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SVAZEK 26 (1981) APLIKACE MATEMATIKY CisLo 3

ON DETERMINATION OF EIGENVALUES AND
EIGENVECTORS OF SELF-ADJOINT OPERATORS

Joser KoLomy

(Received December 12, 1978)

Two simple methods (1), (2) for approximate determination of eigenvalues and
eigenvectors of linear bounded operators 4 are considered in the following two
cases: (i) the lower-upper bound 4, of the spectrum o(A) of A is an isolated point
of 6(A); (ii) A, (not necessarily an isolated point of a(A4); with finite multiplicity)
is an eigenvalue of A.

1. Let X be a real Hilbert space with an inner product (-, *», A : X — X a linear
self-adjoint operator on X. Since A is self-adjoint and defined on X, A is bounded
by the closed graph theorem. Denote by m, 4, the exact spectral bounds of A4, i.e.
m = inf {<Au, u) : |jul| = 1}, 4y = sup {<Au, u) : |[u] = 1}. We shall investigate
the Kellogg iteration method for calculation of eigenvalues and eigenvectors of A4:

(]) Uyr1 = an_+]1Aun S ”Aunl

s (n =0,1,2,...),

where the starting approximation uo € X is such that u, ¢ ker 4, |uo = 1. By our
assumption o, > 0 and u, #+ O for each n.

Now we briefly describe the second method. Here, in addition, we assume that 4
is positive on X, i.e. (Au,u) > 0 for each u € X, u + 0, and {Au, u) = 0 implies
u = 0. Then the spectrum o(A) of A lies on the segment [m, A, ], where m = 0. Let R
denote the set of all reals, v, € X an arbitrary (but fixed) non-zero element of X.
Define a functional f: R x X — X by f(u,v) = |dv — pwo||?, peR, veX and let
i, denote that value p at which the function p — f(u, v,) assumes its minimal value
on R. The condition f,(u,, vo) = 0 implies that p; = (Ave, vo) . |vo]| 2. Set v, =
= puy 'Av,. Since A is positive and self-adjoint and v, + 0, we obtain that u, > 0
and v, + 0. In general we get the following procedure for the construction of eigen-
values of A4:

(2) Upt1 = /‘n—+llAUn s ey = Ay, v, . ”Un” —2’
where g, > 0 and v, # 0 for each n. The method (2) is similar to that of Birger [2]:
(3) Yn+1 = qn+1Ayn’ n+1 = <Ayn9 yn> “Ayn“_21
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who suggested it together with (1) without any mathematical justification. Nonetheless
he found that in engineering problems his methods have some advantages in com-
parison with the older ones. The methods (2), (3) have been investigated by I. Marek
[9]. [10], W. V. Petryshyn [12] and the author [4—7], while the method (3) was
studied by H. Biickner [3] for linear and nonlinear completely continuous operators
having a certain decomposition property.

2. Recall that an operator 4 : X — X is said be nonnegative if {Au, u) = 0 for
each u € X. Let {E,} denote the spectral family of a self-adjoint operator A. Let us
remark that each isolated point of o(4) of a self-adjoint operator A is an eigenvalue
of A. In the sequel we assume that A + 0 and the starting approximations u,, v
of (1), (2) satisfy the initial conditions: |lu,| = 1, uo ¢ ker A4, v, # 0, respectively.

Theorem 1. Let X be a real Hilbert space, A:X — X a linear nonnegative
self-adjoint operator. If the starting approximation uoe X of (1) is such that
E,uo # ug for each A < 2y, then o, 7 Ay, where a, is defined by (1).

