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SIMPLE RANDOM WALK AND RANK ORDER STATISTICS
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INTRODUCTION

The present article is closely related to Dwass’s article [1]. The method used in [1]
is based on the analogy of rank order statistics and functions on a simple random
walk, and it is applied to the case of equal sample sizes in the two-sample problem.
Here the method will be extended to the case of arbitrary sample sizes. This approach
simplifies much the calculation of the distributions of rank order statistics compared
to the combinatorial approach used e.g. in Reimann-Vincze [4]. Another extension
of Dwass’s appeared in Mohanty-Handa [3], namely for two samples where one
sample size is a multiple of the other.

I. THE METHOD

Let X, X5, ...,X,and Y, Y,, ..., Y, be two samples from the same distribu-
tion with a continuous distribution function. Let the combined sample of n + m
values arranged in the increasing order be denoted by Z,,Z,, ..., Z,,,.. Let us
replace the X’s by 1’s and Y’s by —1’s in this sequence. We call such a sequence
of I's and —1’s a sequence of rank order indicators, and we shall denote it
by Vi, Vo - .., Vyrm In addition, we define V, = 0.

n+m\ .. .
There are ( _; > different sequences of rank order indicators, and they have
o (n+ m\! . .
the same probability " . We can define different random variables on the
sequence Vi, V,, ..., Vi €.8

k k
max YV;; min Y V.
=0 k

k=0,1...,n+m i =0,1,....n+mi=0
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In this article we shall find the distribution functions of many such random vari-
ables. The method used here is a slight generalization of Dwass’s method from [1],
based on the relation between a simple random walk and a sequence of rank order
indicators. Dwass [1] deals with the special case n = m, while in the present article
the distributions of all statistics mentioned by Dwass [1] will be derived for the case
of arbitrary n and m. Moreover, some other statistics will be studied.

We can suppose m = n, and we put d = m — n. Then n + m = 2n + d, and

= n + d, where d = 0. In the sequel, we consider d to be an arbitrary but fixed
constant, while n will change; this is the basic step for the generalization of Dwass’s
theory.

Definition. A random variable U, which is a functionof X, X5, ..., X,, Yy, Ya,. ..
.., Y, .4 only through the rank order indicators is called a rank order statistic.

Further, let F,(x) = (number of Xis < x)/n be the empirical distribution function
of X1, X5, ..., X,, similarly G,(x) the empirical distribution function of Y;, Y, ...
..., Y,, and write H,,(x) = n F,'x) — m G,(x). Finally, x5 will denote the char-
acteristic function of the set A.

We can consider each sequence of rank order indicators to be equivalent to a simple
random walk which starts at (0, 0) and ends at the point (2n + d, —d). For example:
for n = 5, d = 4, and the sequence of rank order indicators —1, —1, 1,1, —1, 1, 1,
-1, =1, —1, —1, 1, —1, —1 we have the following random walk.

7..
12 3 4.5 68/7\6 9 01 2D %

(14,-4)

Let us derive the relation between rank order statistics and analogous functions
on a simple random walk.
Let W;, W,, ... be independent random variables with the same distribution
given by
W, = 1, with probability p;

= —1, with probability 1 — p=gq,
and let W, = 0.



We define a simple random walk by the random variables S, = ) W,. Since the
i=0
sequence of rank order indicators always ends at the point (2n + d, —d), we shall
need a conditional random walk passing through this point.

Lemma 1. For any p € (0, 1), the conditional distribution of Wy, W, ..., Wy, .y
2 d
given that S,,.4 = —d assigns equal probabilities to each of the( " : ) possible

sequences Wi, Wy, ..., Wyiy.

Proof is easy by direct calculation of the conditional probability.

If p < % the simple random walk S, is transient and passes through the point
(2n + d, —d) for some n with probability 1. However, also with probility 1 it passes
through points (2n + d, —d), n arbitrary, only finitely many times. Thus we can
define a random variable T by

2n+d

T= max (2n + d; ), W, = —d), if this maximum exists,

n=0,1,... i=0
= 0, otherwise.

