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0. INTRODUCTION

This paper deals with the optimization of total setup plus inventory cost of the
multistage inventory-production systems by the lot sizes choice. A certain class
of multistage single-product inventory-production systems in which the production
stages are arranged in series and the production rates of the individual production
stages are finite, fixed and generally different, is described in Section 1. The assump-
tions include an infinite horizon, constant continuous final preduct demand and time
invariant lot sizes. Some special cases of systems of this class are those estimated
by Thomas [8], Schussel [5], Taha and Skeith [7], Crowston, Wagner and Williams
[2], Streck [6], Klapka [4] and others. These special cases are shown in Section 2.
The problem of the cost optimization of such systems is formulated in Section 3
where the methods are also mentioned that the above authors have used to solve
the individual systems. For large-scale systems it appears to be useful to have an
apriori estimation of the minimal cost in the form of its analytically expressed
lower bound. (An upper bound can be obtained in a trivial way.) In the present
paper this lower bound is derived for the class of systems under consideration.
For this purpose, first of all, in Section 4 a choice is made of a system from the above
class, the optimal cost of which is minimal. The exact cost optimization of the system
thus selected, presented in Section 5, is based on dynamic programming. Some
elements of this solution are employed in Section 6 to derive a lower bound of the
optimal cost of this system (Theorem 3). Another representation of this lower bound
based on dynamic programming, which provides a clearer view of the proof of
Theorem 3, is presented in Theorem 4 and in the Corollary. Some elements of the
proof of Theorem 3 are employed in Theorem 5 to derive a simple formula for another
lower bound, more or equally distant from the optimal cost. In the case of special
conditions imposed on the production system, the said formula turns into a formula
derived for this case by Crowston, Wagner and Williams [2]. Section 7 brings the
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results of some simple numerical examples of the exact cost optimization by the lot
sizes choice and of the lower bounds of the optimal cost. The main results presented
in this paper were reported by the author in the seminary [11] held on April 8, 1975,
during his stay at the Universita di Pisa.

1. SYSTEM DESCRIPTION

The system under consideration consists of production stages sy, S5, ..., S,—
(m = 2), a consumption stage s,,, intermediate stores ay, a,, ..., a,_y, an input a,
and an output a,,. Suppose the system processes a product the quantity of which is
measurable by non-negative numbers. Each stage s; (i = 1,2, ..., m — 1) is charac-
terized by a cumulative production V(t) defined for time t € (— oo, + o0), the stage
s, being characterized by a cumulative demand ¥,,(f) defined for te(—oo, +o0).
The meaning of the cumulative production and the cumulative demand is defined
by the following two properties of the system:

1. The product flows through the system in such a way that during a time interval
[t,1 + a] for a =2 0, te(— o0, +o0) the quantity V,(t + a) — V(r) of the product
flows away from a;_, through s;into a; (i = 1,2, ..., m).

2. The quantity of the product in the store a; (i = 1,2, ..., m — 1) at an arbitrary
time ¢ is equal to V(f) — V;,4(t). No other product flows occur in the above system.

In this paper we consider the class of systems characterized by the cumulative
production and the cumulative demand defined later in Definition 2 under the condi-
tions defined in Definition 1. For such systems the production rates y; (i =1,2,...
..., m — 1) of the individual stages and the consumption rate y,(0 < y,, < y; < ©
fori=1,2,...,m — 1) are given.

Definition 1. Let R,, be the set of all vectors %,, = [xy, x5, .. ., Xn] such that for
given A, B, 4(0 < A < B < 0,0 < 4 < B — A) it holds

(1) x;eX =[A4,B]n{4,24,34,...} (i=12,...,m),
(2) Xip1=Nx; (i=1,2...,m—1)

where

(3) N,eSnP,nT,

for

4) S={1,2,3, ..:5L%% ...}, Puoy =T, ={1},

1
i
Pi:(O,oo) (i=1,2,...,m—2),

T; for i = 1,2, ..., m — 2 are given sets of nonnegative numbers chosen so that
there exists at least one X,,,.
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Definition 2. For each %, =[xy, X5, ..., X, €R,, te(—o0, +o0) we define
a sequence {V(1)}1_ of functions by

) V(t) = [p.] x + min { (r ) y,}

where £; = [x{, X3, ..., X;|, pi = (t = 1(%))) ym/xi, [Pi] is the greatest integer less
than or equal to p;, py(%,) = 0, p(%;) for i = 2,3, ..., m is a given nonnegative
Sunction such that V,_ (1) = Vi(t) for all t e (— 00, + o0) (no backlogging is admis-
sible). Especially, let us denote by 1{”(%;) the p,(%;) that for each fixed %; takes the
smallest possible value.

