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SVAZEK 23 (1978) APLIKACE MATEMATIKY clsLo 6

THE FINITE ELEMENT SOLUTION OF PARABOLIC EQUATIONS

Joser NEDOMA

(Received February 24, 1977)

In papers on solution of parabolic differential equations by the finite element
method, error bounds are derived either in the case that the union of finite elements
(straight or curved) matches exactly the given domain (e.g. in Zlamals papers) or
in the case of curved elements which do not cover, in general, the given domain (e.g.
in Ciarlet-Raviarts papers). In the former case the error bounds are given for fully
(i.e. both in space and time) discretized approximate solutions. In the latter case the
numerical integration is taken into account; however, the error bounds are given
only for semidiscrete (not discretized in time) approximate solutions. Error bounds
introduced in this paper are given for fully discretized approximate solutions and for
arbitrary curved domains. Simplicial curved elements in n-dimensional space are
applied. Degrees of accuracy of quadrature formulas are determined so that numerical
integration does not worsen the optimal order of convergence in L,-norm of the
method.

1. NOTATION. THE CONSTRUCTION OF FINITE ELEMENT SPACE.
ISOPARAMETRIC INTEGRATION

The norm and the scalar product in the space I?(4) is denoted by -], . and
(*» *)o. 4 respectively.
H™(A4) = W§™(4), m = 0,1, ... . Here W{™(4) is a Sobolev space with the norm

. " olely
H””W1<m)(,4) = \/(IaémuD U”(z),A), where D% = m .
We denote
s =V Z 10l ) Tbos = Dol s = s

Hg(A) is the closure of the set Cg’(A) (i.e. the set of infinitely differentiable functions
with compact support in A) in the norm |+||; 4. H™*(A) is the space dual to Hj(A)
(with dual norm).
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L*(H™)(A4)) is the space of all functions v(x, 1), x = (xy,...,x,)€ 4, te [0, T]
such that v(x, 1) e H"(A4), V1€ [0, T] and the function [v(x, 1)|,, 4 is bounded for
almost all € [0, T]. We denote

[0l wqaamy = vraisup ””Hm,A-

In the same way as in [1] we define the k-regular family {e}, of simplicial iso-
parametric finite elements e in the following manner:
We are given

N
(a) A set £ =U{d;} of N distinct points from R" such that its closed convex
i=1

hull T'is a unit n-simplex.

(b) A finite dimensional space P of functions defined on T with dim P = N such
that £ is P-unisolvent, i.e. the Lagrange interpolation problem'): “Find pe P
such that p(d;) = «;, ! < i < N” has a unique solution for any real numbers o;.
We suppose P e C***(T), P o P(1). Here for any integer r = 0, P(r) is the space
or restrictions to T of all polynomials of degree <r in n variables %, ..., £,.

N
(c) AsetZ = U {a;} of N distinct points frcm R".
i=1

Then the simplicial finite element e € {e},, is the image (i.e. e = F,(T)) of the set T
through the unique mapping F, : T — R" which satisfies

F,ep*, Ff(d)=a;, 1<i=<N.

IIA

We suppose
(d) For all h, the mapping F, is a C**'-diffeomorphism and there exist constants c;,
0 =1 £k + 1, independent of h, such that for all h:

(1) supmax [D*F (%) S ¢ht, 1S15k+1
feT]al=1
and
®) 0<tms [J[(2)] < coh,
C

0

where J (&) is the Jacobian of the mapping F, at the point £ € T.
With every element e we associate the finite dimensional space P, (with dim = N)
of functions

(3) P,={p.:e—>R; p, = p(F;'), Vpe P} .

The e-interpolate n,u of a given function u : e — R is the unique function which
satisfies

4) rueP,, mou(a)=ua), 1<i<N.

1y The analogous analysis can be given for Hermite interpolation.
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For a k-regular family {e}, of finite elements the following interpolation theorem is
true (see [1], Theorem 2, p. 429):

Interpolation theorem.

Let a k-regular family {e}, of simplicial finite elements such that P(k) = P be
given. Let

n
5 k>=-—1
o d

Then for any integer m such that 0 < m < k + 1, there exists a constant ¢ in-
dependent of h such that for any e € {e}, and for any function u € H**!(e) we have

(6) I“ - neulm,e = Chk+1_m“u“k+l,e

We define now a k-regular trtangulatton €, of a set Q:

Let 2 be a bounded domain. Let Q, be the union of a finite number of simplicial
finite elements e = F,(T). Every element e is determined by N points a;,. We sup-
pose that all points a; , belong to Q. The family of elements constructed in this way
is called a triangulation of @ (or of ©,) and is denoted by %,. We say that a triangula-
tion €, of Q is k-regular if the family of all elements from which the triangulation is
formed is k-regular and if for the boundary elements (i.e. for elements e such that
e ¢ Q) of the triangulation %, we have

(7) max [Wa(y') — w(¥)| < ch**

where ¢ is a constant independent of h and the notation is that of Fig. 1.

Y
o8 o Bely)
DQ:;,,’Y(?‘)
o S G o)
e
Fig. 1.

With a given k-regular triangulation %, we associate the finite dimensional space V,
of functions v defined by

(8) V, = {ve C%Q,); v.e P, forall ee %,, v =0 on 0Q,},

where v, is the restriction of the function v to the set e.

410



In our paper we suppose that P = P(k). This restriction is not essential. It enables
us to give simpler proofs.

Let &(x) be any function defined on the clement e. Then the function ®(F (%)) is
defined on T. In the sequel we will denote it by ¢*(%).

Let us suppose that we have at our disposal a quadrature formula of a degree d
over the reference set T. In other words,

9) J @*(%)d% is approximated by Y ®, #*(b,)
T r

for some specified points b, e T and weights &, which will be assumed once and for
all to satisfy
(10) », > 07?).

Concerning b, we suppose that for every r, b, lies either inside T or it coincides with
some of the points d;.

With the quadrature scheme (9) we associate the error
(11) B(o*) = J o4(2) d% — Yo, 0*(5,).
- T r

Using the standard formula for the change of variables in multiple integrals, we find
that

(12) f @(x)dx is approximated by Yw, . D(b,.),
where
(13) 0,0 =0, J(b,)%), b,.=F(b).

We see that the quadrature scheme (9) over the reference set Tinduces the quadrature
. scheme (12) over the finite element e, a circumstance which we call “isoparametric”
numerical integration. With the scheme (12), we associate the error

(14) E(®) = f o(x) dx — Yo, &b, .)
so that we have '

(15) E(®) = E(@*J,) and E(®*) = E(®J;").