Proof. First we prove that (oc,,) is an increasing monotone sequence. Since u, ¢
¢ ker A, ||uo]| = 1, then ||ju,| =1 for each n and o) = a2||u,||* = o, {Au, 1, u,)> =
= 0, Uy_ 1, Aty = 0, 0y 1{Up_1, Ups 1y = %,0,4+,. Hence o, < a,,, for each n.
Since (a,) is bounded, there exists limoa, = « and 0 < o < A;. We have to prove
that « = A,. Suppose « < 4, and put a = 3(« + 4;). Then 0 <o, S & < a + 4,
foralln. Set p = [a,2,], b =a.oa”"'. Then

"Ep“n+1“2 = <Eﬁun+l’un+1> = ”“u+1”2 — (Ey 415 Uns1) =

2

At a 21
ZJ‘ A<E;u, 11, Ups1) —j~ Ad<E Uy 1, Upyy) = f A{E Uyt 15 Ups 1)

m m a

foralln(n = 0,1,2,...). Using (1) and the properties of {E,}, we obtain

A1 At
'[ Ad<E;Upy 1> Ups 1) = 0‘_+21 J' d<E,A’u,, u,) =

a a

)iy A1
= an_+21 J’ d<A2E}.un’ un> = an_+21J‘ }'2 d<Eium u"> g

a a

2 b fld(EA“m u,y = b Egu,|?.

Hence
|Eptts ]| = b] Egus|

for each n. Continuing this process, we get

[Egual 2 B[ Eguo
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for all n = 1. Since E(B)uo = (E;, — E,)uy = uy — E,uy # 0 by our hypothesis
and b < 1, we obtain that HE,,u,, — + 9 as n — oo, which contradicts the fact that

B < o) = 1.

Hence o, ~ A, and the theorem is proved.

Lemma 1 (Compare [12]). Let X be a real Hilbert space, A:X — X a linear
self-adjoint operator, Ay and eigenvalue of A. Assume that the starting approxim-
ation ug of (1) is not orthogonal to ker (A — 1,1).

Then the sequence (u,) defined by (1) is of the form u, = a,e, + z,, where e, e
eker (A — 2,1), |leo]| = 1, z, e ker (4 — ,1)* and a, > 0 for each n.

Assume, in addition, that z, # 0 for each n in the last representation of u,.
Rewrite ug = ageq + zo as Uy = ageq + borg, where by = |zol|, ro = zo|zo| 7'

Then each u, is of the form u, = a,e, + b,r,. where a, = A,a, "
= d;lb,,_IHArn_lu, r, ¢ ker A and r, = Arn‘IHAr"_IH_lfor each n.

Similar assertions are also valid for (v,), where v, is defined by (2).

An—1, bn =

Proof. Since uq ¢ ker (4 — A41)", uy is of the form u, = agey + zo, Where
ag > 0, egeker (A — A1), |leo| = I, zo € ker (4 — 2,I)*. Assume that the repre-
sentation of (u,) is valid for n = i, i.e. u; = a,eq + z;, where z; e ker (4 — 1,1)*
a;> 0. Then u;y; = o' Au; = 160 + Ziy g, Where a;q = o\ Aia; 20 =
= o) Az,

Our assertion will be proved if we show that <u, z;,;> = 0 for each u eker .
. (A = A,I). But this immediately follows from the assumption that z; € ker (4 — A,1)*
and the fact that ker (4 — ).11)l is an invariant subspace with respect to A. The
rest can be proved quite analogously.

>

Theorem 2. Let X be a real Hilbert space, A:X — X a linear nonnegative and
self-adjoint operator on X. Assume that A, (not necessarily an isolated point of
o(A) with finite muItipIicity) is an eigenvalue of A and that the starting approxima-
tion uy of (1) is not orthogonal to ker (A — A,I).

Theno, ~ );. Moreover, if 2, is an isolated point of 6(A), then lim |lu, — ¢o|| = 0,

where eq € ker (A — A1), |eo]| = 1 and (a,), (u,) are defined by (1).

