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SVAZEK 22 (1977) A P L I K A C E M ATE M A T I K Y ČÍSLO 4 

SIMPLE RANDOM WALK AND RANK ORDER STATISTICS 

I G O R O C K A 

(Received M a y 5, 1976) 

I N T R O D U C T I O N 

The present article is closely related to Dwass's article [1]. The method used in [ l ] 
is based on the analogy of rank order statistics and functions on a simple random 
walk, and it is applied to the case of equal sample sizes in the two-sample problem. 
Here the method will be extended to the case of arbitrary sample sizes. This approach 
simplifies much the calculation of the distributions of rank order statistics compared 
to the combinatorial approach used e.g. in Reimann-Vincze [4]. Another extension 
of Dwass's appeared in Mohanty-Handa [3], namely for two samples where one 
sample size is a multiple of the other. 

I. T H E M E T H O D 

Let Xl9 X2, ..., Xn and Yl9 Y2, ..., Ym be two samples from the same distribu­
tion with a continuous distribution function. Let the combined sample of n + m 
values arranged in the increasing order be denoted by ZUZ2, ...,Zn+m. Let us 
replace the X's by l's and Y's by — l's in this sequence. We call such a sequence 
of l's and —l's a sequence of rank order indicators, and we shall denote it 
D V Vu Vi> • • •» K+m- I n addition, we define V0 = 0. 

ffl _j_ IY\\ 

There are I 1 different sequences of rank order indicators, and they have 

I . We can define different random variables on the 

sequence Vl9 V2, ..., Vn+m, e.g. 
fc fc 

max £ yi; m i n Z yi • 
-0,l...,п + m i = 0 fc = 0,l, . . . ,n + m i = 0 
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In this article we shall find the distribution functions of many such random vari­

ables. The method used here is a slight generalization of Dwass's method from [ l ] , 

based on the relation between a simple random walk and a sequence of rank order 

indicators. Dwass [1] deals with the special case n = m9 while in the present article 

the distributions of all statistics mentioned by Dwass [1] will be derived for the case 

of arbitrary n and m. Moreover, some other statistics will be studied. 

We can suppose m ^ n9 and we put d = m — n. Then n + m = 2n + d9 and 

m = n + d, where d ^ 0. In the sequel, we consider d to be an arbitrary but fixed 

constant, while n will change; this is the basic step for the generalization of Dwass's 

theory. 

Definition. A random variable Un which is a function ofXl9 Xl9 . . . , Xn9 Yi9 Y2,. . . 

. . ., Yn+d only through the rank order indicators is called a rank order statistic. 

Further, let Fn(x) = (number of X[s ^ x)\n be the empirical distribution function 

of Xl9 Xl9 . . . , Xn9 similarly Gm(x) the empirical distribution function of Yl9 Y2, . . . 

. . . , Ym, and write Hnm(x) = n Fnx) — m Gm(x). Finally, XA W^^ denote the char­

acteristic function of the set A. 

We can consider each sequence of rank order indicators to be equivalent to a simple 

random walk which starts at (0, 0) and ends at the point (In + d, —d). For example: 

for n = 5, d = 4, and the sequence of rank order indicators - 1 , — 1 , 1, 1, — 1 , 1, 1, 

— 1, —V — 1 , — 1 . 1, — 1 , — 1 we have the following random walk. 

(ЯЧJ 

Let us derive the relation between rank order statistics and analogous functions 

on a simple random walk. 

Let Wx, W2, . . . be independent random variables with the same distribution 

given by 

Wt = 1, with probability p ; 

and let W0 = 0. 
= — 1, with probability 1 - p = q , 
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We define a simple random walk by the random variables Sn = £ Wt. Since the 
i = 0 

sequence of rank order indicators always ends at the point (2n + d9 — d)9 we shall 
need a conditional random walk passing through this point. 

Lemma 1. For any P e (0, 1), the conditional distribution of Wl9 W2, . . ., W2n+d 

given that S2n+d = —d assigns equal probabilities to each of the I I possible 

sequences Wi9 W2, . . ., W2n+d, 

Proof is easy by direct calculation of the conditional probability. 