2) This assumption is by no means necessary but it yields simpler proofs.
3) We may, and will, assume that the Jacobian J(x) > 0 for all xeT.
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2. FORMULATION OF THE PROBLEM

Let x = (x,..., X,) € R". Let Q be a bounded domain in R”. Let functions g(x),
9:/(x), i,j =1, ..., n defined on @ and a function f(x, ) defined on @ x [0, T] be
smooth enough. Let

(16) gif(x) = g;i(x), 9g(x) = go (= const) >0, VxeQ

and let the differential operator
0 0
(1) =% (09 )
ij=1 0x; 0x;
be strongly elliptic, i.e. there exists a constant g, > 0 such that

(18) Y giy(x) & 29, Y& forall xe@ andforall (¢;...&)eR".
i=1 .

i,j=1

Let a(u, v) be the bilinear form corresponding to the operator L, i.e.

ou Ov
19 — iiT dx .
(19) )= | Tt
We study the following problem:

Find a functton u(x, 1) such that
(20) we L(HYQ)) , %eﬁ@”@»
t

<g gﬂ > U> + a(u, D) = (f, D)O,Q;. , Vve H(l)(Q) and IE(O, T] ’
t 0,2

u(x, 0) = ug(x) e *(Q) .

First, we discretize this problem by the finite element method with respect to x.
Let 4, be a k-regular triangulation of the set Q and let ¥}, be the corresponding finite
element space. The union of the elements e from %, forms a set , which, in general,
differs from Q. We extend the functions g(x), g;;(x), uo(x) to a greater set @ > Q so
that the conditions (16) and (18) are satisfied (with positive constants g, §,). In this
way we obtain functions §(x), §;;(x), #ie(x). Obviously, for sufficiently small h

(21) Q,c@.

The solution u of the problem (20) is supposed to satisfy

(22) m%emmﬂmm.
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The validity of the assumption (22) may be assured by a sufficient smoothness of the
given functions and the boundary 9Q of the set Q. By the Calderon theorem, for
every 1 € (0, T there exist extensions #(x, t), @, *) of the functions u, du/dt such that

{Ou

(23) ”g{lk+3,ﬁ = C”“”k%—.’ufla [’at!Ik+3.ﬁ =c ot

b
k+3,2

where ¢ is a constant indepzndent of h and of ¢ (it depends on Q only) .
Let us denote

i N
(24) T, 1) = g(x) 2 - Ia,
ot
where

9) I =z Ei“ (J.-,-(X) Ua;) :

According to (20) we define now the following semidiscrete problem (see [2]):
Find a functton uyx, t) such that

Ous 4
(26) u. Yre 17(1(@).
ot

(g(x)a—“s , u> + a(ug, v) = (£, v)o,0,, YveV,, te(0,T],
ot 0.9n
u(x,0) = ug eV,
where u,, is an approximate of #,(x) and d(u, v) is the bilinear form

du

(27) a(u, v) = J;} i,jizl §ii(x) . @ dx .

; 0x;

We named the problem (26) semidiscrete because it is discretized with respect to x
only. It is obvious that (26) is a system of ordinary differential equations with an
unknown vector function of parameter t. This suggests the way how to discretize
the problem with respect to t. We solve the system of ordinary differential equations
by v-step A-stabil method (for v = 1,2) of order g. We divide the time interval
[0, T] into a finite number of mutually equal parts 4t. We introduce the notation

(28) o" = P"(x) = d(x,m A1), m=0,1,...
for any function &(x, 1).

4) The identity &, = 317/81 is not supposed to be true.
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According to (26) and to the described way of the time discretization we define
the following discrete problem:

Find a function u,(x, t) such that

(29) u; =V, forany t= 0; A, 2 4t, ..., T
(g(x)ZocjuZ 2 V)o.q, + At d( ZﬂJ mti ):
i=o

=AY B, /", 0)o 0, YoEV,, m=0,1,...,
=0
u) =ugeV,.

It is easy to prove that the problem (29) has one and only one solution. This solution
can be considered an approximate of the function a(x, f).

Since it is either too costly or simply impossible to evaluate exactly the integrals
(*5 *)o.am a(+, +), we must now take into account the fact that approximate integration
is used for their computation. For this purpose we use the isoparametric numerical
integration, i.e. with agreement with (12) we replace

(30) (W, 2)o.0, & (W, 2)y,  d(w, 2) = ayw, 2)

where

(31) (w,2), =Y Yo, wb,,) z(b,.),
eebn r

(32) ay(w, z) =Y Yo,, [i > gij(br.o) — 6w(b, ) ?E(QP)J

ectn

in {32) g,; is written instead of §,; because b, , € Q for sufficiently small h).
U j J ,
According to (29) and (30) we define the following problem:

Find a function w(x, t) such that

(33) u,eV, for t=0, 4t .. T,

(g x)Zoc up i v), + At ah(Z/)’ uy i v) =

=41y ;" v),, VveV,, m=0,1,...,
=0
u = u,eV,.
The aim of the paper is to derive error bounds for
(34) A=u(x,1) —ux,t) for t=0,4t,..,T

in the norm || 0na,
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3. THE THEOREM ON RITZ APPROXIMATION
A function n(x, 1) e V(V,, = Hy(R,)), Vi € (0, T] such that

(35) (g(x) Uy, U)O,Q;. + an(x, 1), v) = (f(x, 1),0)0.0,> YVEV,

is called the Ritz approximation of the function a(x, r).

Let us prove that the function ;1(x, 1) is an orthogonal projection onto ¥, of the
function @(x, t) in the energetic norm given by the bilinear form a(+, +), i.e. it satisfies

(36) a@ —n,v)=0, VYveV,.
Really, (35) implies

a(n, v) = (f = iy, v)o g, -
The Green theorem together with (24) yield
a(ii, v) = =(Lit, v)o 0, = (] = §ili, v)o., -
The aim of this chapter is to estimate the norm
(37) la(x, t) = n(x, )] iq,, i=0,1.

In the sequel the constants independent of h and ¢ will be denoted by ¢. The notation

is generic, i.e., ¢ will not denote the same constant in any two places.
From (27) and (18) it follows that

(38) a(v,v) = §,|v|7 q,, Yoe HY(Q,).
The continuity assumption and the Cauchy-Schwarz inequality imply
(39) la(z, v)| < clz]s 0 |t]i00s Yz, veEHY(Q,).