Proof. First of all we prove that o, ~ A;. Since uq ¢ ker (4 — 4,I)" and this
subspace is invariant with respect to A, then according to (1) u, ¢ ker (4 — /111)l for
each n. By Lemma 1 each u,, is of the form u, = a,e, + z,, where e, € ker (4 — ),
leol| = 1. z, e ker (4 — A,I)" and a, > 0. Using (1) and the fact that 2, is an eigen-
value of A we get a, = <u,, > = o, '{Au,_, ex> = a; 'A, .a,_,. Because (oc")‘
is @ monotone increasing sequence (see the first part of the proof of Theorem 1) and
0 < a, < Ay, we have that a, = a,_, for each n (n = 1,2,...). Moreover, (a,)

n =

is bounded. Passing to the limit in the above equality, we obtain that o, ~ 4.
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To prove the second assertion, take A such that m < A < 4;. Then

A=l = (22 = A7) |Ew|?.

-

Indeed,

}‘% - d:‘Fl = /‘:'f - “Aunllz = <(/“‘% - Az) Uy, un> =
= f’(;,g — 1?) d(Eu,, u,> = ‘f'(/‘-f - ) KEu, u,)y =

> (A = 2%) | Eu,|)? .

Since @, # A,, we conclude that |Eu,|— 0 and [[(I — E;)u,| > 1 as n -

because |u,| = 1 for each n. Put P, = I — E; _, then P, is a projection of X onto
ker (4 — AI). Since u, is of the form u, = a,e, + z,, Where z, € ker (4 — A,I)",
then Pou, = a,e, and a; = ||Pou,|?. Since 4, is an isolated point of o(A), there

exists a constant M > 0 such that o(4) — {4} = [m, M]. Moreover, 4, is an
eigenvalue of A and E, —» E,; _,as A - A; — 0in the strong point operator topology
of (X - X). By our hypothesis the segment (M, 4,) belongs to the resolvent set of A
and hence the family {E,} is constant on (M, 4;). Taking 4 such that M < 1 < 4,,
we obtain

|an = 1] = [[Pow]| = 1] = [[Pouoll = (I = E;) w]) +
+ 10 = B ]| = 1] = [|(7 = Ex)w,]| - 1]

Hence a, — 1. The equality |ju, — e,|* = 2(1 — a,) completes the proof.

One can similarly prove the following theorem which extends the corresponding
result of [6].

Theorem 3. Assume that A is positive and that the starting approximation v,
of (2) is not orthogonal to ker (A — A41). Under the same conditions of Theorem 2
on X, A and )., we have that p, 7 2, and ||v, — Neo| — 0, where e, € ker (A — 1,1),
leo] =1 and N = sup |,] < oo.

Remark 1. The methods (1), (2) can be used for an approximate determination
of eigenvalues and eigenvectors of linear bounded operators. Indeed, if T is an
arbitrary linear bounded operator, then 4 = T*T is self-adjoint and nonnegative.

Theorem 4. Let X be a real Hilbert space, A : X — X a linear nonnegative self-
adjoint operator on X. Suppose that 1, is an isolated point of 6(A) of A (i.e. there
exists a constant M such that o(A) — {2,} = [m, M]).

Then

2
(1) a3+l§’1f§“3+1+<%> (Af_a3)9 ngl
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If the starting approximateion uy of (1) is not orthogonal to ker (A — A1), then

. =
(ll) H/ln = (Hps eO> eO” 3_;-—7\.4‘2 .

Moreover, if the process (u,,) is not finite, then

2 —
(ii) ity — eo? < 2 <M> Tl PR
o 21

where (u,), (o) are defined by (1), eq e ker (A — 2,1), |leo] = 1.
Proof. We prove (i). According to (1) we have that
0< A —apyy =27 — |Au,|?* = <A — AP u,u,)> =
= o (A =A%) APuyyuy > =

A1
=o, 2| (A = A A dEu, g, U,y S

m

g( ) j (22 = 22) d¢Esuy_y. 1> —(M)Z(Af — ),
a"

for the family {E;} is constant on the interval (M, 4,).