Note 1. The typical shape of function V(r) considered in Definition 2 is depicted
in Fig. 1. (5) implies that for the stage s; (i = 1,2, ..., m — 1) the time interval
of its activity (during which the product flows through s; with the production rate y,)
with the duration x;[y; alternates periodically with the time interval of its inactivity
(when the product does not flow through s;) with the duration x,((1/y,) — (1/y;)).
It is apparent from (5) that the consumption stage s, is active continuously with the
consumption rate y,. (To allow the consumption to be discontinuous, the same
description can be used e.g. if we interprete s,,_, as the consumption stage.)

V(t)

— (%) -

Fig. 1.

Note 2. The quantity x; is called the lot size of the stage s;. The condition (1)
means that each lot size is an integer multiple of a given batch size 4 (given c.g. by
the transportation technology). A and B are the minimal and maximal permissible lot
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sizes, respectively. The conditions (2)—(4) imply that the lot size x; is an integer
multiple of x;_; or x;, . The experience shows (cf. e.g. a note in [2] concerning the
unpublished experiments of Jensen and Khan) that high average inventories result if
(2)—(4) are not satisfied. This concerns, for example, the system for which x;/x;,
is a rational number. A cost optimization of such a system is described in [12].

Note 3. It can be easily found that x{”(;) exists, that {V,(t)}, is well defined and
that the function V(f) — Vi, (1) (i = 1,2, ..., m — 1) is periodic with the period

(5a) T(i) = — max {x;, X;1} -

Note 4. An optimization of some systems with another type of cumulative produc-
tion and cumulative demand, different from (5), has been estimated for m = 2 e.g.
by Giannessi [3] and Manca [10] who involved some stochastic aspects, finite time
horizon and time dependence of lot sizes.

The cost of the process studied in the present paper consists of a fixed charge per
lot and a linear inventory carrying cost. Let Cy;, C,; (i = 1,2, ..., m — 1) be given
finite constants for which C,; >0 (i=1,2, ...,m — 1), C; ;41 > Cy; >0 (i =

=1,2,...,m— 2). The beginning of each activity interval of s; (i =1,2,...,m—
— 1) calls forth a rise of the setup cost Cy;, the presence of the product unit at the
store a; (i = 1,2, ..., m — 1) per time unit calls forth the inventory carrying cost

C,;. Although the theory given in the present paper is developed for y; > y,,, C;; > 0,
it is very easy to extend it to the case y; = y,, C;; = 0. However, the validity of con-
ditions y; = y,,, C;; = 0 may already now be assumed in Sections 3, 4 and 5.

2. SOME SPECIAL CASES

The class of inventory-production systems just described includes systems which
differ mutually by various definitions of p,(£,) (i = 2,3, ..., m)and T; (i = 1,2, ...
,m — 2) and by special additional conditions imposed upon the system. Some
inventory-production systems hitherto studied can be viewed as special cases of
systems of the above class.
For example, in [8] a system has been investigated in which T; = (0, o0) for

i=12,...,m— 2and
I R R R Sl e LS ]

Yi-1
(i=23....,m
where

(7) . 1()—{0 (x £0)

(x > 0)
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((6) implies that the stage s; (i = 2,3, ..., m) starts its activity only when the
quantity x; of the product is present in the store a;_).

In [5] and [7] the case has been investigated where T, = (0, 1] for i = 1,2, ...
...,m—2and

(8) (% =i et (1=2,3,...,m).

((8) means that the product flowing away through s;_; is not moved to s; until the
whole lot of size x;_ is completed in the store a;_,.)

