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SVAZEK 26 (1981) APLI K A C E M ATE M ATI KY ČÍSLO 3 

ON DETERMINATION OF EIGENVALUES AND 
EIGENVECTORS OF SELF-ADJOINT OPERATORS 

JOSEF KOLOMY 

(Received December 12, 1978) 

Two simple methods (1), (2) for approximate determination of eigenvalues and 
eigenvectors of linear bounded operators A are considered in the following two 
cases: (i) the lower-upper bound Xx of the spectrum a(A) of A is an isolated point 
of o(A)\ (ii) Xx (not necessarily an isolated point of a(A); with finite multiplicity) 
is an eigenvalue of A. 

1. Let X be a real Hilbert space with an inner product <•,•>, A : X -> X a linear 
self-adjoint operator on X. Since A is self-adjoint and defined on X, A is bounded 
by the closed graph theorem. Denote by m, Xx the exact spectral bounds of A, i.e. 
m = inf {<Au, u> : ||u | | = 1}, Xx = sup {<Au, u> : ||u | | = 1}. We shall investigate 
the Kellogg iteration method for calculation of eigenvalues and eigenvectors of A: 

(1) un + 1 = a;+\Aun, ccn + 1 = \\Au„\\ , (n = 0, 1, 2, ...) , 

where the starting approximation u0e X is such that u0 <£ ker A, ||u0|j = 1. By our 
assumption an > 0 and un 4= 0 for each n. 

Now we briefly describe the second method. Here, in addition, we assume that A 
is positive on X, i.e. <Au, u> > 0 for each u e l , u 4= 0, and <Au, u> = 0 implies 
u = 0. Then the spectrum o(A) of A lies on the segment [m, /Lx], where m _ 0. Let R 
denote the set of all reals, v0 e X an arbitrary (but fixed) non-zero element of X. 
Define a functional / : R x X -> X by f(/j, v) = ||Av — jUv||2, \i e K, v e l and let 
/*! denote that value \i at which the function \i ->f(/i, v0) assumes its minimal value 
on R. The condition f^(fil9 v0) = 0 implies that /^ = <Av0, v0> . ||^o||~2- Set vt = 
= / i_ 1Av0 . Since A is positive and self-adjoint and v0 + 0, we obtain that ^il > 0 
and v! 4= 0. In general we get the following procedure for the construction of eigen­
values of A: 

(2) vn + 1 = fi;+lAvn, / i n + 1 = <Av„, v„> . | | v j ~ 2 , 

where jin > 0 and v„ 4= 0 for each n. The method (2) is similar to that of Birger [2]: 

(3) y„ + i = q„ + i^y„ > qn + i = <^y«? yn> ||^y«||~2» 
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who suggested it together with (1) without any mathematical justification. Nonetheless 
he found that in engineering problems his methods have some advantages in com­
parison with the older ones. The methods (2), (3) have been investigated by I. Marek 
[9], [10], W. V. Petryshyn [12] and the author [ 4 - 7 ] , while the method (3) was 
studied by H. Biickner [3] for linear and nonlinear completely continuous operators 
having a certain decomposition property. 

2. Recall that an operator A : X -> X is said be nonnegative if <Au, u> ^ 0 for 
each u eX. Let {FJ denote the spectral family of a self-adjoint operator A. Let us 
remark that each isolated point of o(A) of a self-adjoint operator A is an eigenvalue 
of A. In the sequel we assume that A =t= 0 and the starting approximations u0, v0 

of (1), (2) satisfy the initial conditions: ||u0|| = 1, u0 $ ker A, v0 =# 0, respectively. 

Theorem 1. Let X be a real Hilbert space, A : X -> X a linear nonnegative 
self-adjoint operator. If the starting approximation u0 e X of (1) is such that 
ExU0 .=}= u0 for each X < Xx, then an / Au where an is defined by (1). 