(ii) Since 2, is an isolated point of ¢(A4) of A4, A, is an eigenvalue of A. Because
uy ¢ ker (4 — 4,I)", then according to Lemma 1 each u,, is of the form u, = a,e, + z,
where ey eker (4 — A,l), |eof| =1, z,eker(A — )", a,>0, nz 1. Then
[ua]|> = a7 + ||z,]* =1 and

HAU,,“Z = <A2un’ un> = ;‘i)’arzl + <A22n’ Zn> 5

because ker (4 — 1), ker (4 — A,I)" are invariant subspaces with respect to A.
Then

=y =21 — |Au))? = Ai(a; + ||z.]?) — Ala; — {A’z,, z,> =
= A|z|* = <A%z 2> = <(47 — 4D z,,2,> .

Since the segment J = (M, A,) belongs to the resolvent set of A, the famlly {E;}

is constant on J. Hence
A1

U2 = A7)z 2> = j (2 = 22 d{E;zy, 2> =

M
= J‘ (j.f - 22) d<E).Zn’ Zn> g (Af - Mz) ”z"nz ‘

, we obtain the desired estimation

Since “un - ane()” = ”un - <um (30> eO“ = ”zn
at once from the last inequality.
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(iii) By the second part of Lemma 1 each (u,) is of the form u, = a,e, + b,r,
where a, = a, 'a,_Ay, b, = oy 'b,_y|Ar,_ (|, bo = ||zo|, 1 = Ar,_y|Ar,_,| 7,
ro =zo. 20| " and r,eker(4 — AJ)", |r,] =1 for each n. Since [u,|* =
= a? + b2 = 1 and the segment (M, 2,) belongs to the resovent set of A4, we obtain
that

b2 bZ Ay bZ M
b;‘f = ’—%“ ”Ar,,_lnz ZL;lJ‘ AZ d<E1rn—ls rn—l> = ";1‘[ '{2 d<Elrn~l9 rn-l> .S_
[0 o,

n n m n m

M 2 rM 2
< b2, (~) f ACEyr s raosd = b2, <A1>

2
b3=1—a:§(aﬂ> (L—a,).

We show that the sequence (a,), where a, = (u,, ,», is monotone increasing.

Since (a,) is monotone increasing, 0 < a, < Ay, and a, = (U, e) =a, .

KAy, e0) = oy AUy, €0y = o, 'Aja,_,, we have that a,_; < a, for each

n = 1. Therefore 0 <1 + a,-; <1+ a, and 1 — a, £ M, *(1 — a,_,).
Furthermore,

[un — eo]® =2 — 2{u,, ) = 2(1 — a,) £ 2 <M>2 (1=a,-y).

n

Hence

On the other hand, e, € ker (4 — A1), |eo| = 1 and the spectral theorem imply
that

_ -1 —
L—a,_y =<{u,_y — A{ Aeg,u,_> =

A
_ j (hy = 2) d<E; (g1 — o) tty_1> <

m

Ay —m [ A=
B (s = e =2 s - .
}'l m j'l

Hence the estimation (iii) at once follows from the last relation and the above inequa-

lity. The proof is complete.

Theorem 5. Suppose that the conditions of Theorem 4 on X, A and 4, are satisfied.
If A is positive, then

(i) 0= 72; = Husy é(ﬂ

)2(/11 - 1) -

If vy ¢ ker (A — A,1)*, where vq is a starting approximation of (2), then

n

(i) | 00 = <o 05 of* < j—}j\‘; Jou]?
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In case (v,) is not finite, then

(i) low = eollwall | <z(!> 1oall (Joa=ill = <vaz1s €0)) 5

where (1), (v,) are defined by (2) and eq € ker (4 — A1), [leo] = 1.