Definition. Let U be a function defined on the random walk S,. We say that it
satisfies Assumption A if the value of U is completely determined by Wi, W,, ..., Wr
and does not depend on Wy, Wr,4, ..., whenever T > 0.

The following Lemma 2 gives the relation between the distribution of U and that
of a rank order statistic.

Lemma 2. a) The conditional distribution of Wy, W,, ..., Wy given that T =
2 d
= 2n + d assigns equal probabilities to each of the ( " : ) possible sequences
of n numbers 1 and n + d numbers —1. If a function U satisfies Assumption A,
the conditional distribution of U given that T = 2n + d is exactly that of a rank
order statistic.

b) Conversely, suppose U, is a rank order statistic defined for everyn = 1,2, .. ..
Then there is a function U satisfying Assumption A, such that the conditional distri-
bution of U given that T = 2n + d is exactly the distribution of U,,.

Proof. Part a) follows from Lemma 1. To prove part b), we define U arbitrarily
for T= 0, and

UWy, W ooy Wiy ) = Uy (W, Wy, ..., Wanyy) for T> 0, T=2n + d. This
U satisfies Assumption 4 and it is defined for all n, which proves the lemma.

The following theorem enables us to determine the distributions of rank order
statistics.
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Theorem. Suppose U, is a rank order statistic for every n and U is the related
function satisfying Assumption A. Define

EU)=h(p), 0<p<3%.

Then the following equality is valid for p [0, }), where the right-hand side is
a power series in powers of p(l — p) = pq:

(1 i = s (e

Proof. Clearly,

2n+d 2n+d+k 2n+d

PT=2n+d) =P}y W,=-d)P(Y¥ ¥ Wi+ -d|yW=—d)=

zntd Zntdek af2n +d
=HL W= Y 3 We*0)=p”4"*< )(1—21’),
k>0 i=2n+d+1 n
2n+d
since the sum ), W; = —d must be composed of n + d addends — 1 and n addends 1

i=1

. (2 . -
and the number of such sequences is ": d), and since the probability that the

simple random walk never returns to the origin is 1 —2p (see [2], Chap. XI). Hence,
using Lemma 2, we obtain

h(p) = E(U) = iE(Usz 2 + d) P(T = 2n + d) = ZE(U)<2"+ d)

(pa)"4*(1 - 2p),

which proves the theorem.

Since the right-hand side of (1) is a power series in powers of pgq, it is sufficient
to express the fraction h(p)/[(1 — 2p) q*] as a power series in powers of pgq with
coefficients a,; on comparing the coefficients we obtain

E(U,) = <2n + d)‘ll

n

In deriving individual distributions we shall work with functions @(U) where ¢
will be usually a function on the set of values of U,,. It is clear that ¢(U,) will be also
rank order statistic. For ¢ being the characteristic function of a set A we have

E(¢(U,)) = P(U,€ A)
and equation (1) becomes

@ U 5w, n) (" Yooy

(1 —2p)q*
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In Feller [2] and Dwass [1] the probabilities P(U € A) are derived for different U
and A. It then depends on our ability to find the power series (2) in individual cases.
Some distributions of rank order statistics are derived in the following part.

II. DISTRIBUTIONS OF RANK ORDER STATISTICS

In each derivation of the distribution of a rank order statistic the proper choice
of the function ¢ and the definition of the statistic U is mentioned.

I1.1. Distribution of N, ,,
First we define Z, = — oo in addition to the sequence Z,, Z,, ..., Z;,,, We put

N, .. = number of indices0 < i £2n + d for which H,,(Z)=0.

n,m

We choose U = ¢(U’), U, = ¢(U,), where U, = N, ,, U = number of indices
i 2 0 for which S; = 0, and ¢ = Y-k, K = 0 integer. According to the preceding
part we have

E(U) = PU’" > k) = h(p) s E(U,,) = P(N,,’m > k).