Proof. First we prove that (an) is an increasing monotone sequence. Since u0 £ 
^ k e r A , ||M0|| = 1, then ||MB|| = 1 for each n and a2 = a2||wn||

2 = a„<AwM_1, un} = 
= an(un_uAun} = anan + 1(un_uun + iy = arta„ + 1 . Hence an _? an + 1 for each n. 
Since (an) is bounded, there exists lim an = a and 0 < a g Xv We have to prove 
tha t a = Xx. Suppose a < Xx and pu t a = \(a + Xx). T h e n 0<an^a<a + X1 

for all n. Set ft = [t?, A x ] , b = a . a~l. T h e n 

\Epun+1\
2 = <Efiun+1,un + 1y = ||u„ + 1 | |2 - <Eaun + vun + iy = 

CM ra p i 
d(EAun + uun + iy - d(EAun + 1,un + iy = d < F A + i ,u / J + 1 > 

J m J m J a 

for all n (n = 0, 1, 2 , . . . ) . Using (l) and the properties of {Ex}, we obtain 

d < E A +i ,"„ + i> = «n~+2i d<EAA2u„, u„> = 

= a^2! j 'd<A2E/lu„, u„> = a.7+
2. J \ 2 d<EAu„, «„> £ 

^f.2. r ,d<EA ,u„> = b2||E/,u„||2. 

Hence 

\\EpUn + 1\\ ^ b||F^wn|| 

for each n. Con t inu ing this process , we get 

\\Epun\\ ^ bn\\Epu0\\ 
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for all n ^ 1. Since E(P) u0 = (EXx ~ Ea) u0 = u0 - Eau0 4= 0 by our hypothesis 
and b < 1, we obtain that \\Efiu„\\ -+ + oo as n -> oo, which contradicts the fact that 

H.V,! ^ k|| = i . 
Hence a„ Z1 Aj and the theorem is proved. 

Lemma 1 (Compare [12]). Let X be a real Hilbert space, A : X -» X a linear 
self-adjoint operator, Xx and eigenvalue of A. Assume that the starting approxim­
ation u0 of (l) is not orthogonal to ker (A — Xj). 

Then the sequence (un) defined by (l) is of the form un = ane0 + zn, where e0 e 
e ker (A - XJ), \\e0\\ = 1, z„ e ker (A - XJ)1 and an > 0 for each n. 

Assume, in addition, that zn + 0 for each n in the last representation of un. 
Rewrite u0 = a0e0 + z0 as u0 = a0e0 + b0r0, where b0 = ||z0||, r0 = Zo^oH"1 . 

Then each un is of the form un = ane0 + bnrn. where an = X^'^a^^ bn = 
= an~ l f cn-i | |^n-i! |- r„<£kerA and rn = Arn_l\Arn„l \'x for each n. 

Similar assertions are also valid for (vn), where vn is defined by (2). 

Proof. Since u0 <£ ker (A — XJ)1, u0 is of the form u0 = a0e0 + z0, where 
a0 > 0, e0eker(A - XJ), \\e0\\ = l, z0 e ker (A - XJ)1. Assume that the repre­
sentation of (un) is valid for n == i, i.e. u/ = a{e0 + z/? where zf e ker (A — XJ)1

> 

at > 0. Then u/ + 1 = a~l + \Aui = ai + 1e0 + z/ + 1, where a / + 1 = ar+i^ifl.- z» + i = 
= a7+\AZi. 

Our assertion will be proved if we show that <u, z / + 1> = 0 for each u e ker . 
. (A ~ XJ). But this immediately follows from the assumption that zt e ker (A — XJ)1 

and the fact that ker (A — XJ)1 is an invariant subspace with respect to A. The 
rest can be proved quite analogously. 

Theorem 2. Let X be a real Hilbert space, A : X -> X a linear nonnegative and 
self-adjoint operator on X. Assume that Xx (not necessarily an isolated point of 
r/(A) with finite multiplicity) is an eigenvalue of A and that the starting approxima­
tion u0 of (\) is not orthogonal to ker (A — XJ). 

Then an /* Xx. Moreover, if Xx is an isolated point of o(A), then lim ||u„ — e0| = 0, 
n~* oo 

where e0 e ker (A — XJ), ||e0|| = 1 and (<xn), (un) are defined by (l). 

Proof. First of all we prove that an / Xv Since u0 $ ker (A — z^I)1 and this 
subspace is invariant with respect to A, then according to (l) un <£ ker (A — XJ)1 for 
each n. By Lemma 1 each un is of the form un = ane0 + zn, where e0 e ker (A — XJ)% 

||eo|| = 1, zn e ker (A - XJ)1 and an > 0. Using (1) and the fact that Xt is an eigen­
value of A we get an = <u„, e0> = <xn

l(Aun..u e0> = a~1X1 . an_x. Because (ccn) 
is a monotone increasing sequence (see the first part of the proof of Theorem 1) and 
0 < an g Xx, we have that an ^ a„_1 for each n (n = \,2, . . . ) . Moreover, (an), 
is bounded. Passing to the limit in the above equality, we obtain that an S Xx. 
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To prove the second assertion, take X such that m < X < Xt. Then 

X\-a2
n+l^(l\-A2)\\Exun\\2. 