If P < ;i the simple random walk Sn is transient and passes through the point 
(2n + d, —d) for some n with probability 1. However, also with probility 1 it passes 
through points (2n + d9 —d), n arbitrary, only finitely many times. Thus we can 
define a random variable Tby 

2n + d 

T = max (2n + d; ]T Wi = — d), if this maximum exists, 
n = 0 , l , . . . i~0 

= 0, otherwise. 

Definition. Let U be a function defined on the random walk Sn. We say that it 
satisfies Assumption A if the value ofU is completely determined by Wl9 W2, . . ., WT 

and does not depend on WT+l9 WT+1, . . ., whenever T> 0. 
The following Lemma 2 gives the relation between the distribution of U and that 

of a rank order statistic. 

Lemma 2. a) The conditional distribution of Wl9 W2, . . . , WT given that T = 

= 2n + d assigns equal probabilities to each of the I 1 possible sequences 
\ n J 

of n numbers 1 and n + d numbers —1. If a function U satisfies Assumption A9 

the conditional distribution of U given that T = 2n + d is exactly that of a rank 
order statistic. 

b) Conversely, suppose Un is a rank order statistic defined for every n = 1, 2, . . .. 
Then there is a function U satisfying Assumption A, such that the conditional distri­
bution of U given that T = 2n + d is exactly the distribution of Un. 

Proof. Part a) follows from Lemma 1. To prove part b), we define U arbitrarily 
for T = 0, and 

U(W19 W29 . . . , WT, ...) = Un(Wi9 W29...9 W2n+d) for T > 0, T = 2n + d. This 
U satisfies Assumption A and it is defined for all n, which proves the lemma. 

The following theorem enables us to determine the distributions of rank order 
statistics. 
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Theorem. Suppose Un is a rank order statistic for every n and U is the related 

function satisfying Assumption A. Define 

E(U) = h(p) , 0 S P < i • 

Then the following equality is valid for p e [0, ^), where the right-hand side is 
a power series in powers of p(l — p) = pq: 

Proof . Clearly, 
2n + d 2n + d + k 2n + d 

P(T = In + d) = P( £ W, - - d ) P( V £ W, + - d I £ W, = - d ) = 
fc > 0 i = 1 

2л + d 2n + d 2n + d + k /^ , A 

= P ( £ W ( = - d ) P ( V £ ^ í + o) = p V + d (i-2P), 
i=l fc>0 i = 2n + d+l \ U / 

2n + d 

since the sum J] Wt- = — d must be composed of n + d addends — 1 and n addends 1 
І = I 

and the number of such sequences is I I, and since the probability that the 

simple random walk never returns to the origin is l - 2 p (see [2], Chap. XI). Hence, 
using Lemma 2, we obtain 

h(p) = E(U) = £ E(U | T = 2n + d) P(T = 2/J + d) = £ £(U„) f2" + d ) . 
n = 0 n = 0 \ n / 

. (pq)" q\\ - 2p) , 

which proves the theorem. 
Since the right-hand side of (1) is a power series in powers of pq, it is sufficient 

to express the fraction h(P)/[(l — 2p) gd] as a power series in powers of pq with 
coefficients an; on comparing the coefficients we obtain 

адҶ2"Л 
In deriving individual distributions we shall work with functions cp(U) where cp 

will be usually a function on the set of values of Un. It is clear that (p(Un) will be also 
rank order statistic. For cp being the characteristic function of a set A we have 

% ( U „ ) ) = P(U„6/4) 

and equation (1) becomes 

<2) ,-f̂ f-, - i «*..*>(*• „+V-
(1 - 2p) q « = o \ n / 
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In Feller [2] and Dwass [1] the probabilities P(U e A) are derived for different U 
and -4. It then depends on our ability to find the power series (2) in individual cases. 
Some distributions of rank order statistics are derived in the following part. 

II. DISTRIBUTIONS OF RANK ORDER STATISTICS 

In each derivation of the distribution of a rank order statistic the proper choice 
of the function <p and the definition of the statistic U is mentioned. 

ILL Distribution of Nn m 

First we define Z0 = — oo in addition to the sequence Z_, Z2, . . . , Z2n+d. We put 

Nn,m = number of indices 0 _g i __ 2n + d for which Hnm(Z^\ = 0 . 