Proof. We sketch only the proof of (iii). Each v, of (v,) can be expressed in the
formv, = p,eo + q.f,, where p, = {v,, €9) > 0, g, are constants, e, € ker (4 — 1,I),
leo] = 1, f,eker (4 — A,0)%, ||f,| = 1. Similarly as in the proof of Theorem 4
one can conclude that

(M
ol = 2 % (0] (loed” = ).
Hn
Since the sequence (v,) is bounded and p, ~ 1, (p,,) is monotone increasing and
bounded. Moreover, we have that
0 < ”Un—lll + pn—l é ”U"H + pn M

Hence the above two inequalities imply that

|M”—m§<%YW%ﬂH*mql

The equality
low =1 valleo]” = 2]l (Joall = <o €0))

completes the proof.

Remark 2. Under the assumptions of Theorems 4, 5 there exist sufficiently large
integers ng, n, such that for each p (p = 1,2, ...) we have

2 2 2 2 2
0 é '11 - oz,,0+p é ﬁno+p-1 . Bno+p 2. Bno(l - (1"0) ’
2 2 (1
0=y = taysp S Vnyip-1 - Vn,+p—2 -~-?n,(41 = ta,) 5
where 0 < ﬁno+p—1 é Bno+p*2 é v g ﬁno < 1’ ynl+p—1 é Yn1+p—2 é é y"l < 1’

Brovi = Moy iy Vpwi =y kM, i =0,1,2,...,p— L.

The estimations at once follow from Theorem 4, 5, the facts that «, * Ay, Us 7 4y
and the hypothesis that 4, is an isolated point of o(A).

The inequalities

o= eol = 2(2) (1= 27 ([0 o),

\

Iow = edenl =2 (52 (ol = 257 ([ 07" o0 e0)
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which at once follow from Theorem 4, 5, respectively, provide further estimations
for the methods (1) and (2).

Now we derive the error estimations under the general condition that 1, (not
necessarily an isolated point of o(A) with finite multiplicity) is an eigenvalue of A.
We do it for instance for the method (2); a similar result also holds for the procedure

().

Theorem 6. Let X be a real Hilbert space, A : X — X a linear positive and self-
adjoint operator on X. Assume that 1, (not necessarily an isolated point of o(A)
with finite multiplicity) is an eigenvalue of A. Suppose that the starting approxima-
tion vy € X of (1) is not orthogonal to ker (A — 2,1). If 0 < ¢ < A; — m, then

4) (A1 = &) [Pow,|* < py = 24y — &(1 = [|Pow,[?),
;LIHPOWnHZ __S_ Hy g i1
for each n, where m, A, are the exact spectral bounds of 6(A)of A, P, = E;, — E, _,,

Py =E; — E; —o. W, = 0,|0.]| 7", v, and p, are defined by (2) and |Pw,| — 1
as n — o.

Proof. Let ¢ be an arbitrary number such that 0 < ¢ < A, — m, where m, 4, are
the exact spectral bounds of o(A) of A. Denote by R(E,, _,) the range of E; _,, i.e.
R(E; -)={ueX:u=E, _([v), veX}. The properties of the spectral family
imply that the closed subspaces R(E;,_,), R(E;,-,)" are invariant with respect
to 4. Set w, = v,]v,| "% (n=0,1,2,...). Then each w, can be uniquely expressed
in the form w, = al”g, + b{” z,, where g,eR(E;,_,)", Z,€R(E;,-.), ||9.] =

“=z,] =1 and (a®)* + (b{”)*> = 1. We show that lim (b\”)* = 0. We have that
n

/11 = <AW", Wn> = ;Ll - <A(a$1£)gn + b:f)fn)’ afxc)gn + b$|€)2n> =

= (@) + (b)) = (a,7)* <Ag, 9> — (b)) <AZ,, Z,) .