References [2], [4], [6] deal with the case p(%;) = p{”(%) (i =23, ..., m)
where the stage s; (i = 2,3, ..., m) starts as soon as possible. Simultaneously, for
i=1,2,...,m— 2itholds T; = (0, c0)in[4] and T; = (0, 1]in [2]. In [6] a simple
case is studied where m = 3 and one integer b is given (I < b < m — 2) such that
T, = {1} for all i # b, T, = (0, 1].

3. COST OPTIMIZATION PROBLEM
A problem the special cases of which were solved in [2], [4], [6], [7]. [8]. can be

substantially formulated as follows. For given 4, B, 4, m, {y;}1= 1, {C .} 1=, {Cai} 15
{T3=0 (i )}i-n, find

9) F(20, h(£07)) = min F(&,, h(%,))
Xm€Rm
where
m—1 y C . t+T(i)
(10) F(,(',”, h('ﬁy:)) = Z Cli = + —_2—' (I/,(T) - VH-](‘C)) d’L’ N
i1 x; TG ),
(ll) h("’ém) = {ﬂ:(fl)};ﬁ:z s

where (%;) (i = 2,3, ..., m) co-determines V(1) according to Definition 2 and T(i)
is given by (5a). Because R, is finite, F(£{”, h(%{")) exists.
It follows from (1)—(4) that for each %, € R,, there exists a positive x such that
~x[x; (i = 1,2, ..., m)is an integer. Thus x/y,, is the period of each function Vi(f) —
= Vigs(t) (i= 1,2, ..., m — 1), therefore (x[y,) F(%,, h(%,)) is the cost related
to one period x/y,, of the process considered. Thus in (9)—(11) we deal with the
minimization of the time averaged process cost related to the time unit by means of
lot sizes determination. For individual systems this problem has been solved by the
authors mentioned in Introduction. Thomas [8] and Schussel [5] have used heuris-
tic approximate iterative procedures to this aim. Taha and Skeith [7] have solved
the problem for the case x;/x,—y < yi/y, (i = 1,2, ..., m — 1) by substituting all
%, € R, into F(%,, h(%,)). The dynamic programming algorithm has been derived
for the general case by Klapka [4]. Two years later Crowston, Wagner and Williams
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[2] have derived a dynamic programming algorithm for the special case y; = ;4
(i=1,2,...,m — 1) (cf. Note 3 in Section 5). In Section 5 we present our above
mentioned algorithm [4], some analytical expressions from which we shall employ
when deriving a lower bound of the optimal cost in Section 6. Most of the above
mentioned authors have replaced condition (l) by the condition x; > 0 (i =1,2, ...
..., m) without presenting any proof of existence of a solution of the corresponding
cost optimization problem. An extension of the problem (1)—(5), (9), (10) to a multi-
product sequencing case is presented in [4], an extension to the case of multistage
assembly system is presented in [4a]. Other extensions and generalizations (nonlinear
cost, backlogging etc.) are reviewed in [2].

Note. It can be easily found that a change of any 1/(.) by adding a positive con-
stant does not influence £. The fact that constant delays do not alter optimal
policies of lot sizes is also mentioned in [2], [7] and [9].

4. MINIMAL SYSTEM CHOICE

Let us find a system inside the class described in Section 1, the optimal cost of
which is minimal. It is easy to find (by considering the magnitude of the set R,,)
that such a system pertains to a set of the systems for which T; = (0, 00) (i = 1,2, ...
..., m — 2). It remains thus to make a choice of a sequence h(%,) minimizing the
optimal cost. To this aim we present the following theorem.

Theorem 1. Let M be the set of all h(.) defined for a given m by (11). Let H(%,,) =
= {WO(2)}7, where p{?(&)) is defined in Definition 2. Then the functional F(%%,
h(£)) defined in (9) satisfies min F(3, (%)) = F(£4", H(%()).

heM
Proof.
(i) Definition 2 implies that H(.) e M.
(ii) Foreach %, € R,,if wedenote £,, = [Ri, Xis1> Xin2, - ooy Xp] = [Ris1s Xiv2s oo

. .5 X,y], it can be easily derived from Definition 2 that
(12) #E?l(ﬁiﬂ) - .“(io)(’%i) < My 1(2i+1) - .Ui()?i) for i=1,2,...,m—1.

m—1
(iii) From (10) it follows that F(&,, h(%,)) — F(£. H(%,)) = ym Y. Ca: -
i=1

-(#i+1()?i+1) - /‘(i(-)l-)l(xi+l) - ﬂi(’ei) + :u(iO)(-Qi))-
(iv) Hence with respect to (12) we obtain

K FE®, H(EO) £ FED, W)
(V) (9) implies
9 F(E40, H()) = FRD, H(ED))

Theorem 1 follows from (13) and (14).
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To obtain a lower bound of the optimal cost for the class of systems under con-
sideration, it is now sufficient to find a lower bound of the optimal cost of the system
for which T; = (0, o0), h(.) = H(.).