We choose U = (p(Uf), Un = (p(U'n), where U'n = Nnm, U' = number of indices 
i __ 0 for which St- = 0, and q> = X{x>k}> k ^ 0 integer. According to the preceding 
part we have 

E(U) = P(U' > k) = h(p), E(Un) = P(N„,m > k) . 

In [1], appendix (3), one can find that P(U' > k) = (2pf. We derive the power 
series for the expression 

(3 ) • {2pf 

[i) (l-2p)d< 

in powers of pq. In part III.l we shall prove that 

(2pf = 2 ^ | ( 2 " + *~k) (pq)" q\i - 2p), 

and therefore 

and 

If we put d = 0 we obtain the same result as Dwass [1], 

II.2. Distribution of N„+
m and Nn>m — number of positive and negative sojourns 

Let 0 = i0 < i_ < . . . < iNnim be all the indices for which Hn,m(Z,) = 0. The part 
of the sequence of the rank order indicators between ij__, ij will be called a sojourn. 
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If Hnm(Zi) > 0 for fy_± < i < ij we say that the j-th sojourn is pozitive, and if 
Hnm(Z^) < 0 for /;_! < i < ij we say that the j-th sojourn is negative. We define 

Nn>m = number of positive sojourns , 

N~m = number of negative sojourns . 

To find the distribution of N„+
m we take U' = number of positive sojourns in the 

simple random walk, cp = %{x^&}, U = q>(U'), Un = <p(N„+
m). If we use the equality 

P(U' = k) = (pjqf, p < g, from [ l ] , and the result from III.2, formula (2) becomes 

so that 

pk ™ (2n + d\. .„ 

• ŕ 2 ; л T ; T f°< »-'.*-••• 
For d = 0 this is the same result as in [1]. 2 « + J 

Let the sequence of rank order indicators V0, Vl9 . . . , V2n+dhave the sum _] V% = 

= - d . Let i be such index that V0 + . . . + Vt- = 0 and V0 + . . . + Vi 4= 0 for 

all f > i. Then the sequence of rank order indicators — V0, — Vl5 . . . , — Vi9 Vi+l9 . . . 

• • •> 2̂/i-fd n a s t n e same number of negative sojourns as is the number of positive 

sojourns in the sequence V0, V1? . . . , V2n+d. Both sequences have the same probability 

so that the distribution of N~m must be equal to the distribution of N+

m. 

II.3. Distribution of Nn m(r) — number of visits to height r 

We denote 

Nn m(r) = number of indices i, 0 _ i _ 2n + d, for which 

HnJZ^ = r, r^O, 

the rank order statistic called the number of visits to height r. Let U' = number 

of indices i = 0, for which St = r, r = 0, <p = x{x>k), Un = ^(Nn > m(r)), U = <p(U'). 

From [1], appendices (6) and (3), it follows that 

By III. 1 we get 

P(U' > k) = {p\q)' (2pf for r ^ 0 . 

h(p) _ 2k pk + 2r _ 

(1 - 2p) qd " " ( 1 ^ 7 7 TpaY = 

_k ^ /2n + á — k — 2r\ , . r 

'Kil n-k-2r )Wr-
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Hence the distribution we are looking for has the form 

for r = 0, 1, . . ., n , k = 0, 1, . . ., n — r . 

In [ l ] one can find the same result for d = 0. 

II.4. Distribution of N„+
m(r) — upcrossings of r 

We define the rank order statistic called the upcrossings of r as 

^n,m(r) = number of indices i, 0 < i = 2n + d, for which 

HHjZt) = r + 1 and HnjZt^ = r , r = 0 . 

We choose U' = number of indices i > 0 in the simple random walk for which 
S,.-. = r, St = r + 1, r = 0, 9 = / { JC^}, U„ = ^(N+

m(r)), U = p(l/ ') . In [1], p. 
1052, it is proved that 

£|>(U')] = h(p) = (plqf+r, fc>0. 