Let ve H*"'(Q,) and let €, be a k-regular triangulation of Q. Let m,v be the function
which is equal to 7,v on every element e € ¢,. Here 7,0 is an e-interpolate of v (see
(4)). The inerpolation theorem (see (6)) implies

° o= mols . < ch?® ™|, 0sm<Sk+1.
Hence

(40) lo = m0] 10, < Ho]iir 0,

Obviously m,fi = mu = 0 on 0Q,. Hence

(41) miieV, forany 1e(0,T].

From (38), (36), (41) and (39) we obtain

& — 02 o, < ca(@ — n, @ — n) < ca(ii — mid, @ — m,d) < clii — mii]3,0, -
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From here and from (40) it follows

(42) [i = 1100 £ ch*|d]s1.0,, Ve(0,T].
Let us denote
(43) _ fa(x, 1) = n(x,1) for xe@,

V(e 1) = 0 for xe@ — Q,.

For any t € (0, T] we solve the homogeneous Dirichlet problem
(44) —Lo(x, 1) = y(x,1) in Q, &x,1)=0 on Q.
If 09 is smooth enough then
(45) ® e Hy(Q) n H(Q),
I2]2.0 = c|¥fo.e = c|¥]o.a = c[¥]o.0n. ie

[2]2.0 = ¢[@ = nlo.0,, V1€ T].

Using the Calderon theorem we extend the function @ from @ onto Q. In this way
we obtain a function ¢ € H*(Q) such that

12]2.0 = c[ 9]0

From here and from (45) it follows
(46) |20, = ¢l = n]o.q,-

Let {(x, t) be the orthogonal projection of @(x, ) onto the space V;(€2,) in the ener-
getic norm. Then in the same way as in (42) we get

[5 — i, = Ch”qs”z,nn-

L)

From here and from (46) it follows

(47) |8~ (|10, = chll@ = nfoq, -

It is easy to verify that (y + L& = ¢ + L& on Q)

@) a3, =f @ - n) (¥ + L&) dx ~J’ (@ - n) L& dx.
M- o

The Green theorem (7 = 0 on 0Q,) yields

(49) —jg(a~q)iédx=d(ﬁ—n,5)~f ,;%?ds.

o0 4
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Since { € V;, we get from (36) (@ — n,¢) = 0, ie. (i — n, &) = a(@ —n, & — )
From here and from (49) and (48) it follows
(50) i@ = nfS.e, =

+ la@ —n, & - )| +

f (@ - n) () + L®)dx

0P
[ ot
o0, OV
Before estimating the expressions on the right hand side of (50) we introduce some
lemmas and notes.

+

Lemma 1. Let %), be a k-regular triangulation of Q. Let v(x,t)e H'(Q), Vte
€ (0, T] and let

(51) U(y/’ Vs t) =0 on 0Q
(for notation see Fig. 1). Then there exist a constant ¢ such that
(52) Iofo.0n-0 = h***[o]1.0,-a -

Proof. From (51), from the Schwarz inequality and from (7) it follows

Vn ’ 2 o )I ’
(53) |o(y', v O = J- Q"LLT;’) dr = |y = () f <—li(}‘j__t)> dcl =
s O o) 0y
< ch*t1 l " (?”(y"it)y drl .
= ‘ v Y

By integrating (53) and summing over all the boundary elements e € %, we obtain
(52).

Remark 1. The proof implies immediately that the assumption (51) may be re-
placed by the assumption

(51) Wy, vy 1) =0 on 0Q,.
Remark 2. (53) yields immediately the inequality
(54) [o(x, )| £ ch* o] 005

valid for every x € 09, (under the assumption v = 0 on 0Q).

Lemma 2.
(55) Iolo.sen = cfolls0n. VoeH(Q).

Proof. Lemma is a consequence of the proof of Theorem 1.2, p. 15 of [3] and the
inclusion @, < Q for all h.
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We estimate now the expressions on the right hand side of (50).
The Schwarz inequality gives

(56)

From (46) we get

j (@ =) + L) dy| = |7 = oo a |V + LFlog-a.
-0

W+ L8log,-0 = [ + LB[o.0, = []o,0, + [ Lo, =
= ”'ﬁ”o,nh + C”“ﬁ“z,gh = “lp”o‘:z,. + Cﬂﬁ - W"o,ﬂh-
From here and from (43) it follows that
(57) W + L[o,0,-0 = c|d — 1o, -
From (38), (36) and (39) we get

030, < caln,n) = ca(@, n) < cli], g, 1] 0, -
Hence

l'lll,rzh = "[ﬁll.ﬂw

From here, from (52) and from the Remark 2 (we remember i = 0OondQandn =0
on 09,) we obtain

l# = n]o.n-0 = ||#o.n-a + [1]o.0.-o =
= Chk“{lﬁll,rz,,—g + |’7l1,9;,——!2} = Chk“lalx,g,, .

Substituting from here and from (57) into (56) we get
(s8) J @ - ) + I#)dx
-0

From (39), (42) and (47) we get

< ch"’“lﬁ[l,gh “17 - '1”0,!2;.'

(59) (@ = n, & = O] = k" alusr.a [ = 1]o.0,-

The Schwarz inequality implies
(60)

From (55) and (46) it follows that

0# T
J 7924s < o s
o2y

ov

IA

v

0,002n *

Q(g
5x,'

n

Sc)

00,0 i=1

o
ov

(lfz
0x;

IIA

(61) »

0,025 1,25

< ¢|®]2.0, = cl@ = 1o, -
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Using (54), (55), (21) and the first Sobolev theorem (sce for example [4]) we get (we
suppose (5) to be satisfied)

lillo can = (fo, @ ds) < ch*“ | |a]s o 5000, = B [d]1.03]1.00 =

< ch*tmes Qi 5 S B H|d]iin g -

Substituting from here and from (61) into (60) we get
(62) f i gy
oo OV

(50), (58), (59) and (60) implies

(63) l# = nlo.0, = el iz

From here and from (42) it follows that

S il a 1@ = o, -

”ﬁ - ”IHl,Q,, = ”‘1 - '1”0,9,. + ]ﬁ - '7|1.Q,, = Chk“]|a|‘k+z,?z + Cth’J“kH.?) .