Let us now denote

(15) E = F(£", H(z{M))

for T; = (0, 0) (i = 1,2, ..., m — 2). The following section deals with the deter-

mination of E, £,

5. DYNAMIC PROGRAMMING SOLUTION

This section is an extension of a part of the Research Report [4] of the author.
Here, as well as in Section 6, the notation introduced in the previous sections is
used except that £V is denoted by £;. Using the following definition we shall prove
Theorem 2 that gives an algorithm for the determination of the optimal cost E and

of the optimal lot sizes policy {x,}7_".

Definition 3. L(x;) is a set of vectors defined for each ie{l,2,...,m — 1},
x;eX,sothatK; = [Ky, Kiiv, ..., Kpo1] € Li(x)) iff K, € S, for eachne {i, i + 1,
....om — 1} where S, = S 0 P, 0 [A[x,, Blx,] 0 {4]x,, 24]x,, ...}, X, 11 = K;Xp,
m is fixed.

Theorem 2. For a sequence of functions {f,_;:(x;)} (i=1,2,...,m —1)
defined for x;€ X by

m—1
(16) fm—i+1(xi) = Tl(n Zgn(xn: Kn)
i€Li(xi)n=1i
where
(17) G K2) = S 4 x,Consgn (1 — K,) [By — KoBysy +

n

+ D,min {1,K,} I(D,sgn (1 — K,))],

(18) sgn (x) = {-1 (x < 0)

+1 (x=0)’
(19) m=1(L—i>gO(n=LL””m,
2\Vm  n
(20) D,=2By;—B) (n=12...,m-1)

and where I(x) is defined in (7), the relations

(1) fuoisi(x) = min [gi(x, K)) + fu-dKix)] (i=1,2,...,m =2),

KieSq
~
(’1 ,m—1

(22) fl(xm—l) = + C2,m—1Bm—1xm—1

Xm—1
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and
(23) ym min fm(xl) = E

x1eX
hold.

Proof of (23). With respect to (17) and (16), it follows from (5), (9), (10), (15) and
from Theorem 1 that

m—1 m—1
(24) E =y, min Yg(x,x;,/x;) =y, min min Y g(x,K;) =
Xm€Rp i=1 x1eX RieLy(xy) i=1
=y, min f,(x,).
x1eX

Proof of (21) and (22) follows from (16)—(20) by the Bellman principle of opti-
mality [1].

Note 1. Computational efficiency. The time required for the calculation
of E, {x;}7=' by the algorithm (16)—(23) on the computer DATASAAB D 21 is
approximately

(0-002((B — 4)/4)* + 0:07(B — A4)/4)(m — 2) seconds.

Note 2. Extension. In our Research Report [4a] we have extended the algo-
rithm (16)—(23) to the case of a multistage assembly system where each production
stage may have many predecessors but only a single successor. The optimal cost deter-
minations for systems of this type have been hitherto solved in [ 5] by a heuristic appro-
ximate iterative procedure and in [2] in an exact way under the restriction that the
production rate of a current stage must be greater than or equal to the production
rate of its successor stage and that the lot size of a current stage must be greater
than or equal to the lot size of its successor stage, and for the case of infinite produc-
tion rates.

Note 3. In the special case y; = y;4; (i=1,2,...,m—1), T, = (0,1] (i =
=1,2,...,m — 2), studied by Crowston, Wagner and Williams [2], the system
(21), (22) can be transformed into an equivalent form

Fuiea(x) = hix;) + min Su-dxivr) (=1,2,...,m—2)
}

Xi+1€Xn{xi,xi/2,xi/3,...

where
{_€£+&(C2, C21—1)<i‘l> (i=23...m=1)
X; 2 Vm Vi
h,(x,) =J| 1 1
l—c—“+iczl‘(—_“‘> (121)’
X; 2 Ym Vi

fZ(xm—l) = hm—l(xm—l) .