Indeed, 

A - «„2
+1 =%- \\Aun\\

2 = {{X\ - A2) u„, «„> 

= \{A\-t2)d(Exun,un}^ 
J m 

{X\ - t2) d<Etun, «„> ^ 

^(A2-A2)\\EAun\\
2. 

Since an /* Xi, we conclude that ||FAMn|| "^ ^ anc* ll(̂  "" ^ A K H ~* 1 a s n -* °° 
because |urt|| = 1 for each n. Put P0 = I — EXi„0,

 t n e n po *s a projection of X onto 
ker (A — AJ). Since urt is of the form un = a„e0 + z„, where zn e ker (A — XJ)1, 
then P0u0 = ane0 and a2

n = ||P0ww||2. Since Xx is an isolated point of <T(A), there 
exists a constant M > 0 such that <r(A) — {Xt} a [m, M] . Moreover, Xx is an 
eigenvalue of A and Ex -> FAl_0 as A -> Ax — 0 in the strong point operator topology 
of (X -> X). By our hypothesis the segment (M, Xt) belongs to the resolvent set of A 
and hence the family {EA} is constant on (M, Xx). Taking X such that M < X < Xu 

we obtain 

\an - 1| = |||P0uw|| - 1| g |||P0u0|| - ||(/ - Ex)un\\) + 

+ | | | ( I~F A )u„ | | - l | = | | ( I - F A ) u n | | - l | . 

Hence an -> 1. The equality ||wn — e0|
2 = 2(1 - a„) completes the proof. 

One can similarly prove the following theorem which extends the corresponding 
result of [6]. 

Theorem 3. Assume that A is positive and that the starting approximation v0 

of (2) is not orthogonal to ker (A — XJ). Under the same conditions of Theorem 2 
on X, A and X1 we have that p,n /* Xt and \\vn — Ne0|| -> 0, where e0 e ker (A — XJ), 
||e0|| = 1 and N = sup \\vn\\ < oo. 

n 

R e m a r k 1. The methods (l), (2) can be used for an approximate determination 
of eigenvalues and eigenvectors of linear bounded operators. Indeed, if T is an 
arbitrary linear bounded operator, then A = T*Tis self-adjoint and nonnegative. 

Theorem 4. Let X be a real Hilbert space, A : X -> X a linear nonnegative self-
adjoint operator on X. Suppose that Xx is an isolated point of o(A) of A (i.e. there 
exists a constant M such that <x(A) — {Ax} c [m, M]). 

Then 

(0 «2
+1 = tf = «2

+1 + ( ^ V - a2), n£l. 
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If the starting approximation u0 of (l) is not orthogonal to ker (A — Xtl), then 

X2 - a2 

(ii) Wn ~ </V eoy e0\\2 ^ - ] — - f . 

X\ - Mz 

Moreover, if the process (u„) is not finite, then 

M\2 Xx - m „ ,, (hi) 

\ a n / A, 

where (un), ( a j are defined by (1), e0 e ker (A — XJ), \\e0\\ = 1. 

Proof. We prove (i). According to (1) we have that 

0 ^ X\ - a 2

+ ] = A2 - | |Aun | | 2 = {(X\ - A2) u„, u„> = 

= < a ; 2 ( A 2 - A 2 ) A 2 u n _ 1 , u n _ 1 > = 
ЃÅ 

- 2 Z - 2 
^ - i ^ ^ d ^ A - l . v l ) ^ 

-S f-Y fW - ^d^A-! , !!..!> = f-YW ~ "«)> 
Van/ J« V°W 

for the family {EA} is constant on the interval (M, X^. 

