k , k = 1, . . . , N - 1 , 

with a constant C independent of N. The estimate (4.23) then follows from (4.15), 
(4.27) and the well-known formula 

i [ = C + logK + -L, 
k=i k 2K 

256 



where C is the Euler constant. The last inequality is again a consequence of ParsevaFs 
identity (2.2) after the substitution of (4.17) for th which completes the proof. • 

We now turn to the results of the numerical example. We computed the values 
of u(P) and t according to Definitions 3A and 3.2 with f and g given by (4.9) and 
(4A0) in single precision on an IBM System/370 Model 135 computer (with chopped 
arithmetic). We used the decimation-in-frequency algorithm of the fast Fourier 
transform. We recall that the choice of g implies that u(L) = t for L= P, . . . ,N 
(see Lemma 4.2). 

The parameter N varied from P to 4096. We tested the values P = 16, 32 and 64, 
which all showed a very similar behavior. In the following the results with P = 16 
are presented. 

We assumed that r was computed exactly. The experiments carried out confirmed 
that this assumption was reasonable. Moreover, to obtain the expected roundoff 
error in the computation of q and u, we "spoiled" the values of g; by small random 
perturbations (uniformly distributed between —0-5 x 10~6 and 0-5 x 10~6). 
Otherwise, the number l/P was represented in the machine exactly and the expected 
roundoff error accumulation did not occur. 

The error of the computed values r, s, t, and u was measured by the norms intro­
duced in the following definition. 

Definition 4.1. Let v and v' be vectors from CN. We put 

N-

k = 0 
Iv-víi - (A^Ih-^ IT 2 * 

P - " II oo = 1TiaX |"fc - Vk 
k = 0,...,N- 1 

/ / vk 4= 0, k = P - 1, .... AT - 1, we further write 

\\v-v\\*2 = ( ( / v - p + i r Y k-» ; | 2 /h iT 2 

k = P - 1 

max \vk - v;|/|vfc| 
fc = P - l , . . . , / V - i 

Employing Theorems 3.2 and 3.3 and the lemmas of this section, we now estimate 
the order of the roundoff error (depending on N) in the computation of our particular 
example of the discrete convolution. The estimates can be compared with the computed 
experimental results. Their agreement is good. (Let us note that another example, 
where we put 

fy= 1 ; j = 0 , . . . ,N - 1 ; 

instead of (4.9), gave also a good agreement of the theoretical estimates of roundoff 
errors with the actual experimental values.) 
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ғ ;g- 4.1. 

1 
3 
5 
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I I ' -
l k -
I I ' -
I I * -

- r'\\ГJ0/m 
- ^Wao/m 
- ť l l * / m 
- //Il* 

" II c o 

2 
4 
6 
8 

llr - r'll2/m 
Цs - s'||2/m 
l l t - ť l l * / m 
II u- u'll* 
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The errors ||r — r'||fc, ||s — s'\\k, \\t — t'||* and ||u(P) — u'(P)||* are presented 
for k = oo and k = 2 in Fig. 4.V where N is the independent variable, 32 ^ N ^ 
S 4096. The scale of the variable N (horizontal) as well as that of the error (vertical) 
are logarithmic. The lines 1, 3, 5 and 7 correspond to the quantities ||r — r'^^jm, 
||s — s'Hoo/m, ||l — ?'| |*/m and ||w(P) — u'(P)||*, respectively, while the lines 2, 4, 6 
and 8 correspond to the same errors but this time with the subscript 2. The errors 
the order of which depends also on m = log2 N are divided by this value to make 
the slope of the lines clearer in the figure with both axes having logarithmic scales. 

The quantity E(|rfc — r^.|2) is given by (3.11). Using (4A3), (4.20) and Lemma 4A , 
we come to the estimate 

(4.28) v2™2 fk E(|r0 - ^ | 2 ) :S max E(|r4 - r'k\
2) ^ D2

2rm
2 , 

k = 0,...,N- 1 

where D2r is a constant independent of N. Summing further the formula (3.U) over 
k and employing (4A), (4.5) and (4.22), we finally obtain 

(4.29) D]lrm
2 S N^lVh - ^l2) -5 D22»m2 , 

k = 0 

where D1Ir and D2Ir are constants independent of N. The estimates (4.28) and (4.29) 
thus show that ||r — r'||2 as well as ||r — r'H^ should be of order m. This fact is con­
firmed by lines 1 and 2 in Fig. 4.L 

The quantity E(|sfc — s^|2) is given by (3A3). Proceeding similarly to the previous 
considerations and using (4.28) and Lemmas 4A and 4.3, we find that 

(4.30) D2
sm

2N4 S Eflsi - s;|2) ^ max E(\sk - s;|2) S D2
2sm

2NA , 
k = 0,...,N-l 

where Dls and D2s are constants independent of N. Summing again (3.13) over k 
and employing (2.11), (3.11) and also Lemmas 4.1 and 4.3, we come to the estimate 

(4.31) D2
lsm

2N3 S N-lYKW ~ s'^) ^ ^m2^ , 
k = 0 

where D1Is and D2Is are constants independent of N. The inequality (4.30) now shows 
that ||s — s'Hoo should be of order mN2 while (4.31) states that ||s — s'||2 is to be of 
order mN3/2. Both these orders are confirmed by lines 3 and 4 in Fig. 4.L 

We now turn to the statement of Theorem 3.3 concerned with t — t'. Recalling 
that in the select-saving method (cf. Helms [6]) only those t/s with I = P — 1, ... 
. . . ,N — 1 are saved, we will examine E(|tj — tj|2) and E(\ul — u\\2) only for these 
values of I in the following. The corresponding norms are introduced in Definition 
4A . The analysis for l = 0, . . . ,N — 1, however, could be readily performed in the 
same manner. 