This is analogous to the preceding case and we obtain 

n»U')zx)-(„2::*)(2n:dY.*» ^», * _ u — , . n — k — r n 

II.5. Distribution of N*m(r) — number of crossings of r 

We shall find the distribution of the statistic 

N*,m(r) = number of indices i, 0 < 1 < 2n + d , for which 

Hn,m(Zi-x) < r and H„,m(Zf+1) > r, or 

Hw,m(Zi>1)>r and H,,,w(Zi+1)<r, for r = 0 , 

called the number of crossings of r. The functions U, Un in this case are U' = number 
of indices i > 0 for which St^x < r and Sf+1 > r; or S^j > r and S/ + 1 < r, 
<P = *{***>, U = q>(U'), Un = (^(N*m(r)). It is proved in [1], p. 1048, that 

P(U' = 2k) = (plq)r+2k~l , for r > 0 , k > 0 , 

P(U' = 2k) = 2pk + 1lqk , for r = 0 , k > 0 . 

First, we shall study the case r > 0. By the same procedure as in II.3. it can be cal­
culated that 

«^"''arb?-.X(.-r*-+a + ,)w--
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The distribution of the rank order statistic is 

'p^')-*)-(.-?.i+i)(vT• ** r > 0' t > 0 

Second, in the case r = 0 we obtain by (4) 

2pk + i 1 2p2k + i " /2« + d - 2fc - 1 

qk (1 - 2p) qd (pqf (1 - 2p) q" n = ik+i\ n - lk - 1 = 2 1 ( ;_\V: г1 ки) v*-*. 

-aíï-^-íw 
and the distribution is 

P « . O > 2 , ) . 2 ( 2 ; : / : ; ) ( 2 » ; " ) - ' , _ t » 0 . 

If we put d = 0 in both cases we obtain the same results as Dwass [1]. 

II.6. Distribution of Dnm upper side maximum deviation 

Let us find the distribution of the upper side maximum deviation 

Km = max (nFn(x) - mGm(x)) = max H„tm(x) . 
.JC JC 

We take functions U = <p(U'), Un = cp(Dnm) where cp = X{x^k}, U' = 

= max {0, Sl9 S2, . . . } . We can find in [1], p. 1051, that E(U) = (pjqf. It is easy to 
prove, similarly as in IL2, that 

w n°:..^)=(2::{)(2n;f. ^ *-<,. 
This result agrees with Dwass's formula for n = m. Reimann-Vincze [4] prove that 

, + fv m - n + 2fc + 1 (m + n \ / m + n \ 

^--fc)--^rrn-(»-0( - ) 
for fc = 0, 1, . . . , n , 

which is not difficult to verify again by (6). 

IL7. Distribution Qn,m - number of times Dnm is achieved 

The statistic Qn,m is defined as 

Qn m = number of indices i for which Hnm(Zi) — Dnm . 
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We derive the distribution of the rank order statistic Qn,m by means of the two di­
mensional statistic (Dnm, Qnttn). In order to do it we put 

U' = (Dtm9 Qn>m) 

D+ = max{0, Sl9 S2, ...} 

Q = number of indices i ^ OfOr which St = D , 

U' = (D + ,Q), 

<P(X, V) = X{(.x,y);x_k,y_r}(x, y) 

U„ = (p(U„), U = cp(U') 

In [1], p. 1052, the following formula is proved: 

P(D+ =k, Q^r) = (pjqfpr'1. 

The desired power series equals 

P2k + r^ = y (2n + d - 2 k - r + l \ , )n_k = 

(1 - 2p) q"(pqf n = ikr- \ n - 2 k - r + l J y™> 

£ (2n + d - r + l\ , ,„ 

so that the distribution of the two-dimensional statistic is given by 

D / n + . . n . x (In + d - r + l\(2n + dY1 

for r = 1, 2, . . . , n + 1 , k = 0, 1, . . . , n - r + 1 , 

and consequently 

rXQ... S r) = P(D;.. _ 0, Q.,. i r) - (2" „+_* ̂  ,+ ' ) f" „+ "J', 

for r = 1, 2, . . . , n + 1 . 

II.8a. Distribution of Snm)fc - position of the k-th zero 

If the statistic Nnm defined in II.2 is larger than or equal to k the definition 

Qn,m,k = the index i, 0 ^ i ^ 2n + J, fOr M^ic/i Hnm(Z^) = 0 for the k-th time 

has a sense. The distribution of 2„,m,* will be obtained from the distribution of the 
two-dimensional statistic (Qn,m>k, NM,m)- We define 

U'n = (Qn,m,k9Nntm)9 U'=(Qk,N) 
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where 

Qk = the index i __ OfOr which Si = 0 for the k-th time, 

N = number of indices j __ 0/Or which Sj = 0 . 