Hence
(64) la = nlli0, = ch{iifissz -

Now we can summarize the results into the following

Theorem 1 (Theorem on the Ritz approximaton). Let u(x, 1) be a solutton of the
problem (20) such that
(65) u(x, 1)e H*"3(Q), Vie(0, T].
Let a triangulation €, of the set Q be k-regular. Let Q, = @ and let

n

66 k>--—1.
(66) ;

Let a(x, t) e H**3(Q), Vi e (0, T] be an extension of u(x, 1) from Q onto 3(Q = Q)
such that

(67) laflisss = erlufxsse

where ¢, is a constant (independent of h and t).
Let n(x, ) € V,(24), Vt € (0, T] be the Ritz approximation of the function d(x, 1).
Then there exists a constant ¢ independent of h and t such that

(68) la = nllig, < b lufissn, i=0,1.

Proof. The inequality (68) follows immediately from (63), (64) and (67).

Note 3. In Theorem 1 the number k + 3 can be replaced by the number k + 2
in all places. Nevertheless in what follows we shall need the above formulation.
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4. ISOPARAMETRIC INTEGRATION

Now we derive some estimates of errors due to isoparametric integration which
was defined in (10)—(15). First, we give some technical lemmas.

‘Lemma 3. For any functions ¢ and y from the class C®* the following
inequalities are true

ay,...0n (B1yeeesBn) (@1 =P1yees0n=Pn)
(69) (o) = e ¥ D o| [D vl
Pn=0,..., an
© vl = es 5 flolis-sup max (D),
Jj= al=i—j

where ¢, and c, are constants independent of h and t.

Proof. The proof of inequality (69) is trivial. The inequality (70) follows from
(69) by simple calculation.

Lemma 4. For polynomials r, s on the reference set T the following inequalities
are true

(71) max [D“i‘| = Cllrl]a],T )
T
(72) [rlis S calrfip for jzizo0,
(73) [rslie = e Zolrlf',r Is|-sr -
=

Proof. For the proof of (71) see [7], p. 356. The inequality (72) is an immediate
consequence of (70).

Lemma 5. Let %, be a k-regular triangulation of . Let J, be the Jacobian of
the transformation e = F(T), e € €,. Let J%»™ be a cofactor of J,. Then

(74) D*J, = O(hlsl*"),

(75) D™ = Ot

(76) D* (}) — o).

e,

Proof. Using the mathematical induction the following assertion can be proved:
Let D'y = O(hl#l*x for s = 1, ..., 7, || = 0,1, ..., |o]. Then

(77) Da((/h([); (Pr) _ 0(h|a|+x|+.‘.+x,) )
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The relations (74) and (75) follow immediately from (77). The relation (76) can be
easily proved by the mathematical induction.

Lemma 6. Let t*(%,t)e H**(T), 1(x,1)e H**'(e), Ve (0, T], e€,, let @,
be a k-regular triangulation. Then there exists a constant ¢ such that

(78) IT*IkH,T = CII-"/2+k+1||TI’k+1,e .

Proof. Lemma is an immediate consequence of Lemma 1 from [1], p. 427.
We introduce the notation

(79) E(@) =Y E/ (@) (for the definition of E/(®) see (14)),

(50) [#).2 = (X b~ 10fi)-

Lemma 7. Let
(81) Y(%)e HA(T),
(82) ©(&) be a polynomial of degree <k,
o(%) e **(T) be a function such that,
(83) D6 = O(h™1**) for 0 <|of <k+1, ... integer.

Let d be the order of a quadrature formula on the reference set T. Then there exist
constants ¢, and c¢, such that

(84) |EW=o)] = el {h o, o(h™ P oles sz + [Wlirr2) +

+ B e 2 Wi + W)} s

E oy ot % pk+1 —(k+1) K
(85) Svaipvaldl | IE Y R Ui L PP () [Wlksz,r + 2 [0 err +
0%; 0%; j=0

R P (O 17 PSR ] P
Provided that

(817 ¥(R) is a polynomial of degree <k,

the inequalities (84) and (85) reduce to

(84" |E(o)| = ek {h** tllo,2|¥ o0 + h** [ (W]} s
, oy @ \ i
6)  [B(5E o o) = e U e s + 10 e [}
i 0%;
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Proof. Obviously
(86) |EQpo)| < |E(r(s — #3))| + |E(yrso)|,
where #5 is the T-interpolate of the function 5(%) (i.e. #0 € P(k), # 8(d;) = &(d;)).
The first Sobolev theorem (we suppose (66) to be true), the Bramble-Hilbert lemma
(shortly the B.-H. lemma) and (83) imply

(87) |E(e(6 - #5)| = f o —#0) a5~ To[u(6) (5 (66) ~ #9(6)] <

< |Wllor |6 = #5]o,» max |z| + ¢ max |t| sup || sup |6 — #5] <
T T T T
< cfefor [Wllesr2 10 = #0isr,r = clefoa]¥lissalolirsr =
s e elop [Wfirnr -
Further,
(88) |E(pras)| < |E(ead(y — #y))| + |E(xory)| .

In the same way as in (87) we get
(59) |B(eR3(0 — #9) = el [45]es 1.0 Wleo .-
From the B.-H. lemma and from (83) it follows that
|#0];0 < R0 — 6|0 + 050 S c|Siwrp S+ Y, 0SSk + 1.
Hence
(90) |#5];2 < ch**.
Substituting (90) into (89) we get

(on) B9 — 2] < o elons Wl
From the B.-H. lemma, from (73), (90) and (70) we conclude

(92) |E(xaot)|* £ c|thorp|ie, 2 <
d+1 2
< e Y|l [R0]0sj 0 £ RO Y RTH S g R -
Jj=0 Jj=0 i=0
It is easy to verify (we use the B.-H. lemma and the notation introduced in (80)) that
2% L K , k -
LAY i [ = (X 0 elia) (X A [g7e) <
=0 i=o =0 =0
k
< o[tlir {_Zoh~2j(l¢|f+1,r + [v72)}
I
< [ (0 Wleenn + )
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Substituting this inequality into (92) we get

(93) |E(raomyp)| < ch* ] p (h  Wesrp + [ber) -

From (86), (87), (88), (91) and (93) we obtain (84). The inequality (84) is an immediate
consequence of the inequalities (84) and (72). We prove now the inequality (85).
From (84) it follows that

(94) ]E<% ﬁé)' < ch” {h"“ ot ([1‘(“1) v oy ) "
J 6)2,' 5)@ ) |a)?j 0,7 52,’1(4»1,1‘ aﬁi k+1,T

w

0%,

Ll b
k+1,T 05&1 k, T

k
éz, Hl+1T—

+ hd+1 ljﬁ:' (h—k
0% Jr

while (80), (82) and (72) imply

k-1
= z hz‘]r]l+1 P = CZ h_z’]‘cll T -

Hence

(95) Iia_ax;_] Té Chhk“i'flh'r
e,

J

In the same way we get

(96) [a—‘/’]mé h¥]ees,r -

0%,

Substituting from here and from (95) into (94) we get (85). The inequality (85") is an
immediate consequence of (85).