(ii) Since Xx is an isolated point of o(A) of A, Xx is an eigenvalue of A. Because 
u0 ^ ker (A — XJ)1, then according to Lemma 1 each un is of the form un = ane0 + zn 

where e0 e ker (A — x^I), ||e0|| = 1, zn e ker (A — ^ I ) 1 , a„ > 0, u ^ 1. Then 

| |Wf l | |2 = ^n + ||ZA,||2 = 1 a n C l 

| |Aun |2 = <A2un, un> = X\a2 + <A2zn, zn> , 

because ker (A — A-I), ker (A — Xxl)
L are invariant subspaces with respect to A. 

Then 

X\ - a2
+1 = A2 - ||Au„|j2 = X\(a2 + ||z„||2) - X\a2

n - <A2zn, z„> = 

= X2||zn||2 - <A2zn, zn> = ((X\ - A2) zn, zn> . . 

Since the segment J = (M, Xx) belongs to the resolvent set of A, the family {EA} 
is constant on J. Hence 

<(A2 - A2) z„, z„> = [\A] - A2) d<£,z„, z„> = 
J m 

t*M 

= \{k\ - A2)d<£Az„, z„> 2: (A2 - M2) ||z„|2 . 
J m 

Since ||un — ane0\\ = ||un — <un, e0> e0|| = ||Z„||, we obtain the desired estimation 
at once from the last inequality. 
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(iii) By the second part of Lemma 1 each (un) is of the form un = ane0 + bnrn 

where an = a 'K-i** . . . bn = a71& l l_1 | |_4rB_1 | |, b0 = | |z 0 | | , rn = Ar/t_1||Ar„_1||~
1, 

r 0 = z 0 . j|_zr0[| ~
x and rn e ker (A — XJ)1, \\rn\\ = 1 for each n. Since | |u„||2 = 

= a\ -f bn = 1 and the segment (M, Ax) belongs to the resovent set of A, we obtain 
that 

и2 и2 г** и1 

" - 1 " - - • 1 | 2 = % - 1 Я 2 _ < _ я г „ _ 1 , г „ _ 1 > = ^ 
«„ ^ш а" 

_ Ь„-1 ( — V М < Е л г „ _ 1 ) г„_<> = Ь„2_х ( - ) . 

K = -^\\Arn^\Y = ~ \ *--<£...-._..,-._..> = - ^ I A2 d<£„r._1, r„_,> _; 
«. an Jm a~ J™ 

,2 r^ / M y 

,aJ 
Hence 

ò„г = l - a , чñ 2 ( l - ^ ) . 

We show that the sequence (an), where an = <un? e0>, is monotone increasing. 
Since (an) is monotone increasing, 0 < an ^ Xl9 and an = <un, e0> = a"1 . 
. <Aun_1 ,e0> = a~1>l1<un_1, e0} = a~illan_l, we have that an„1 :g an for each 
/i = 1. Therefore 0 < 1 + an_t ^ 1 + a„ and 1 - an 5_ M2an~2(l - a-.-J. 

Furthermore, 

/ M \ 2 

IK ~ ^o||2 = 2 - 2<un, e0> = 2(1 - __„) ^ 2 / — j (1 - _.„_!) . 

On the other hand, e 0 e ker(A — AjI), ||_-0|| = 1 and the spectral theorem imply 

that 
1 - -.„_! = <un_i ~ X^Aeo, !!„__!> = 

= A"1 (Ax - 2) d<KA(un_1 - e0), un_!> S 
J m 

= —" d||E;.(un-
-M Jm 

MI /-! — m || j ! 
i - eo)\\ = — ; • | K - i ~ <?o|| 

Hence the estimation (iii) at once follows from the last relation and the above inequa­
lity. The proof is complete. 

Theorem 5. Suppose that the conditions of Theorem 4 on X, A and kl are satisfied. 

If A is positive, then 

0) 0 £ A . - , . , + 1 _ ( — ) V - A O -

If v0 £ ker (A — /.j /)1 , where v0 is a starting approximation of (2). then 

(ii) ||v. ~ <»„ e0> e0 ||2 _S 
12 -_- Яi ûr, || || 2 

ЯІ - м 
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In case (vn) is not finite, then 

(hi) \\vn - e0\\v„\\ || _: 2 ( — J H I ( H - J I I - <»,_., e0» , 

where (/.„), (v„) are defined by (2) and e0 e ker (A - XJ), ||e0 | | = 1. 