In [1], appendix (3), one can find that P(U’ > k) = (2p)*. We derive the power
series for the expression

3) (2p)*

(l - 2p) d
in powers of pq. In part II1.1 we shall prove that

X (2n + d—k
(2p) = 2"2( N —k )(pq)" g'(1 - 2p),
n=k
and therefore

2p)* ® 2n +d — k .
4) = s (s

(1 =2p)q* n=x

2n+d — k\[(2n + d\*
_ Ak
P(N,,.,,,>k)—_2< 0 — k )< ) .

and

n

If we put d = 0 we obtain the same result as Dwass [1].

I1.2. Distribution of N,/,, and N, ,, — number of positive and negative sojourns
Let 0 = iy < iy < ... < iy, be all the indices for which H, ,(Z;) = 0. The part

of the sequence of the rank order indicators between i;_,, i; will be called a sojourn.
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If H,,(Z)> 0 for i;_, <i<i; we say that the j-th sojourn is pozitive, and if
H,,(Z;) < 0fori;_, <i < i;we say that the j-th sojourn is negative. We define

N . .
N, . = number of positive sojourns ,

Il

N, m = number of negative sojourns .

To find the distribution of N, ,, we take U’ = number of positive sojourns in the

simple random walk, ¢ = Y24, U = @U'), U, = (p(N:’,,,). If we use the equality
P(U’ =z k) = (p/q)’, p < q, from [1], and the result from II1.2, formula (2) becomes

k o0
p _ 2n + d "
U;‘(n B k)(pq) ;

(1 - 2p) g*q’
so that
-1
PN}, = k) = (2" + d)(z" + d) for k=12 ...n.
’ n—k n
For d = 0 this is the same result as in [1]. 2ntd
Let the sequence of rank order indicators Vo, Vj, ..., Van14 have the sum ) V; =

i=1
= —d. Let i be such index that Vo + ... +V;=0and Vo + ... +V; £ 0 for
all j > i. Then the sequence of rank order indicators —V,, — V3, ..., =V, Vigq, ...
.+, Van+aq has the same number of negative sojourns as is the number of positive
sojourns in the sequence V,, Vi, ..., V,,44 Both sequences have the same probability
so that the distribution of N, ,, must be equal to the distribution of N:,,,,.

I1.3. Distribution of N, ,(r) — number of visits to height r
We denote
N, m(r) = number of indices i, 0 < i £ 2n + d, for which
Hn,m(Zi)=r’ I”gO,
the rank order statistic called the number of visits to height r. Let U’ = number
of indices i 2 0, for which S;=r, r 20, ¢ = y(,5x, U, = @(N, .(r), U = @(U’).
From [1], appendices (6) and (3), it follows that
P(U" > k) = (p/qa)’ (2p)* for r=0.
By III.1 we get
h(P) 2k pk+2r
(t-2p)d" (1-2)¢" (paf

ke [(2n+d—k—2r s
B 2n=l§‘2r< n — k - 2r (Pq) ’
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Hence the distribution we are looking for has the form

(5) PN,y o(r) > k) = 2 <2n +d— k) (Zn + d>‘1,

n—k-—r n .
for r=0,1,...,n, k=0,1,...,n—r.
In []] one can find the same result for d = 0.

11.4. Distribution of N ,,+ ,,,(r) — upcrossings of r
We define the rank order statistic called the upcrossings of r as

N, (r) = number of indices i, 0 < i < 2n + d, for which
HoZ)=r+1 and H(Z, ) =7, rz0.
We choose U’ = number of indices i > 0 in the simple random walk for which

Si_1v= r, Si =r + 1, r g Oa P = X{x;k)’ Un = (p(N:,m(r))’ U= qJ(UI) In [1]’ p.
1052, it is proved that

E[o(U")] = h(p) = (pla)**", k>0.

This is analogous to the preceding case and we obtain

-1
P(N;m(r)gk)=<2"+d><2”+d> , for r20, k=12 ...n—r.

n—k—r n
11.5. Distribution of N ,(r) — number of crossings of r
We shall find the distribution of the statistic
Ny (r) = number of indices i, 0 < i < 2n + d, for which
H,(Z._,)<r and H,,(Z;,)>r, or
H,.Z;-y)>r and H,,(Z;,)<r, for r

1\

0,

called the number of crossings of r. The functions U, U, in this case are U’ = number
of indices i > 0 for which S;_; <r and S;;; > r;or S;_;, >r and S;., <,
@ = Ypznp U = @(U’), U, = @(Ny (r)- It is proved in [1], p. 1048, that

P(U' = 2k) = (p/q)*** ", for r>0, k>0,
P(U" =z 2k) = 2p**t/g",  for r=0, k>0.