Moreover, we will study the relative error, which enables us to distinguish better 
between the behavior of roundoff errors in the direct and the fast computation. 
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Considering (3A7) and applying (4.31) and Lemmas 4A to 4.3, we come to the 
estimate 

E(|t, " t\\2) g C2
IsC

2m*N2 + D2
2Ism

2N2 + ^ C 2 ^ 2 m2 + 

+ ^ « Q K | ^ - I | 2 m + 2JuaCrCTCIs|t/| m3/V 

and thus 

(4.32) E(|t, - t't\
2) \tt\'

2 g | t , | -2 (A2
tm

4N2 + -4*> 2N 2) £ 

^ D2
2tm

4N2 + D*f
2m2N2 ; / = P - 1, .. . , N - 1 , 

where A2t> A*2t, D2t and D2t are constants independent of N and /. The reason for 
keeping two terms in the estimate will be apparent from the following. It would be 
rather difficult to obtain also a lower bound for the relative error; we are not going 
to do it. Summing now (4.32) from L — 1 to N — 1, we arrive at 

(4.33) (N - P + I)"1 Y Eflf, - t{\2) \t\~2 Ik D2
21tm

AN + D*2jtm
2N , 

i = p- i 

where D2It and D\lt are constants independent of N. We see from (4.32) that the upper 
bound for \\t — t'||* is of order m2N and from (4.33) that the upper bound for 
||t — t'l* is of order m2N1 / 2 . Lines 5 and 6 in Fig. 4.1 show that these estimates are 
pessimistic. The experimental orders seem to be mN and mN1 / 2 for ||t — t'||* and 
|| t — t'||*, respectively, which corresponds to the second terms in (4.32) and (4.33). 

Finally, we examine the roundoff error in the direct computation as established 
in Theorem 3.2. We have 

E(|«,(P) - uKPf) = P-2^ " f a - j) (l - p) e2
p(P), I = 0 , . . . , N - 1 , 

j = 0 p = 0 

where Q]P(P) is independent of / and N in accordance with (3.8) and (3.9), i.e., 

£(\u,(P) - u\(Pf) = C2J2 + ct2i + c„**2; / = P - 1 , .- , N - 1, 

where Cu, C* and C** are constants independent of / and N. Lemma 4.2 now gives 

(4.34) D\u ^ E(|M((P) - u\(P)\2) \u\(P)\-2 ^ D\u, I = P - 1,.... N - 1 , 

where Diu and D2u are constants independent of / and N. Finally, 

І V - 1 

^2Iu > (4.35) D\lu <L (N - P + l ) " 1 £ Efl«.(P) - U;(P)|2) |U , (P) |"2 g D^ 

where D1Iu and D21u
 are constants independent of N, is an easy consequence of (4.34). 

The estimates (4.34) and (4.35) show that ||w(P) - u'(p)ll2 a s w e l 1 a s ||«(-°) ~ M'(-°)ll£ 
should be of order 1. This fact is confirmed by lines 7 and 8 in Fig. 4.1. 

As the error of the fast computation grows with N increasing, a comparison with 
the (bounded) error of the direct computation shows that the relations 
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2; \\u(P) - u'(P)\\ 

= HP) - w(p)\\ 

hold for N j> 128 for the actually computed results. 

In Theorems 2.2 and 3.3 we supposed that the values of wjk were computed exactly, 

i.e. without the accumulation of roundoff errors. The decimation-in-frequency 

algorithm employed to obtain the results described above possesses this property. 

However, many decimations in frequency commonly used compute wjk from recurren­

ce formulae and the roundoff error in the computation of wjk is accumulated. The 

experiments performed show that the influence of these accumulated roundoff errors 

may be substantial. The quantities \\t — t' | |* and \\t — t'||* may be much greater 

than those computed with exact wjk and their growth (with N increasing) may be 

much quicker. 

The algorithm of the fast Fourier transform available from the IBM Scientific 

Subroutine Package [14] is the decimation in time and the results of Kaneko and 

Liu [10] and of this paper do not apply to it. The experiments performed, however, 

give results very similar to Fig. 4.1. It is in agreement with Ramos [12] who obtained 

bounds for the roundoff error in the fast Fourier transform inedpendently of the 

particular version of the algorithm. 
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S o u h r n 

ZAOKROUHLOVACÍ CHYBY PŘI RYCHLÉM VÝPOČTU 
DISKRÉTNÍCH KONVOLUCÍ 

KAREL SEGETH 

Úloha vyčíslit efektivně hodnoty diskrétní konvoluce (1.1) se v praxi převádí 
na opakované vyčíslení hodnot konvoluce typu (1.2) pomocí rychlé Fourierovy 
transformace při optimální volbě parametru N. Článek je věnován analýze zaokrou-
hlovacích chyb při rychlém výpočtu konvoluce (1.2) (věta 3.3); pro srovnání se 
analyzují zaokrouhlovací chyby i při obvyklém (přímém) výpočtu této konvoluce 
(věta 3.2). Používá se stochastický model šíření zaokrouhlovacích chyb. Teoretické 
výsledky jsou porovnány se skutečnými zaokrouhlovacími chybami, které se pro­
jeví při vyčíslení diskrétní konvoluce pro jistou jednoduchou volbu posloupností 
(4.9) a (4.10). 
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