We can now formulate the results concerning the isoparametric integration. We
remember that €, is supposed to be a k-regular triangulation of Q,. In the sequel
we assume that (66) is satisfied.

Theorem 2. Let w(x, t) e H"“(Qh) v(x, t) € Vi(), Vt € (0, T]. Let the quadrature
Sformula given on the reference set T be of a degree

(97) d=2k—1.
Then there exists a constant ¢ such that
(98) [E(wo)| < e [ wlls 0, 0] 1,00 -
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Proof. (79) and (15) imply
(99) E(wv) = Y E(v*w*J,).

et

It is casy to verify that all the assumptions of Lemma 7 are satisfied for » = n (this
follows from (74)). Hence, the inequality (84) may be applied. When substituting
the inequalitics (which can be easily derived from (78) and from the relation [v*]7 7 =

k
= |0*|¢ r + .lez_z"’v*],-zj):

(100 Iolos 5 e ol
(1o1) [WHlesr e S ch™2 T ],
(102) Iw*lesre = b2 wliss e,

(103 [¥r S ek,
(104 [¥r % a2l

into (84) and applying (97) then we conclude by simple calculation
[EQwro*J )| = ek o]y e [w]icrse
From here and from the Schwarz inequality (98) follows.
Theorem 3. Let b(x)e C**'(Q,), let u(x, 1)e H**3(Q) Yte (0, T] be a solution
of the problem (20) and ii(x, t) be an extension of the function u(x, t) satisfying
the condition (23). Let n(x, 1) e V(@) be the Ritz approximation of ii(x, t). Let

ve V, and let the quadrature formula satisfy (97).
Then there exists a constant ¢ such that

(105) [E(bno)| £ eh** ! ulliss,0]0]; .0, -
Proof. In the same way as in (99) we get

(106) E(bno) = Y E(n*v*b*J,) .

AN

Evidently D*b* = 0(h"*!) and D*J, = O(h"*1*)). (77) implies D*(b*J,) = O(h"*1*).
Hence, all the assumptions of Lemma 7 for % = n are satisfied. From (84') it follows
that

(107)  [E(b*n*v*J,)| = ch* (W Ho*o,p [n*[o,r + A [v*]i 2 [1¥]i2}
while (78) implies

(18)  [fo*fo.r = ch™[olloes [n*fo.r = ch™2{[ln = allo,e + itfo.} -

424



It can be easily verified that

(109)  [n*]ir = elln* = (medl)*Jr + [(mell)* = @* ez + [@*en] -

From (80), (72) and from the interpolation theorem (see (6)) we get

[n* — (mit)*Jer = ch™2|n* — (ma)*|5,r =
< ch 2 {{n* — @*[5.r + @ — (meil)*[,r} =
< ch™ 70 = a5 + PP all )
Hence
(110) [n* = (@) Jer = k™27 {In — o, + K airr ) -

Analogously we get

11y [(ma)r — a*lp = c\/(iéoh_””ngﬁ -

(112) [iler < ch 2|, .

z'z,e) _S- Cll_n/2+1HaHk+1,e ’

If we substitute from (110), (111) and (112) into (109) and use elementary calculation
then we obtain

(113) [z < ch™2{(h ™ [ = dfloe + [ii]csr.e} -
Substituting from (108), (103) and (113) into (107) and using (97) we get
(114) |[E(revb*Jo)] = eh ol e {7 n = dtlo.c + s s.e}

which together with (106), the Schwarz inequality, Theorem on Ritz approximation
(see (68)) and (67) yields

1E(b'l")] = Chk+1“”||1,ﬂ;.{h‘k”'7 - ‘7“0,9;, + ||‘7||k+1.n.,} =

ch“1“””1,9;.{11”“Hk+3-9 + uflss.0)

and the inequality (105) is proved.

lIA

Theorem 4. Let all the assumptions of Theorem 3 be satisfied. Then there exists
a constant ¢ such that

,
(115) E(p %2
0x; 0

[Ihaas}

< ch*? 1Hll||k+3,ﬂ Hleth :

Proof. Analogously as in (106) the following relation is true

* *
(116) E(p 212 =Y E(b* EAWE J. ).
0x; 0x;) et 0x;) \0x;
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From the rule on the composed function derivative it follows that

(117) E(oe (Y (2V )= v 8 on* ov* L D I
ox;) \ox;) °) wmti \0%, 0%, J,
(75), (76) and (77) implies
Dl(b*(.],(e"i).]gm’j))/-]e) — O(hlzl+n—-2) .

We may apply Lemma 7 (with % = n — 2) to the expressions on the right hand side
of (116). From (85') we obtain in the same way as in (114)

(118) E (7_7]_* E b Jﬁl')‘]_(emi)
0%; 0%, J,

< et Mol o {7 = allie + s} -

From here, from (117), (116), from the Schwarz inequality, from Theorem on Ritz
approximation and from (67) the inequality (115) follows.

Before proving the next theorem, we formulate Lemma 8 which is an obvious
consequence of Theorem 3 from [1], p. 436.

Lemma 8. If the quadrature formula on the reference set T is of a degree d >
> 2k — 2 then there exists a constant ¢ such that

(119) Zw,eg(ap(b,e)> > cp|}., VpeP., ec®,

(P, is defined in (3)).
We introduce the notation

(120) - lofi = (g(x) v, o)y [olli = ax(o, v)

where the forms (-, +),, a,(*, *) are defined in (31) and (32).

Theorem 5. There exist constants ¢, and ¢, such that
(121) a) cilofo,0, = [ols, VoV,
provided the quadrature formula on the reference set T is of a degree d > 2k.
(122 b) clthon < ol Wt
provided the quadrature formula on the reference set T is of a degree d > 2k — 2.

Proof. From (31), (16), (12) and from the fact that §* is a polynomial of degree
< 2k on T we obtain

el ZgOZm;nJ Zd)(u*)z(b)—gOmeJ J(u dg =

ecbn ectn
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min J, min J,
290 " (¥ J, d2 =g, ¥ -T— J o dx

ee%, max J, ecep Max J,
iy T

From (2) it follows min J,/max J, = 1/cj. Hence
7 T

bfi 2 %5 3 | v dx = 2 ol
Co ¢€%hn J o 0

and (121) is proved.