First, we shall study the case r > 0. By the same procedure as in II.3. it can be cal-
culated that

re2k-1 L - 2n + d n
(p/q) (1 - 2p) d* n=r+2k—1(n —r—2k+1 (pq) '
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The distribution of the rank order statistic is

2+ d 2+ d\"!
P(N,’,",,,(r)gzk)=<n__rn_+2k+l>< ”n+ ) , for r>0, k>0.

Second, in the case r = 0 we obtain by (4)

2pk+1 1 2p2k+1 © 2n + d — 2% — 1 L
k a- P i 2 (pq)" =
q (1 - 2P)q (pq) (1 - 2p)q n=2k+1 n—2k—1
a2 [2n+d -1 .
5

and the distribution is

P(N%,0 = 26) =2<2n +d — l)(Zn +d

-1
n—k—1 n ) , for k>0.

If we put d = 0in both cases we obtain the same results as Dwass [ 1].

11.6. Distribution of D, ,, upper side maximum deviation
Let us find the distribution of the upper side maximum deviation

D, ,, = max (nF,(x) — mG,(x)) = max H, ,(x).
We take functions U = @(U’), U, = @(D,,) where ¢ =y >4, U’ =

= max {0, S, S, ...}. Wecan find in [1], p. 1051, that E(U) = (p/q)*. It is easy to
prove, similarly as in II.2, that

-1
-(6) P(D:mzk)=<2:j,f><2"+d> , for k=0,1,...,n.

n

This result agrees with Dwass’s formula for n = m. Reimann-Vincze [4] prove that

P(D;m = k) ="" n+2k+1 (’" + ") (’" + ")FI,
n—k

m+ k + 1 h
for k=0,1,...,n,

which is not difficult to verify again by (6).

I1.7. Distribution Q, , — number of times D,: . is achieved
The statistic Q,, ,, is defined as

Q,.m = number of indices i for which H,,,,,,(Zi) =D,,
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We derive the distribution of the rank order statistic @, by means of the two di-

mensional statistic (D, ,,, Q). In order to do it we put

U = (Dym Qum)
D* = max {0, S, S,, ...}
Q = number éf indices i = 0 for which S; = D*,
U = (D, Q) ,
@(%, ¥) = Ay xzhoyzn( ¥)
U,=o(U,), U=
In [1], p. 1052, the following formula is proved:
P(D* 2k, Q2 r) = (plg)p " ‘

The desired power series equals

B pHHr1 3 i 2n +d -2k —r +1 ( )n~k=
(1 - 2p) a'(pa) = n—2k—r+1 Pq

_ i <2n+d——r+1)(pq)n

n=k+r-1 n—k-—r+1

i

2k+r—1

so that the distribution of the two-dimensional statistic is given by

2n+d—r+1\(2n +d\?

o> >r) =
P(Dym 2 Qum 2 7) (n—k—r+1)< n ) ’
for r=12,....,n+1, k=0,1,...,n—r+1,

and consequently

— ‘1\
P(Q,,y,,,;r)=P(D,T,,,, > 0. Q,,_,,,gr)=(2n+d r+ 1><2n+d> ’

n—r+1 n

for r=1,2,....,n+1.

11.8a. Distribution of Q,,,, — position of the k-th zero
If the statistic N, ,, defined in I1.2 is larger than or equal to k the definition

Qumi = the index i,0 < i < 2n + d, for which H, ,(Z;) = 0 for the k-th time

has a sense. The distribution of Q,,,, Will be obtained from the distribution of the
two-dimensional statistic (Q,,  x Nu.m)- We define

Utll = (Qn,m,k’ Nn,m) > "= (Qk’ N)
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where

Qs
N

I

the index i 2 0 for which S; = 0 for the k-th time,

number of indices j = 0 for which S; = 0.