We estimate the products (Ag,, g,>, (AZ,, Z,>. Clearly, <Ag,, 9> < ;. |g.]|* = 4,.
Since Z, € R(E,, _,), there are h, € X such that Z, = E, _,(h,). Hence

At

<A2m in> = <AE111—chm hn> =J\ /’{ d<EA.E/11-—ahn’ hn> =

w

= F—ezd@lh,,, hy < (4, — € r.—ed“El(h")”Z =

m

= G = BB = G L = 4y — .
Therefore A, — {Aw,, w,> = &(b”)>. However, Theorem 3 implies that lim (4, — (Aw,,

w,») = 0, and hence lim (b{”)* = 0. We obtain
n
(5) ‘ 21 —e(l = (a")?) = n,
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and (a’)? > lasn—> w.Put P,=1—~E; _,, Po=1—E; . Then R(E;,_,)" =
=X OR(E;,-,) = E;(X) © E;,_(X) = P(X), P, > P, in the point norm topo-
logy of (X — X) as ¢ - 0., and P,, P, are the projectors onto R(E,, _,)*, ker (4 —
— J4,1), respectively. Then P(w,) = aPg, and ||P,(w,)]|* = (a{”)> - 1 as n > 0.
Furthermore, {Ag,, g,> = A; — ¢ for each n > 0. Indeed, since g, € R(E,,_,)"
and P(X) = R(E,,_,)", there are ¢, € X such that g, = P,(c,). Then

2 A=

A d<E}.cm Cn> - j A d<E/lCn’ C”> =

m m

<Agﬂ* g"> = <AP€CH’ c"> =J

i A1
= J A d<ElCm Cn> Z (}’1 - g)f d<E/1Cu,~ Cn> =
Ar—e A1—¢

= (= o) fa]* =4~z
Since
(AW w,> = (aP) CAGys gy + (B)? <AZ,, 2,
and (a”)* = |P,w,|? for each n, we have that

[Powal? (21 — &) < (al9)? <AGy, 9oy < AWy w,> = 1, < 14 .

Now the first estimation at once follows from the last inequality and (5) while the
second one is a consequence of (4) and thr fact that P, » P, as ¢ — 0, in the point
norm topology of (X — X). Theorem 6 is proved.

Remark 3. The estimation
ty S 2y — €|Ej— o, (n=0,1,2,..).

holds, where (u,), (v,) are defined by (2) and w, = |v,[ " v,, 0 < & < 4; — m. Note
that this estimate is rather worse that the corresponding one on the right hand side
of (4).

Theorem 7. Under all the other condition of Theorem 6 on X, A, assume only
that A is nonegative. Assume that the starting approximation uy of (1) is not
orthogonal to ker (A — A41). If 0 < & < A; — m, then

(44 — ¢)? ”qu,,Hz Sof 27— (24, —e) (1 — [ Pu,|?),
}"IHPOun” é a, é A’l

for each n, where m, A,, P, have the same meaning as in Theorem 6 and
[P(u,)]| = 1 as n - co.

Remark 4. Some results of this paper were communicated by the author at the
1Vth Conference on basic problems of numerical analysis, Plzeni, Czechoslovakia,
September 4—38, 1978.
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Souhrn

K URCENI[ VLASTNICH CISEL A VLASTNICH FUNKCI
SAMOADJUNGOVANYCH OPERATORU

Joser KoLomy

V &ldnku jsou vySetieny jednoduché metody (1), (2) pro vypolet vlastnich &isel
a vlastnich funkci linedrnich samoadjungovanych operdtori. Je ukdzdno, Ze obé&
metody konverguji i v pfipadg, kdy presnd horni hranice A, spektra o(4) operdtoru A
neni isolovanym bodem spektra o(A4) s kone¢nou ndsobnosti. Jsou odvozeny odhady
chyb pro konvergenci obou metod a je ukdzdno, Ze je lze téZ uzit i pro vypolet
vlastnich éisel linedrnich ohranicenych operdtora.

Author’s address: Doc. dr. Josef Kolomy, CSc., Matematicky ustav KU, Sokolovskd 83,
186 00 Praha 8 - Karlin.
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