From (32), (18) and (12) it follows that
) " [ ov 2
Il 2 013 Yooy [ 2 000
eebn r i=1] 0X;

This together with (119) proves the inequality (122).

5. ERROR ESTIMATES IN ONE AND TWO-STEPS A-STABLE METHODS

Let us recall the notation introduced in (28). As we said in (34) the aim of our paper
is to derive error bounds for

)

A
S

(123) 120,000, = 4 = uilo.cnan, 1=

where u and u,, are solutions of the problems (20) and (33) respectively.
Let

(124) o=+ &

where 1/ = #(x, j 4t) is the Ritz approximation of the function &/ = ii(x, j At) (we
remind that & is an extension of u satisfying the inequality (23)).
From Theorem on Ritz approximation we get

(129) (0.0 = [# = w00, = eh[ufiss0-

It is evident that

(126) W = willo.gne, = [# = wilo.0, = [loan + [0 = ulfo.q, -
Hence it is sufficient to estimate error-bounds for

(127) e =nl —uj.

From (35) we get

(128) atnm, v) = (7™, v)o.n, — (G0 0)o.0,, YoeEV,.
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Hence
At 67( E ﬂlnerj, l)) = At( E [)’jfm+j, U)O,Qh - Al( E )0 o -
; j=0 i=0

If we add (g Z n"*, v)y q, to both sides of this identity and apply (124) then we get
(129) (G X o™, v)o,0, + At a( X pin™", v) =
i=o =0

- At( Z ﬁl "I:‘J, U)ngh + (n:n - w'\:l’ U)O,ﬂ,,

where
(130) TE'V" = gz (iju — 4t ﬁ_’ ~m+" > (,U’: = g Z aj£m+j .
From (31), (32) and (79) it follows that

(131) (z v)o o (Z U);. = E(zv) a(z v) ah(“, U) _ E( i i (32 E)u>

i,j=1 6xax

From here and from (129) we get

(132) (9 X an™ 7, v), + E(Gv Y, o™ ) + At a)( Zoﬂjn"’“, ) +
=0 =0 i=

+AtE<,il (Z:V: ‘72:]» -

= A1 Zoﬁjf’"”, )y + At E(v Zoﬂjf"‘“) + (1] — @}, v)o.q, -
J= J=

If we subtract (33) from (132) and take (127) into account then we come to the
identity

v v
(133) (9 Y aemtd, v), + At a( Y Bt v) =
=0 i=o

= () = o, v)o,0, + ALE( Y B;f™) — E(Go Y an™ ) —
j=0 i=o

n m+1
—aEf Y g, N e,
ij=1 ~ 0x;1=0 Ox;
Let us denote
(134) A7 = (g X e, Y fen),
=0 j=o
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(135) By = a,( ) pemtI, Y Bemt),
i=0 i=o

(]36) D} = (”'v” - o, Zﬁjﬁmﬂ)o,nh >
j=0
(137) Fy = E(Y B Y Bif"),
j=0 ji=o0
(139) G = E@ e Sa™).

(139) H:"=E<iél£7u[§:ﬁl Miﬁ, m“])

(140) Q" = AtF™ — G" — At H™.

The identity (133) is true for all v € V;. Hence it is also true for

-y

(141) v=>y B;e"tI.

0

[}

J

From this and from (134)—(140) we get for any s such that s 4t < T, s = v the fol-
lowing basic identity:

(142) S A+ MY B = Y DI+ Y O
m=0 m=0 m=0 m=0

Now, we estimate the expressions in (142) when one and two-step A4-stable methods
are used. From [11] and [12] it follows:

a) for one-step A-stable methods
(143) v=1, =1, ap= —1, , =1 —0, B, =0, 6 < % is any real number.

If 0 = % then the method is of the order ¢ = 2, in all other cases the method
is of the order ¢ = 1.

b) for two-step A-stable methods
(144) v=2, a,=0, ay=1-20, ao=—-1+0, p,=40+95,
l}lz%_zé’ BO‘:_—%O'{_(S’ 022: 5>0-

D=

From (134), (143) and (120) it follows that
=(g(e"*t — &™), (1 — 0) ™" + 6e™), =
(- O — (1 - 20) @, — O 2
= (1= 0) [ — 4(1 = 20) [e" 15 = H(t = 20) [e"[7 — 0le"fy =

= e - 4l
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Hence
s—1
Y AT = Hefh — e
m=0
From here and from (121) we have
s—1
(145 3 a7 2 elelin, — 4T
For v = 2 we find out by simple calculation that (see [11])
AY = (g(0e™? + (1 —20) ™" + (=1 + 0) &™), (30 + 0)e"*? +
+ (3 —20) et 4 (3 — 10 + 8) &), =
=307 + 0) " 2[5 — (0 = B) |e" i — 400 — 1)* + o] [e"]5, -
_ [0(0 _ 1) + 5] [:(ggm+27 8m+l)h _ (g£m+l’ gm)h] +

+5(0 — 1) lemt? — 2em + &

Hence

(146) T a1 2T (30 + )l - 0 - et -
~ (0 - 1)* + 8] |e"[s -
—[000 — 1) + 5] (ge™* %, &™), + [0(0 — 1) + 6] (g™, &™)} =
= SO 49— 0 -4~ {0~ 17 + 3] -
=T AT00 — 1)+ ] = [00 - 1) + 5T} e +
+ 307 +0) [l 5 + |efa] = (0 = H [ 5 + 3] -
=30 — 1)* + ] [|e°f + [e"[5] — [0(0 — 1) + 8] (ge%, &)
+ [0(0 — 1) + 5] (9", &%), 2 M — c,[laoﬁ + ]elli]

where

(147) M = (0% + 0) |&5 + 1[(0 — 1)> + 8] | s —

~ (@) & V(9) [00 = 1) + 6] &7 -

Let us suppose first (0 — 1) + 6 = 0. Then (147) implies
(148) M = H0* + o) |&5 .
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Let 6(0 — 1) + 6 + 0 now. Then using the inequality |ab| < 41a* + b*[2t for
T=1[00— 1)+ §]*/[(6 — 1)*> + &] we get