The formula 

_ P ( & = i,N = k + r) t' = [1 - (1 - 4pqt2y'2f (2pf (1 - 2p) 
i 

given in [1] suggests to define the suitable cp as 

<K*> y> 0 = Y,X{(x,y);x=i,y = k + r}(x, y) . t% , te ( 0 , 1) 
i 

and to put U = <p(U', i), U„ = <p(Û , f). The function h(p) equals the power series 
_T(& = i, N = fe + r ) . f\ We obtain by III.3 

Í * 

[1 - (1 - 4 M t 2 ) 1 / 2 ] W 

2к + г 

(Й? 
2"*[1 - (1 - -tøí2)1 '2]». 2- ( r+á )[t - (1 - 4PqУ'2J+á 

^к + r 

i = r + d h = к zd|^^)(2h-/cr(2;:^2 í-,-dr i(2;:-^ 
;+f t-d _ 2 , + r | £ к[r + J ) ( 2 s _ fe)-i /2s - fc\(2и + ^ _ ^ _ r ) _ . 

(rø)" t2 

s=к n=r+s 

2n + d - 2s - r\ , 

n — s — r 

The last equality follows by the substitution i + h - d = n, h = s. The statistic 
Qn>m,k cannot be equal to an odd number. The probability distribution of the two-
dimensional statistic is 

P(Qn,m,k = 2l, N„,m = k + r) = 

= 2k+rk(r + d) (2i - k)"1 (In + d - 2i - r ) " 1 . 

'2i - k\ /2n + d - 2i - r\ /2n + dV1 

i - k) \ n - i - r / \ n J ' 

for r = 1, 2, . . . , n -- k, i = k, k + 1, . . . , n . 

II.8b. Distribution of 6m,w,„'— position of the k-th zero 

Let Un, U' be defined as in the preceding paragraph, but the function cp will be now 

<P(X, y, t) = Y,X{(x,y); x= i,y _*}(*> y) • *' > ' G (0, l) , 
j 
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and we put Un = (p(U'm t), U — (p(U\ t). A consequence if the fact that the function 
h(p) equals [1 - (1 - 4pqt2)1/2f is 

2W [ ! - ( ! - 4pqt2)ll2T P° 
(l-2p)q' 

by III.l and III.3 and the substitution n = i + j . Following the general theory we get 
the distribution 

K O « - 2,-,N„ » t ) - ^ - *)- (2- -»; «)(2; : *)(2»; - ) - , 

for k = 1, 2, . . . , n, i = fc, fc + 1, . . . , n . 

If we put d = 0 both formulas from II.8a and b agree with Dwass's results. 

IL9. Distribution of R+
m — index where D+

m is first achieved 

We define the rank order statistic 

K+
m = min {i | HmJZt) = D +

m , i = 1, . . . , 2n + d} , if D+
m > 0 , 

= 0 , for D+
m = 0 . 

We shall find the distribution of the two dimensional statistic 

U'n = « m , < m ) . 

We denote 

D+ = max{0, Su S2, . . . ) , 

R+ = min {i \ St = D+, i = 0, 1, . . . } , 

V = ( K + , D + ) , 

<p(x, y, t) = Jjt{(x,y):X**i,y=k}{x> y) • *' > ' S (0, l) , 
i 

U„ = <KU;, t), u = cp(u',t). 

In [1], p. 1051, we can find that 

h(p) = (2*0"* [1 - 4 (1 - P<Zt2)1/2]' (1 - p\q) . 
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We are able to calculate the distribution of the statistic (R+^m, D+
m) by means of III.3 

——) = (*)* [1 - (1 - 4pqt2Y'2Y — ?— 
(l-2p)q" w L v ' J (pqy

 + k + it" 

= k(d + k + i)f: _; (2/ - fc)-1 ( 2 ; ~ f)(2/ - _ - * - 1 ) - 1 . 
/ o / /̂ i- _ l \ oo 00 

• ( J _ d - k- \) ^ - ' ( M y ' - ' - * - 1 = *(<! + A- + I ) . ! £ ( 2 / -k)->. 