The formula
YP(Qu =i, N=k+r)t'=[1— (1 —4pgr®)"?](2p)y (1 - 2p)
given in [1] suggests to define the suitable ¢ as
o(x, y, 1) = ;X«x,y>;x=«',y=k+r}(x’ ).t 1e(0,1)

and to put U = o(U', 1), U, = ¢(U,, t). The function h(p) equals the power series
YP(Q, = i,N =k + r).t. We obtain by 111.3

[1 = (1 - 4pqt*)"”*] (2p)
qd

r

k+r
= 37 27H1 = (1 = 4pgrd)2]E. 27O — (1 - 4pg)l ]+ =
(pa) |
© © - K i r 4
= Ak+r 3 -1 . o
2 i=¥+dh£=‘:k k(r + d) (2h — k) ( h_k>(2l r—d ( i—r_d>‘

. 0 o0 2 _
1*(pg)" " = 2t Zk 2 kr+d)(2s - k)al< z _ l;) @en+d—2s—r)".
s=k n=r+

s

2n+d—2s —r s
CRE

n—s-—r

The last equality follows by the substitution i + h — d = n, h = 5. The statistic
Q,.mx cannot be equal to an odd number. The probability distribution of the two-
dimensional statistic is

P(Qn,m,k = 21’ Nn,m = k + r) =
=2""k(r + d)(2i — k)™ ' (2n +d — 2i — r)"L.

2i —k\/2n+d —2i—r\(2n + d\!
i—k n—i—r n ’
for r=1,2,...,.n—-k, i=kk+1,...,n.

I1.8b. Distribution of Q,, ,, — position of the k-th zero
Let U,, U’ be defined as in the preceding paragraph, but the function ¢ will be now

(P(X, Vs t) = ZX{(x,y);x=i,y;k}(x9 .V) . ‘i , te (0; 1) s
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and we put U, = ¢(U,, 1), U = ¢(U’, 1). A consequence if the fact that the function
h(p) equals [1 — (1 — 4pqt?)'/*]* is

0
2k(1j)k [1 _ (1 _ 4pqt2)1/2]k. p

(1-29)d"
- 7"/(;12) 2i — k)1 (2i - i) (21;_“ d) 2i(pg)*i =
= 2"k§k :Zi( — k)t ( - l;) (Zn n—_zii+ d) (pa) ',

by III.1 and III.3 and the substitution n = i + j. Following the general theory we get
the distribution

2n —2i +d\[2i — k\(2n + d\!
= 2k
e ok (WO
for k=1,2,...,n, i=kk+1,...,n
If we put d = 0 both formulas from I1.8a and b agree with Dwass’s results.

11.9. Distribution of R, — index where D, is first achieved

We define the rank order statistic

RS, =min{i|H,,(Z)=Dy,, i=1,...,2n+d}, if DS,>0,
=0, for D,,=0.

We shall find the distribution of the two dimensional statistic

(Rn m> :,m)
We denote
D* =max{0,S,S,,...),
R* =min {i|S;=D*,i=0,1,...},

U’ =(R*,DY),
o(x, y, 1) = iZX<(x,y):x=i,y=k>(x’ y).t, te(0,1),
U, = o(U, 1), U=gU,1).
In [1], p. 1051, we can find that
h(p) = (2q0)7*[1 — 4 (1 — par*)'*]* (L = pla).
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We are able to calculate the distribution of the statistic (R, ,,, D, ) by means of I11.3

h(p) — (1 _ . 2\1/27k Hk“ _
(1—2p)q"_(2) L1 =1 = 4par)™] q)"““ -

tk
=k(d + k + 1)% i (2j — k)”(zj::)(ﬁ —d—k—1)71

j=k i=dtk+1

R L e R R R A R

=k n=j

2 - 2i+d+k+1 -
(j )(2"—2j+d+k+1) l< . In—j )21 k(p‘I)"

(by substitutionj + i — k — 1 = n). Since the sum r + kisalwayseven (2j — k = r)
we can put j = (r + k)[2. Consequently, the distribution of the rank order statistics
is

PR w=rDy =k =k(d+k+1)r*2n—r+d+1)".

r 2n—r+d+ 1\{2n + d\!
\i(r = k)J\ n—Hr+ k) n ’
for r+k even, k=1,2,....,n, r=kk+1,...,2n -k —d.
This formula specialized for d = 0 is not equal to the formula given in [1]. It seems

there is a mistake in [1] because the distribution given there is not equal to the

coefficient a, in the power series by (2:> .