Proof. We sketch only the proof of (iii). Each vn of (vn) can be expressed in the 

form vn = pne0 + qjn, where T„ = (vn, e0> > 0, qn are constants, e0 e ker (A - XJ), 

|je0|| = 1, f.eker(A - ^ I ) 1 , ||f,|| *~~ 1. Similarly as in the proof of Theorem 4 

one can conclude that 

Ы a-p"--ŕ-У(k-iľ-p.-i). 
\ ЏnJ 

Since the sequence (vn) is bounded and \in /" Xt, (pn) is monotone increasing and 

bounded. Moreover, we have that 

0 < K_.ll + _->„-_ _s ||vj + pn. 

Hence the above two inequalities imply that 

II II <(M\2(\\ II \ 
\\vn\\ ~ Pn _g I — J ( | | ^ - 1 | | ~ P„-l). 

The equality 

K -|| ^l^oll2 = 2KII (K| | ~ (vn, e0» 
completes the proof. 

R e m a r k 2. Under the assumptions of Theorems 4, 5 there exist sufficiently large 

integers n0, nx such that for each p (p = 1, 2,...) we have 

o ^ J - < + p _* / C + P - I • ft2

0+p-2... iSiW - o , 

0 _s At - n„l+p _g 7 2

1 + p - t .y„ 2

1 +p-2 --y2n(h - ju n i), 

where 0 < j8^+ p__ __. /?„ 0 + p - 2 _g ... _S /?„0 < 1, ynt+P-i = y„ 1 + P-2 - ••• = ^1 < ** 

Ai0+» = M ^ . , 7rtl + i = //"!,tM, i = 0,1, 2,.. ., p - 1. 

The estimations at once follow from Theorem 4, 5, the facts that <xn / Xt, fin /* Xt 

and the hypothesis that X1 is an isolated point of er(A). 

The inequalities 

( M\2 n 

— J ( l- '*T~ 1 (I l«.)~ , <«o,eo», 
<x„j k=i 

h ~ II »-IM =§ 2 f ^ Y (|„,_.l - XT' ( ft ft)"1 <t>o, e0)) 
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which at once follow from Theorem 4, 5, respectively, provide further estimations 
for the methods (1) and (2). 

Now we derive the error estimations under the general condition that Xt (not 
necessarily an isolated point of o(A) with finite multiplicity) is an eigenvalue of A. 
We do it for instance for the method (2); a similar result also holds for the procedure 

(!)• 

Theorem 6. Let X be a real Hilbert space, A : X -* X a linear positive and self-
adjoint operator on X. Assume that Xx (not necessarily an isolated point of o~(A) 
with finite multiplicity) is an eigenvalue of A. Suppose that the starting approxima­
tion v0e X of (1) Is not orthogonal to ker (A — XXI). If 0 < ^ < Xt — m, then 

(4) (Aj - e) \\PEw„\\2 ^ n„ g A. - e(l - ||P£w„||2), 

A 1 | | P 0 w , . | 2 _ f t , _ A 1 

for each n, where m, Xt are the exact spectral bounds of o(A) of A, Pe = EXi — FAl_-, 
^o = Exx ~ Ejii-o, wn = ^ I H I " 1 * vn an^ \xn are defined by (2) and \\PewH\\ -> / 
as n -> oo. 

Proof. Let ^ be an arbitrary number such that 0 < ^ < Xx — m, where m, Xt are 
the exact spectral bounds of o(A) of A. Denote by R(EAl_£) the range of FAl_£, i.e. 
R(EAl_£) = [ueX :u = EAl_£(v), veX). The properties of the spectral family 
imply that the closed subspaces R(EAl_e), R(EAl„ey are invariant with respect 
to A. Set wn = vjvj-1, (n = 0, 1, 2, . . . ) . Then each wn can be uniquely expressed 
in the form wn = a(

n
E)gn + bn

z) zn, where gn e R(FAl_£)
x, zn e K(FAl_£), ||gn|| = 

= ||zn|| = 1 and (af)2 + (bn
E))2 = 1. We show that lim (bn

E))2 = 0. We have that 
It 

Xx = <Awn, wny = XX- <A(an
E)gn + bn

E)zn), an
E)gn + bn

E)zny = 

= ZM£))2 + (K£))2) - (any <Agn, gny - (bf)2 <Azn, zn> . 
We estimate the products <Agn, gn>, <Azn, zn>. Clearly, <Agn, g„y = Xx . ||gn||2 = Xx. 
Since zn e K(FAl_£), there are hn eX such that zn = EXl^e(hn). Hence 

<Azn, zn> = <AFAl_£/7n, /7n> = X d<FAFAl_A, hny = 
Jui 

= I""' *Ad<£A, /*„> g (A, - e) [ £d||£,(h„)||2 = 
J m J m 

= (X, - e) \\E^£(hn)\\
2 = (Xx - a) ||zn||2 = X,-£. 