In this form, the system has been derived in [2].

88



6. LOWER BOUND OF OPTIMAL COST

From the view-point of the computational efficiency, for large (B — A)/A it is
useful to have an apriori estimation of E in the form of its analytically expressed
lower bound the computational time of which does not depend on (B — A4)/4.
(The upper bound can be trivially obtained, e.g. by calculating E from (16)—(23)
while replacing each S; (i = 1,2, ..., m — 2) by {1} or by another subset of S,.
An analogous rule can be obtained for the upper bound of F(£{”, h(%\")). The upper
bound can be also obtained by involving a greater A4 than in the case of an exact
solution.) In the case of finite production rates, a lower bound of the optimal cost
has been hitherto derived for the special case y; = y;y; (i=1,2,...,m — 1),
T,=(0,1] (i=1,2,...,m —2), h(.) = H(.) only, where it is obvious from
specializing (23), (16) that the optimal cost can be written in the form y,, min.

m-—2 L2m€Rm

. {(Cll/xl) + Xl(C21,/2) ((I/Mn) - (1/)’1)) +igl[(cl,i+1/xi+1) + (xi+l/2) (Cz,i+1 -

— C) ((1/y,) = (1]yi+1))]}- Crowston, Wagner and Williams have found a lower
bound of this cost (see [2], Section VII) by simple minimization of the individual
terms, assuming no interdependence between the successive terms. Their lower bound
that they have employed in a special way to improve the computational efficiency
of the dynamic programming algorithm is a special case of our lower bound given
below in Theorem 5. An additional improvement of these computational refinements
could be materialized through some increase of the lower bound. In the present
section in Theorem 3 we shall derive a lower bound related to the general system,
which in the above mentioned special case is greater than or equal to the lower bound
derived by Crowston, Wagner and Williams. The property just mentioned follows
directly from Theorem 5. With respect to the convexity of the function g(x;, K;)
in a connected region, our results make it possible to employ the basis of the com-
putational efficiency improvement idea of Crowston, Wagner and Williams also
in the case of a general system, as can be easily found.

Note. To this aim, we can begin with the determination of an upper bound
E,—i+1(x;) of f,—i+1(x;) we have demonstrated in [4a]. It consists, substantially,
_ in a heuristic reduction of the elements of the sets S;. It appears that E,,_;, (x;) —
(lower bound of optimal cost of the subsystem involving the stages s, 1, S;125 - - -» S
and the stores a;{, d;14, ..., a,—;) = upper bound of g,(x;. K;). The knowledge
of an upper bound of g,(x;, K;) leads to another reduction of S; in such a way that
the reduced S; contains the optimal K;.

Theorem 3. We consider the function

m=2

(25) El = Vm ZOAn >
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where

(26)

P \/(é(x),](x)) ((1(2’ <y A 4D = /1(2)) VB = 0)
Ay = 2 J(END) (0 <70 A AP = 22) v D+ 4D)

0 (otherwise)
while
(27) o W A =02, v=1,2; nx=1.
B G A2
These quantities are defined by the relations
(28) W = (EPMON 2 v=1,2; n=01,2,....,m—2,
(29) 2600 =2, M0, =22, (A" and A2, are arbitrary constants),
(30) 57(11112 = f,(”zlz =Cim-1> ’ly(nl) S)z nr(nZ)Z = O‘fnz)z,

(31) (l) = n+l(C2n + C2 n+1) 2) = CZ,n+IBn+l + CZn(Dn I(Dn> - Bn+1)
(n=1,2...,m=2)),

32 , Cy. ) )
(32) [Cre s 000, 1]( LS G A 00> 0 8 A = 42

C + &R
o x(2) (v) (2) (1) \2 1,n+1 n+1
[é(v)’n(v) lslv)]: [Cl,n+l + én+15 oy, + Mnt1s 2] ((yn+ 1) (v) + 11(2) é

(n=1,2,...,m—3)