11.10. Distribution of L

n,m

— length of positive sojourns
Let us investigate the distribution of the rank order statistic
L,wm= Z(ij+1 - ij)’
jeA
where

={j:H,,(2Z;)=H,,.(Z;,,,) =0 and H,,(Z;)>0, for i;<i<iz,},

called the length of positive sojourns. Denote

U' =3 (ije1 = i5)s
JjeB
where

B={j:8,=S;,,=0 and S;>0 for i;<i<ij},
o(x, 1) = gx(,‘:k,(x) A, 1e(0,1),
U=(P(U”t)’ U _(P( nm:)-
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The function h(p) equals
(7) h(p) = E(U) = Y P(U’ = k) 1*.
Dwass [1] proved the formula

(®) h(p) = (1 — 2p) [q — 3[1 — (1 — 4pgr*)'*]]7".

The random variable L, ,, can take on the even numbers 0, 2,4, ..., 2n only. Since
the expression (8) does not depend on k the probabilities for L, ,, do not depend
on k as well the distribution is

P(L,, = 2k) = ! , for k=0,1,....n.
n+1
11.11. Distribution of R, + D,
Let us define random variables My, M,, ..., Mp+ on the simple random walk by

M=k, if S;,=1 and S;<1 for i<k,
=0, if S;<1 forall i=0,
M;=k, it M,.,=r and S,,,—S,=1 and S, —S,<1
for s=r+1, r+2,...,k+r—1.
(The statistic D* has been defined in 11.9.) The sum
My + 1)+ (M, + 1)+ ... + (Mp+ + 1)

isequal to R* + D* (see I1.9). The generating function of this sum is

Tl — (1= 4pa) ] o) (0= pa ).

as shown in Feller [2]. By elementary algebra we can prove that the preceding
formula is equal to (8) so that the distribution is
1

P(R,,, + D), =2k = % for k=0,1,...,n.
n +

11.12. Distribution of D, , — two side maximum deviation
The statistic of the two side maximum deviation is defined as

D,, = max IH,,,m(x)‘: max |H,,,,,,(Z,~)].

- <x<o Ogign+m
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The distribution of D, ,, will be obtained from the distribution of the two-dimensional
statistic

Ur’l = (D:,ms —D;,m) 3
where D}, was introduced in IL6 and

Dyn= max {—H,,(x)}= 0<r_11a): {—H,.(Z)}.

—o0 <x<o0

We have to define suitable functions U and U,; put

U' =(maxS;, minS;), for T>0

15jsT 15jsT
=(0,0), for T=0
<P(X, y) = X{(x.p):x<k,y> —(s+d)} (.X, J’) , for k>0, s>0,
U,=9U,), U=gU).
The function h(p) equals

h(p) = P(max S; <k, minS;> —(s+d)), T>0,

1Sj£T LSJET

and consequently
h(p)=P{(-(s+d)<S;<k; j=1,...,T)u(T=0)} = P{4},

where A is the event described in the brackets. Then the complementary event
A = B U C, where the events B, C are defined as

B = {the simple random walk reaches the point k without reaching
the point —(s + d) before, and then it returns to the point —d} ,

C = {the simple random walk reaches the point —(s + d) without
recahing the point k before, and then it returns to the point —d} .