(2j - k\,. .. , , . . . (in - li + d + k + l \ , , ., ,„ • ( y _ f c J ( 2 » - 2 y + ci + fc + l) M y
n_^. J t2 j V?)" 

(by substitution j + i — k — 1 = n). Since the sum r + k is always even (2j — k = r) 
we can p u t j = (r + k)/2. Consequently, the distribution of the rank order statistics 
is 

P(R+
m = r, D+

m = k) - k(d + k + 1) r" J(2n - r + d + l )" 1 . 

/ r \ /2n - r + J + l \ fin + d V ! 

A K ^ - ^ A n-^r + k) ) \ n ) ' 

for r + k even , k = 1, 2, . . . , n , r = k, k + 1, . . . , 2n — k — d. 

This formula specialized for d = 0 is not equal to the formula given in [ l ] . It seems 
there is a mistake in [1] because the distribution given there is not equal to the 

/2ri> 
coefficient an in the power series by 

11.10. Distribution of Lnm — length of positive sojourns 

Let us investigate the distribution of the rank order statistic 

Ln,m ~ _L (Jy+i ~" lj) ' 
JeA 

where 

A = {j:HHJZtj) = HnJZtj+1)-0 and HnJZt)>0, for ij < i < iJ+1} , 

called the length of positive sojourns. Denote 

U'-Zfa+i-ij), 
JeB 

where 

B = {j:Stj = Sij + l = 0 and 5, > 0 for ij < i < ij+1} , 

<p(x, t) ~ X>{x-«W • **> ^ e (0, 1), 

U = ̂ U ' , t ) , U„ = .?(__-,o. 
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The function h(p) equals 

(7) h(p) = E(U) = YAW = k)tk. 

Dwass [ l ] proved the formula 

(8) h(p) = (1 - 2p) [q - i [ l - (1 - 4Pqt2Y'2J]-> . 

The random variable Lnm can take on the even numbers 0, 2, 4, . . . , 2 n only. Since 
the expression (8) does not depend on k the probabilities for Lnm do not depend 
on k as well the distribution is 

P(Ln>m = 2k) = , for k = 0, 1, . . . , n . 
n + 1 

11.11. Distribution of R+
m + D+m 

Let us define random variables M1? M2 , . . ., MD+ on the simple random walk by 

Ml = k , if Sfc = 1 and S, < 1 for i < k , 

= 0 , if S, < 1 for all i = 0 , 

Mj = k 9 if M;. . ! = r and Sfc+r — Sr = 1 and Sfc+r — Ss < 1 

for s = r + 1 , r + 2, . . . , k + r - 1 . 

(The statistic D+ has been defined in II.9.) The sum 

(Mi + 1) + (M2 + 1) + . . . + [MD+ + 1) 

is equal to R+ + D+ (see II.9). The generating function of this sum is 

£ [[1 - (1 - 4 p < T ] ( 2 s ) - 7 (1 - M"1) , 
k = 0 

as shown in Feller [2]. By elementary algebra we can prove that the preceding 
formula is equal to (8) so that the distribution is 

P«m+D+
m = 2k) = —1~~ for k = 0 , l , . . . , n . 

n + 1 

11.12. Distribution of Dnm — two side maximum deviation 

The statistic of the two side maximum deviation is defined as 

D„,m = max \Hn>m(x)\ = max \Hntm(Z^\ . 
— oo < JC < oo O ^ i ^ n + m 

284 



The distribution of Dnm will be obtained from the distribution of the two-dimensional 

statistic 

U'n-(D+m,-D;$m)9 

where Dnm was introduced in II.6 and 

Km = m a x {-/*„.„(*)} = max {-HHtm(Zi)}. 
— oo < x < oo 0 <. i <. n + m 

We have to define suitable functions U and Un; put 

U' = ( max Sj , min S,), for T > 0 
l ^ j ^ T i ^ 1 i T 

= (0, 0 ) , for T = 0 

<KX> >0 = X{(*,;v).*<fc,y> -(s + d)} (*> y) > ^ k > 0 , S > 0 , 

Un = cj>(Un), U-cp(U'). 