(2) \2 (1 2
= (Vn+)1) /In+)1 = Afx+)1>

[Cymers o, 3] (otherwise) ,
. (33) [Civs 9] (% SOP)P AY >0 = Aﬁ“)
1
)= | e+ 0] (007 < S8 < o
=&, n6] = l A~ }(2)>
[Ci1s CayBy] (otherwise)
where
(34) 8" = CpByyy — Conyi(Busy + Dysy I(=Dyyy))

61(12) = CZn(Dn I(Dn) - Bn+1) - C2,n+1(Bn+1 + Dn+l l(—'Dn+l))
(n=1,2,...,m=3),
(35) 9, = —Cy[B, + D, I(—=D,)] (n=1,2,...,mg—2).
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‘The inequality E; < E holds for this function.

v = 1, 2) are defined uniquely, which is easy to show. (28)—(35) imply 0 < yi" < y{»
forn=0,1,...,m — 2. Using (22) for all x,,_, > 0, let us denote

‘(36) (pl(xmf 1) = .fZ(xm‘ 1)

and define recursively for i=m —2, m—3,...,1, x; >0 the functions
(/)m—i+l(xi)’ L l(xi) by the expressions

(37) (/’m—i+1(xi) = min [gi(xh ki) + ¢m~i(ki xi)] s

P 1)) (Y = 247
(38) ¢trz-i+l(xi) = l ( )+ ZA (;(1) + /(2))

n=

Proof. A4, &, nP(n=0,1,...,m—=3,v=1,2)and A" (n = 1,2, ..., m — 3;

where ¢ = (0, ), g(x;, k;) is defined by (17) for all x; > 0, k; € 0. We can justify
inductively that the function g,(x; k;) + @,_(kix;) (i=m—2,m—3,...,1)
is strictly convex in o, has a continuous first derivative and a unique minimum.
Consequently, the system of Egs. (37), (38) (i = 1,2, ..., m — 2) has a unique
solution which is

09)  pamse) = ol =) =l NS
Xi
+ [nilxi) = 8 + CB 1 = 910) = nilx) Ix; — ¥)} + +Zﬁ A¥(x) +
+ _mi A,
40) @, (k) = St (i = 317) = Ui = 91)) &2

X

i

xS+ [0 = 9, + CuBll(o — 1Y) — 1P o, = ¥P)} +

m—2
Af(w) + Y A,,

n=i+1
(1) (1)
))l / i X < '}’, )
(41) ki =41 (V‘” <x; 29,

7lx (P < x,~),
where

(42) . jz{z (i=m=2),

3 (i<m=2),
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(43)

(1) 2
Cinti (x S Vnri . o
2
Cn(xi) =9Cn+1 + €n+1(x) (7";1 <X =) el 4+ 11,.+,(x,~) =
(n=i,i+1,..., m—3) C],n+1 »);fl+)1 < X,') 0(5.2) ]

Il

nn(xi) >
émfz(xi) = Cl,mfl 5 nnx—Z(xi) = O(1(71212 >

and
() Ax(x) =
Jz JEDRD) (x 90 A (G < Wy AnED)Voa ki

2 /(e2n?) ((y(z) <xin (OGP = YW AnFi))vn+i
0 (otherwise) ,

(45) o= (1 = 1)

+ 0 (/1(1) + ;[(2))

>

1@ < 40)
2 1
2 ) < y( )

>

It follows from (39) that the function @m—i+1(x;) is for x; > 0 strictly convex and
has a continuous first derivative for which

i i d m— i C i
(46) [42nin =Q@—9a[¢;ﬂ1 < CBi — 3
dX[ xi>7i(2) x? dX,- x; <y X

i

From (39), (40) and (46) we obtain

d(pm~i d m—i
(47) [(pm-—i—Fl(Xi)]xi;y.-(z) = (pni—i+1(-xi) > [*—H‘J = [Lﬂ] .
x; <7y x;<7:(2)

dx; dx;
From (47) it follows
(48) By s 1(x) = Gmoiia(x) (x> 0).
The inclusions S; = 0, X < (0, o0) together with (36)—(38), (48) and (21) imply

(49) Dy ii1(x) £ frmiia(x) (xi€X)

fori=1,2,...,m — 1. For x; > 0 the function @,(x,) is strictly convex and has
for

(50) xy = y§)

the unique minimum equal to

(51) min @,(x,) = ZA .

x1>0

From (23), (25), (49) and (51) we conclude E; < E.
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The following theorem yields another representation of the lower bound based
on dynamic programming, which provides a clearer view of the structure of the lower
bound expression.