The probability P(B) is equal to

L (P k_.~1_,_ (p/q)s+d
P(B) - (q> 1 — (p/q)s+d+k » P<4,

(see [1], p. 1051). The probability P(C) is equal to the product of 1 — P(B) = the
probability of reaching —(s + d) without reaching the point k before, and of (p/q)’ =
the probability of reaching —d from the point —(s + d). Hence

o (- (45 e
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and finally
P(4) = 1 = P(B) = P(C) = [1 = (pla}****] "

. [1 — (p/q)‘ _ (p/q)k + (p/q)k+s] -1 _iil[(p/q)is+(i—l)(k+d) +
+ (P/q)i““—l)(”d’ —(p/q)"("*»“”("—l)d _ (p/q)i(k+s+d)] _

Since h(p) = P(A), from the preceding equality and in view of 111.1 and 1I1.2 we get

_ hp) =§<2 * "’) (pay - ¥, [ > ( s —2(’: ! S(k + d)>'

(r - 2p) q° n i=1 | n=is+(i=1)(k+d)

e % (n — ik —2?ii[§)(s + d)) (pa)" =

n=ik+(i—1)(s+d)

- i <n — i(k ins)+—d(i - J)d)(p 9)" -

n=ik+is+(i—1)d

S R aa [ B

n=i(k+s+d)

zn;io[(zn : d) i-i,[(n — is f’zit(:) (k + d)) + (n — ik _z’z,tci (s + d)) -
S SRR B R A | (78

for s=1,2,....n, k=1,2,...,n.
The distribution of the two dimensional statistic U,, is then given by

P(D;), <k, Dy, <s+d) =

= i[(” — s — (2in—+1;i(k + d)) " (” - ik _2(’; :L (11) (s + d)> _

i=1
B 2n +d B 2n +d 2n + d\*
n—ilk+s)—(i—1)d n— ik +s+d) n ’
for s=1,2,...,n, k=1,2,...,n.
Consequently the distribution of the rank order statistic D, ,, is clearly

P(D,, < k)= P(D,, <k, D,, <k), for k>d,
=0, for k<d.

If we put d = 0in both formulas we have the same as in [1].
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11.13. Distribution of D, — lover side maximum deviation

The lower side maximum deviation was defined in 11.12. Its distribution wil be
derived by means of the statistic U, defined in 11.12. Clearly,

-1
2n + d) = P(D:.m < k, Dn_,m =n + d) s

P(D),,=n, Dy, <s+d)= ( ;
for k=12 ...,n+1, s=12.....n+1,
because in both- cases there is only one sequence of rank order indicators. Hence
P(D,,, <s+d)=PD,,<n+ 1 D, <s+d) =
=P(D,,, <n, D, <s+d)+ PD;,,=n D, <s+d)=
= P(D),, <s, Dyy<n+d)+PD,,<s D,,,=n+d=
=P(D),<s, Dy,<n+1+d)=PD,,<s), for s=1,...,n.

Taking into account the result for D, ,, from I1.6, we see that

-1
P(D;mzk+d)=(22fz)<2":d> , for k=0,1,...,n.

11.14. Distribution of B,

The statistic B,,,, has been defined in Reimann-Vincze [4] p- 294, as
Buw = max [Hy,(x) + ¥m — n)| =3(m  n) =
~w<x<o

= max IH,,J,,(ZI») + Hm — n)! - 3n-m),

0<i<2n+d

and its distribution given in [4], p. 296. We can find the distribution of B, ,, by means
of the distribution of the statistic U,, from 11.12. It is easy to see that

P(B, . < k) = P(max |H, (Z;) + 4d| —4d < k) =
= P(max (H, (Z;) + +d) < k + d; — min (H, (Z;) + 3d) < k + }d) =
= P(D,,, <k; Dy, <k+d).

Therefore the distribution of B, , is
& 2n +d 2n +d
P(B =1- - -
( nm < k) i;][z(n — ik — (i — ])(k + d)) (n — 2ik — (i — 1) d)
2n +d 2n + d\7! :
_(n—i(2k+d))}< " ) , for k=1,2,...,n.
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The distribution in [4] is given in the following different form

9) P(By = k) = <m : n>vly§_w[<r’: 1 Zs> - <m v ’j: YS)]’

where s = 2k + m — n.
We have not been able to show the equivalence of our formula and formula (9).
However, if we put k = n in (9) we obtain

-1
P(B,,, = n) = 1—2("’ + ") ,

hn

. . . m+ n\_ .
and this is not true, since evidently P(B,, = n) = 2( 0 > !; thus it seems
there is some error in (9).