Therefore Xx — <Awn, wn> ^ s(bn
£))2. However, Theorem 3 implies that l i m ^ — <Awn, 

wny) = 0, and hence lim (bn
E))2 = 0. We obtain 

it 

(5) A, - £(1 - (a^f) Z n„ 
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and (a(
n
E))2 -> 1 as n -> oo. Put P£ = I - EAl_£, P0 = I - EAl_0. Then R(E,i_e)

1 = 
= X Q R(EXl-e) = EXl(X) 0 FAl_£(X) = P£(X), P£ -> P0 in the point norm topo­
logy of (X -> X) as e -> 0+ 5 and P£, P0 are the projectors onto I^F^^)1, ker (A — 
— Xl9I)9 respectively. Then Pe(wn) = a(E)gn and ||P£(w„)||2 = (a(E))2 -> 1 as n -> oo. 
Furthermore, <Ag„, g„> __ Xx — e for each n ^ 0. Indeed, since gn e R(E;Ll _£)x 

and P£(X) - R(EXl_e)
1, there are cn eX such that g„ = Pe(cn), Then 

<Agn9 g„> = <-4Pec„, cn> = A d<FAc,J? c„> - X d(Excn, c„> = 
J m J m 

= I ' X d<£,c„, c„> _ ( ^ - e) | ' d<£,c„, c„> = 

= (̂ i - £ ) ig»ir = h - £ -
Since 

<Aw„, w„> = (a<£))2 <Aa„, a„> + (b!^)2 <Az;i, z„> 

and (a(E))2 = ||P£w„||2 for each n, we have that 

llJP.w-ll2 ( i i - e) _i («n
£))2 <Aa„, #„> ^ <Aw„, w„> = fin ^ Xt . 

Now the first estimation at once follows from the last inequality and (5), while the 
second one is a consequence of (4) and thr fact that P£ -> P0 as e -> 0+ in the point 
norm topology of (X -> X). Theorem 6 is proved. 

R e m a r k 3. The estimation 

//„ __ Ai — eHE^^wJ2 (n = 0, 1, 2,...) . 

holds, where (//,,), (vn) are defined by (2) and wn = | |^„| | - 1 vn9 0 < e < Xx — m. Note 
that this estimate is rather worse that the corresponding one on the right hand side 
of (4). 

Theorem 7. Under all the other condition of Theorem 6 on X, A, assume only 
that A is nonegative. Assume that the starting approximation u0 of (1) is not 
orthogonal to ker (A — Xtl). If 0 < e < Xt — m, then 

(X, - e)2 ||P£u„||2 S o£ __ A2 - E(2XX - e)( l - | | P r f ) , 

^I||-°OMII|| S a„ S Xx 

for each n, where m, Xl9 P0 have the same meaning as in Theorem 6 and 

\\ps(un)\\ -> 1 as n -> oo. 

R e m a r k 4. Some results of this paper were communicated by the author at the 
IVth Conference on basic problems of numerical analysis, Plzeii, Czechoslovakia, 
September 4 - 8 , 1978. 
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Ѕouhrn 

K URČЕNÍ VLАЅТNÍCH ČÍЅЕL А VLАЅТNÍCH FUNKCÍ 
ЅАMOАDЈUNGOVАNYCH OPЕRАТORŮ 

ЈOЅЕF KOLOMÝ 

V článku jsou vyšetřeny jednoduché metody (1), (2) pro výpočet vlаstních císel 
а vlаstních funkcí lineárních sаmoаdjungovаných operátorû. Јe ukázáno, že ob 
metody konvergují i v přípаd , kdy přesná horní hrаnice Xt spektrа o"(A) operátoru A 
není isolovаným bodem spektrа r/(A) s konečnou nаsobností. Јsou odvozeny odhаdy 
chyb pro konvergenci obou metod а je ukázáno, že je lze též užít i pгo výpocet 
vlаstních čísel lineárních ohrаničených operátorů. 
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