Theorem 4. The function ®,(x,) which determines the lower bound E, of the
optimal cost E through (37), (38), (51) and (25) is a solution of the dynamic pro-
gramming problem

(52) Do igy(x;) = rknin [Gi(xi, ki) + @ i(kix))]

a

(x,->0, i = 1,2,...,m—2),
¢2(x1n—1) =f2(xm..1),

where
gi(xis ki) (’121) = 15'2))
(53)  Gilxi ki) =1 C0i o L IB, + k(D, (D)) — Biu))] (A0 + 4),
X

i
whose unique optimal policy is
(0% (5, 580 8 A2 = 20
k=1 G < xS A A = 22)
]\y(iz)/x,v (otherwise) .
Proof can be easily obtained by combining the relevant elements of the proof
of Theorem 3.

The following corollary demonstrating one interesting special situation follows
from Theorem 4.

Corollary. If

55 g A, yE) |1
55) sgn <l - '—) = sgn <1 - ;,_> , sgn <l - > = sgn( — '—)
e D P A

holds for i = 1,2, ...,m — 3 then ®,(x,) = ¢,(x,) where ¢,(x,) is a solution
of the dynamic programming problem

(/)mAi+1(xi) = min [gi(xia ki) + (Pm—i(kixi)] (xi >0,i=12,...,m~— 2),
kiea
(pZ(xm—l) = fZ(Xm— l) k)
the unique optimal policy of which is given by (41).

Proof is elementary as soon as we find, by analyzing relations (28) and (32),
that (55) is equivalent to A{" = A{%.

The following theorem provides a simple expression for a lower bound of E by
modifying the procedure given in the proof of Theorem 3.
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Theorem 5. A solution of the dynamic programming problem

(56) Y,_is1(x;) = min {9- + x; Cyi[B; + (D; I(D;) — Biyy) k] + l//,,,ﬁ,.(k,.x,.)}

kieo X;

(x; >0, i=12...,m—2)
lpz(xm—l) = fZ(xm—l)
satisfies

m—2
(57) Y Min '//m(xl) = 2ym[(C11C21Bl)I/2 + Z (Cl,i+la(i2))l/2] < E,
i=1

x>0
where o\*) is given by (31), E; by (25).
Proof of the left equality in (57) is straightforward (the unique optimal policy
of (56) is - .
k; = (l/xi) (Cl,i+l/a(iZ))l/2) .

The proof of the right inequality in (57) is based on the facts: If the definition of the
sequences {A"} for n = 0,1,2, ..., m — 2, v = 1,2 given in (29), (32) is modified
in such a way that the terms of these sequences are arbitrary constants satisfying
AN £ 2P (n=0,1,2,...,m — 2), then it is evident that the function &, ,(x;)
(i=1,2,...,m — 2), defined by (38), (26)—(34) is replaced by the function

m=—2
lpm-i—fl(xi) = fZ(Xi) + 2 Z'(Cl,i’*la(iZ))l/z :

By a way analogous to (46), (47), (48) we can prove easily

l//mAH—I(xi = ‘Dm-i+1(xi)
inductively fori = m — 2, m — 3, ..., 1.

Then with regard to (25) and (51) we can write

Vm min l//m('xl) é ym min d)m(xl) = El ’

x>0 x>0

thus completing the proof.

7. NUMERICAL EXAMPLES

Some simple examples will be given here which show the comparison of results:
obtained by means of the method presented in Section 5, both with the lower bounds.
of the optimal cost which have been derived in Section 6 and with some results
obtained for T; = [A4/x;, B/x;]. Tables II and IV show some examples of results.