III. APPENDIX

1I1.1. Let Wy, W,, ..., W, be the random variables defined in part I. Then
PF=PW, =W,=...=W,=0)=YPW,=W,=... =W =
n=k
=1|T=2n+d)P(T=2n+d)= Z( W,=...=W,=

=1|T=2n+d) <2n + d) p"q"t (1 — 2p)

by the proof of the Theorem. Since

_ -1
P(W1=W2=...=m=1[T=2n+d)=<2n+d k><2"+d>

n—k n
the following formula holds
o(2n +d — R
Pt = Z( _ )(pq) q*(1-2p), for pe(0,1/2),
k=0,1,...,n
II1.2. Let us verify the formula
k ©
4 2n + d

) Z<n_k>( 9"

g1 = 2p) ¢*  #=k
To do it, we use the result from III.1 for p?*, and we get

—'—IL— ) (2n v >( pq) " = 2(2: i z> (pa)".

(1 = 2p) q¢* =2
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II1.3. We are going to prove the formula
Kk _ 1/277k < —12n -k n
Pr= 0 = (1=4pg) ] = k(20 = 07 ) (pa)

which has been proved in [1], too. Since 1 = p* + 2pq + ¢* and 1 — 4pq =
= p* — 2pq + q° = q — p?, the following formula is valid

p=31-4q+p) =41 —(1-4pg)'?], for g>p.

The 1—1 mapping pq = t of the interval 0, 1/2) onto the interval <0, 1/4) has the
inverse

p =31 - (1-4)".

Using the result III.1 for p*~ !, d = 0, we have

p1 _@ [ = (=a)t e ;‘; 2n — k + 1 "
1-2p (1—41)'/2 nekoi\ M —k+ 1)

By integrating both sides with respect to ¢,

d 2n — k + 1
k — (1 —daf /2 = -1 n+1 _
W[~ =4 =k 3 (n+1) (n_ o l)r
- _N-1[2n = kY,
—”;((2n k) ( Y L
The integration constant is determined from ¢ = 0.

Acknowledgement. The author’s thanks are due to RNDr. Zbynék Sidak, DrSc.,
for his guidance and advice.

References

[1] M. Dwass: Simple random walk and rank order statistics. Ann. Math. Statist. 38 (1967),
1042—1053.

[2] W. Feller: An introduction to probability theory and its applications. 2nd edition. J. Wiley,
New York 1967.

[3] S. G. Mohanty, B. R. Handa: Rank order statistics related to a generalized random walk.
Studia Sci. Math. Hung. 5 (1970), 267— 276.

[4] J. Reimann, I. Vincze: On the comparison of two samples with slightly different sizes. A Ma-
gyar Tud. Akad. matem. Kutato Intezetének Kozleményei 5 (1960), 293 — 300.

289



Souhrn

JEDNODUCHA NAHODNA PROCHAZKA A PORADOVE STATISTIKY

IGOorR OCKA

Clanek obsahuje zobecnéni Dwassovy metody [1] vypodtu rozdéleni dvouvybé-
rovych pofadovych statistik, kterd je zaloZena na analogii funkci na jednoduché
ndhodné prochdzce a dvouvybérovych pofadovych statistik.

Prvni ¢ast prace obsahuje odvozeni metody. Rozsifeni Dwassova postupu na dva
vybéry o m a n prvcich, m, n libovolné, je zaloZeno na tom, Ze rozdil m — n = d
je povaZovdn za libovolnou, ale pevné danou konstantu, zatimco m neni fixovano.
Prvni €ast je zakon&ena vétou, kterd udava vztah mezi rozdélenim funkci na jedno-
duché ndhodné prochdzce a odpovidajicimi pofadovymi statistikami. V druhé &asti
jsou spoétena rozdéleni vybranych pofadovych statistik.

Author’s address: RNDr. Ing. Igor Ocka, Ustav ekonomiky a organizace stavebnictvi, Zbra-‘
slavska 5, 152 57 Praha 5.
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