Y PR Cha V) R (TR
M:2{0+6 (0—1)2+5}||"~

1, _ (00 =1+ e
=0+ 5){1 000 - 1)+ oF + 5}| lr -

Hence the inequality (148) is again true.
From (148), (146) and (121) we get

(149) 3 A3 2 el — k0 + -
Both the inequalities (145) and (149) can be written in the same way as
(150 Tz allio - alef + R v =2,
From (135) and (120) it follows that

B = | % pem i

From here and from (122) we get

(151) ZOBT 2 ¢, 20| _20/3,8'"“ Tans V=12,
m= m=0 j=

Substituting (150) and (151) into (142) we get

S—v v
(152) o[G0, + ¢34t ZOI Zfﬁmﬂ 1o, S
m=0 j=
s—v s—v
sy oyl + Y lov + cl[]»soﬁ, + e, v=1,2.
m=0 m=0

From (136) and (130) it follows that

1
(159 98] = 17 = o0, | £ 5" o S

< (o + [68a] | 555" Lo

where
(154) = glamtt — am — Ad(1 - 0)artt + 0ap)],

o = gemt - em).
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In the sequel we suppose additionally that
l
(155) ?L’f(.gi;i)em(mﬂ(g)), I=1, g +1
t

where g is the order of the method and u(x, f) is a solution of (20). From the Calderon
theorem and from (154) we get

m+1 m
(156) [7Tlo.0n < cfum** — u™ — At (1 — 6) Ou + OaL .
ot 0t Jllk+3,0
a) Let g = 1 (i.e. 0 # 4). Then the Taylor theorem yields
aum+1 aum 1 62um azuxz
wmtt — ™ — At{(1 -0 +0-—)=-4t — (1 = 0) 4¢* .
<( ) ot at) 2 or? ( ) or*
Hence
(157) (77 0,0 = ¢ 4.

b) Let g = 2 (i.e. 0 = %). Then the Taylor theorem yields

m+1 m 3,,%3 3,,%4
u™tl —um — At (l—O)au Hai :lmﬂu —iAtf’?L--.
ot ot 6 or 4 or
Hence
(158) 77000 < ¢ 48

From (157) and (158) we conclude
(159) 750,00 S cdt®*t.

From (154) and (124) it follows that

wT — g[am+l —gm— (r]m+1 _ ’1“)] .

Obviously the function n™** — 5™ is the Ritz approximation of #™** — @™ Theorem
on Ritz approximation yields
(160)  [om = chHutt — wmyn g = el ar |
at k+3,2
Hence
(161) [ ]o,0, < ch*** 4t

(153), (159) and (161) imply

1
|DY| < ¢ Ae(ait + B | Y B o0, -
j=o0
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In the same way an analogous inequality may be derived for v = 2. Hence

s

(162) DM < ¢ Ai(At + Y)Y [ Y B omns v =1,2.
=0 m=0 j=0

From (140) we have

s—

(163 S lor] 40X |erl + X oz + 40Kzl
m=0 m= m= m=

From (137) and (98) (supposing (97)) we obtain
[F] < b Y B s | 2 Bie™ 10 -

i=o =0
From here, from (24), (23) and (22) we get
(164) YIF z e Y Y B0 -
m=0 m=0 +j=0

(138) and (105) (under the assumption (97)) imply

(165) IG’v"I = Chk““ > “f“mj“kn,ﬂ “ > /31’3"'””1.0,. .
j=0 j=0

We estimate now || Y, aju™ ||, ;5 o for v = 1. From (143) and (22) it follows that
j=o

ou’e

ot

1
(166) I _Zo“i“"'ﬁ“kﬂ.ﬂ = [u"" = ufiiz0 = 4t Scdr.
-

k+3,2

In the same way for v = 2 it follows from (144)
2
(167) I au™ i |yss0 = [0um2 + (1 = 20)u™* + (=1 + 0) u™|4s3.0 <
ji=0

S Ofum? — w0 + L= 0] 0™t = um[iss0 < c 41

Substituting (166) and (167) into (165) we get

|Gy £ ¢ At B iﬂjamﬂul,m, v=12.
j=0

Hence
168 G| S cdth emtil L, v=1,2.
(168) Y l6v Y X B
m=0 m=0 j=0
From (139) and (115) it follows that

]HT[ = Chk“” Zﬂfu'””llm,n || z‘bﬂﬁmﬁ”l.nn-
=0 i=
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" Hence
(169) IR D 1P
: m=0 m=0 j=0 o
Substituting (164), (168) and (169) into (163) we get
(170) LIV s et Y Y Bt g, -
m=0 m=0 j=0
From (152), (162) and (170) it follows that

(171) le°16.a, + 41 Z ] Z B i, <
< cfdr( et + BT ZO” ,Zolfﬁ””Ho,m +
AT B+ O+ ) 5
< c{Ar(Ar? + hFTY) Z:ollsmno,m +

s=v v
+ At h"“mgolj;oﬁjs"'”ll_g,, + [0 + e .

Using the inequality

2+lb2

1
172 bl £ -1
(17) |a[_2 27

for 1/2t = 1[c we get

c At hk+1 Z|2ﬂ8m+_,ll . S ¢ Z [ T At h2(k+1) + Atl Zﬁ8m+j f.ﬂh:l §

s—v v

< C4_Th2(k+1) + At Z I Zﬂsm+j f,!);.-

m=0 j=0

If we substitute this inequality into (171) then we obtain
s—1
(173) [°l3.0, = c{ae(de + ) [[&]o,a, + T [e]o,0,] +
m=0
+ h2(k+l) + |80|i + lav—lli} X
Using the inequality (172) for © = ¢ we get

2
cAt(At“ + hk+1) ”85”0,9" < AtZ(At" + hk+1)2 + l ”85”39 )
2 »h

c
2
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If we substitute this inequality into (173) then we obtain
(174) &3 .0, < c{an(4r + h"“)si;]|a'"||o,Qh + AP(A1 + W) 4
bR [
When using the inequality (172) for T = ¢/2 we get
A4t + WS [0, S €T {%‘c aare 4 0+ L |4gm||g,gh} <

T k+1)2 S 2
=, (41" + K1Y 4 A Y 65,0, -
m=0
From here and from (174) it follows that

(175) [0, < (4t + 100D 4 |

s—1
F )+ 4D [
In [9] (see Lemma 2.1, p. 396) the following lemma is formulated:

Lemma 9. Let &, ¢, y be nonnegative functions defined fort = jAt,j =0,1, ...
..., M and let y be nondecreasing. If

s—1

(176) ¢S+¢s§x‘+cdtz¢m, s=0,1,..,. M,
m=0

where ¢ is a positive constant then

(177) D+ P e, s=0,1,.., M.