94



obtained by calculation of cost E® and corresponding results based on the calcula-
tion of optimal lot sizes x{® for the i-th production stage (i = 1,2, ..., m — 1),
in two production processes characterized by the data given in Tables I and III,
respectively. Here E is the Jower bound of the optimal cost expressed by the left-
hand side of Ineq. (57), E® = E, is the lower bound of the optimal cost calculated
from (25), E® = E is the optimal cost (15) calculated by means of the algorithm
(16)—(23) based on the dynamic programming, x{* = x, where x; minimizes the
function f,,(x;) in (23), x{¥; = Kx{¥ for i = 1,2, ..., m — 2, where K; is the
optimal policy of the solution of the problem (16)—(22). For the given numerical
examples the problem (16)—(23) has a unique solution. E® equals the optimal cost
F(, H(%")) calculated for the case when T; = {1} for all i 2, T, = (0, 1]

(cf. Section 2). E® equals the optimal cost when T; = {1} for i = 1,2, ..., m — 2,
so that the optimal value of the lot size satisfies the relation x{¥ = x99 = ... =
— +

= Xm-1-

In the given examples the following values have been chosen: 4 = 500, B = 25 000,
4 = 250.
Results for 170 examples with m < 27 are given in references [4] and [4a].

Table 1

Example 1 (m = 6) — Inputs

i 1 2 3 4 5 6

<

i —

i v 16 200 45 000 540 45 000 20 000 263
| Cii 595 10”8 510 1078 1078 —
L 10°Cy; 569 976 621 414 4479264 | 4530702 | 4633578 -
|

Table II

Example 1 — Results

e 1 2 3 4 5
E@© 3629 3665 37-77 5565 64-09
x® - - 23 000 25 000 9000
X9 - - 11 500 25 000 9 000
X — — 11 500 6250 9 000
x4 — — 500 6250 9 000
2 - - 500 6250 9 000
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Table 111
Example 2 (m == 7) — Inputs

i l 3 4 5 6 7
e |
vi | 16 700 | 45000 860 1760 32 400 32 400 526
Cy; 595 | 1078 595 170 | 1078 1078 —
10°C,; | 829476 ‘ 880914 | 3349938 | 4533012 | 4584450 | 4 635 888 —
B \ |

Table 1V
Example 2 — Results

|
€ 1 2 3 4 5
I~ B *1 B i -0 1 1

E® 6978 71-65 7179 } 96-46 ‘ 10314
NN _ - 24000 | 23 000 13750
NO) — — 24000 | 23 000 13750
e . — 24000 | 11 500 13750
X _ — 8000 | 11 500 13 750
NOEE — | - 1 500 | 11 500 13 750
MO i - | 500 | 11 500 13 750

| | !
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Souhrn

STANOVENI OPTIMALNICH VYROBNICH DAVEK
VICESTUPNOVEHO VYROBNIHO SYSTEMU

JinDRICH L. KLAPKA

Préice se zabyvd optimalisaci souctu sefizovacich ndkladd a ztrdt z vdzdni zdsob
pro vicestupiiovy vyrobni systém s nekoneénym casovym horizontem volbou veli-
kosti vyrobnich ddvek. Je v ni studovdna jistd t¥ida vicestuptiovych jednovyrobke-
vych vyrobné-skladovacich systéma se seriové uspofddanymi vyrobnimi stupni,
kde vyrobni rychlosti jednotlivych vyrobnich stupnii jsou kone¢né, konstantni a
vzdjemné ruzné, odbér hotového vyrobku je konstantni a kazdy vyrobni stupen
st¥idd periodicky obdobi, v némz vyrdbi, s obdobim, v némz nevyrdbi. N¢které systé-
my, které zkoumali Thomas [8], Schussel [5], Taha a Skeith [7], Crowston, Wagner
a Williams [2], Streck [6] a Klapka [4], mohou byt chdpdny jako specidIni piipady
systému této tiidy. V préci je proveden vybér systému z této tfidy, jehoz optimédlni
ndklady jsou minimdlni. Je odvozen algoritmus piesné ndkladové optimalisace
tohoto systému, zaloZeny na dynamickém programovdni. Tohoto algoritmu je vy-
uzito k odvozeni dvou dolnich hranic optimdlnich ndklad pro zkoumanou t¥idu
systémi. Tyto dolni hranice jsou lep$i nez ta, kterou pro jisty specidlni p¥ipad vy-
robniho systému odvodili Crowston, Wagner a Williams.
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