For the proof see [10].
Applying (176) onto (175) we get

[e5]3.0, = (4822 + B2EFD 4[] + [ 17) &'
~ Hence

(178) e ]lo.0n S c(41% + B 4 |2, + |77 1],) -

Now we are able to formulate the result

Theorem 6. Let u(x, t) be a solution of the problem (20) such that u, d'u[ot' €
e L*(H**3(Q)), 1 =1,...,q. Let 6, be a k-regular triangulation of the set Q,
where k is a positive integer such that k > nf2 — 1. Let a quadrature formula on
the reference set T for calculation of the forms (-, *)o.q, and @(-, +) be of degrees
d =22k and d = 2k — 1, respectively. Let a given v-step time discretization
method be A-stable and of an order q. Let v = 1 or 2.
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Then the discrete problem (33) has one and only one solution u,(x, 1) and there
exists a constant ¢ independent of t and h such that

(179) Jut = ul

oaanin S (A1 + B4 [+ ).

Proof. The existence and uniqueness of the solution u, is a consequence of A-
stability and Theorem 5. The inequality (179) is a consequence of the inequalities
(126), (125), (123) and (178).

Remark 1. From (179) we see that L,-norm of the error is of a magnitude of the
order 41 (g = 1, 2) with respect to 4t and of the order h**! with respect 1o h.

Remark 2. According to our result, for 1-regular triangulation (i.e. for linear
isoparametric elements) the quadrature formula on the reference set T for calculation
of the forms (+, *)y o and a(+, +) must be, in general, of degree 2 and 1, respectively.
It can be proved that using the quadrature formula

(180) j o(2)dt ~ ™51 10(0,0,...,0) + 9(0, 1, ... 0) + (0,0, ..., 1)]
T n

(which is of degree 1) for calculation of the form (-, )y o We obtain the same estimate
as in (179). In this case the mass matrix is diagonal. In the ingeneering literature this
effect is called the mass lumping.

Remark 3. For the three-dimensional space the simplicial curved elements have
no practical use. For such case the theory using quadrilateral elements must be
developed. We are working on this problem now.
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Souhrn

RESENI PARABOLICKYCH ROVNIC METODOU KONECNYCH PRVKU
JosEr NEDOMA

V dosud publikovanych pracich o feSeni parabolickych rovnic metodou konec-
nych prvki jsou odvozeny odhady chyb budto pro ptipad kdy sjednoceni koneénych
elementl (rovnych nebo kfivych) pfesné pokryvd danou oblast (tak je tomu napft.
ve Zldmalovych pracich) nebo pro pfipad kdy sjednoceni konecnych elementi
(ktivych) pokryva danou oblast jen pfiblizné (tak je tomu napt. v Ciarlet-Raviarto-
vych pracich). V prvém pfipade jsou odhady odvozeny pro plné diskretizovand (tj.
v prostoru i ¢ase) pribliznd feseni. Neni viak brdna v tivahu chyba zplsobena nume-
rickou integraci. Ve druhém piipade¢ je sice uvaZzovana i chyba zpiisobend numerickou
integraci, odhady jsou vSak odvozeny pouze pro semidiskretni (nediskretizovand
v Case) pfibliznd feSeni.

V této prdci jsou odvozeny odhady chyb pro plné diskretizovana feSeni a pro libo-
volné kfivé oblasti. Jsou odvozeny pozadavky na stupen presnosti kvadraturnich
formuli tak, aby numerickd integrace nezhorSovala optimalni fdd konvergence v L,
normé& dany metodou koneénych prvka. Obdrzeny vysledek je ndsledujici: Jestlize
metoda koneénych prvki je fddu k + 1, potom k tomu, aby se numerickou integraci
fad nesnizil, je tfeba pouzit pro vypocet integralti, ve kterych vystupuji samotné
funkce, kvadraturnich formuli stupné pfesnosti aspoil 2k a pro vypocet integrald,
ve kterych vystupuji derivace funkci kvadraturnich formuli stupn¢ pfesnosti aspon
2k — 1.

Prdce je rozdélena do péti ¢dsti. Vprvé Cdsti je konstruovdn prostor konecnych
elementil. Vychdzi se zde z isoparametrické tfidy simplicidlnich elementt definované
Ciarletem a Raviartem. Dlivodem k tomu je, Ze bylo tak mozné beze zmény prevzit
interpoladni teorém odvozeny té€mito autory. ObdrZené vysledky lze odvodit i pro
jiné elementy, pokud ovSem zlistane zachovdna platnost interpolacniho teorému
ve tvaru uvedeném v (6).
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Ve druhé &adsti je formulovdn problém a cil celé prdce. Zdkladrni parabolicky
problém je definovén ve (20) a to pfimo ve variaénim tvaru. Pfedpoklddd se,Ze &tendfi
je dostatecné zndmo, jak tento variaéni parabolicky model souvisi s modelem klasic-
kym. Z metodickych divodil je v (26) formulovan pfislu§ny semidiskretni model,
tj. model diskretizovany metodou kone¢nych prvkt vzhledem k prostorovym pro-
ménnym. Ve (33) je formulovan plné diskretni model, tj. model, ktery vznikne ze se-
midiskretniho modelu diskretizaci vzhledem k ¢asové proménné. Pro tuto diskretizaci
je pouzito v-krokovych linedrnich metod.

Ve treti ¢dsti je odvozena véta, kterou jsme nazvali vétou o Ritzové aproximaci.
Ritzova aproximace se ukdzala byt velmi silnym prostfedkem v dalSich dikazech
a proto je ji vénovédna tak velkd pozornost.

Ve &tvrté &asti jsou odvozeny odhady chyb pii pouziti isoparametrické integrace.
Piesto, Ze vysledky jsou formulovany s prihlédnutim k jejich dal§imu vyuZiti pro
nase ucely, maji obecnéjsi charakter a platnost.

Konetné v pdté, zdvérecné Cdsti jsou provedeny odhady chyb v pripadé, kdy pro
casovou diskretizaci jsou pouZity A-stabilni jedno nebo dvoukrokové metody.
Podminka A-stability je zde podstatnd. Findlni vysledek celé prace je pak formulo-
vdn v zdvéru paté ¢dsti ve vEté 6.

Author’s address: RNDr. Ing. Josef Nedoma, CSc., Laboratof poditacich stroji VUT, Trida
Obréancl miru 21, 602 00 Brno.
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