The function h(p) equals 

h(p) = P( max Sj < k , min Sy > - (s + d)), T > 0 , 
l ^ y ^ T i ^ j ^ T 

and consequently 

h(p) = P{(-(s + d) < Sj < k ; ; = 1, . . . , T) u (T = 0)} = P{A} , 

where A is the event described in the brackets. Then the complementary event 

A = B u C, where the events B, C are defined as 

B = {the simple random walk reaches the point k without reaching 

the point ~(s + d) before, and then it returns to the point —d} , 

C = {the simple random walk reaches the point ~-(s + d) without 

recahing the point k before, and then it returns to the point —d] . 

The probability P(B) is equal to 

™-( . ( i \ k i - Ш " p < q шs+d+k' 
(see [1], p. 1051). The probability P(C) is equal to the product of 1 - P(B) = the 

probability of reaching — (s + d) without reaching the point k before, and of (p/q)s = 

the probability of reaching — d from the point — (s + d). Hence 

'Ю-ØMiЭД- P < 4, 
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and finally 

P(A) = 1 - P(B) - P(C) = [1 - (p/qГ^Г1 . 

is+(i- \)(k + d) 
• [1 - (Plqf - (Plqf + (Plqf + Sl = 1 - Z [(p/«) 

i=\ 

+ (plq)ik + (i-i)(s + d) ~(plq)Hk + s) + ii-1)d - (plq)Kk + s + d)] . 

Since h(p) — R(A), from the preceding equality and in view of III.l and III.2 we get 

h(p) _ f (In + d\ _ - T « / 2n + d \ 

(l-2p) qd

 n = oV « / ^ ^ /-i L - .,+C-D(*+«)VM - i 5 - (' ~ 0 ( fc + d)j ' 

•{M)" \-ikjZS - ik - (i "l)(. + <!))(M)" -

-t t+iT+«-i)A» - «(* + «) ~ (i - l)d)[Pq) 

-äf: 
".-к*Ş,+Ли- /(* + s + < ! ) ) ( м ) J 

-z 
ì = i 

2n + d 
+ 

2n + d 

2n + d \ _ / 2n + d 

n - i(k + s) - (i - 1) d) \n ~ i(k + s + d) 

Kn — is — (i — 1) (k + d)J \n — ik — (i — 1 (s + d) 

(pq)n , 

for s = 1, 2, . . ., w , k = 1, 2, . . ., n . 

The distribution of the two dimensional statistic Un is then given by 

P(Dlm < k, /)"„ < s + d) = 

oo r* / 

= i - Z 
2w + d 2w + d 

_\n - ÍS - (Í - 1) (k + d)J \n - ik - (i - 1) (s + ci) 

2n + d \ / 2n + d Wfln + dY1 

Kn - i(k + s) - (i - 1) dy yw - i(k + s + d)yj y w 

for s = 1, 2, . . . , w , k = 1, 2, . . . , w . 

Consequently the distribution of the rank order statistic Dnm is clearly 

P(D„,m < k) = P«w < k, D"m < k), for k > d , 

= 0 , for k S d . 

If we put d = 0 in both formulas we have the same as in [1], 
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11.13. Distribution of Dnm — lover side maximum deviation 

The lower side maximum deviation was defined in 11.12. Its distribution wil be 
derived by means of the statistic U'n defined in 11.12. Clearly, 

P(D+
ra = n, D-m <s + d) = f2" + d) ' = P(Dlm < k, Z);ra = n + d) , 

for k = 1,2, . . . , n + 1 , s - 1,2 n + 1 , 

because in both cases there is only one sequence of rank order indicators. Hence 

p(o;,m < s + d) = p(D„+
ra < n + i, D ; „ <-s + d) = 

= i^m < ", AT,m < s + d) + P(!>„+
m = n, D;„, < s + d) = 

= p(z>„+
ra < s, D ; „ < « + d) + P(D„+.ra < s, z>;ra = n + d) = 

= P(Dlm < s, D-m < n + 1 + d) = P(D„+.ra < s ) , for s = I, . . . , n . 

Taking into account the result for D*m from 11.6, we see that 

P(D^^k + d) = (2n
n

+_d)(2n + dJl, for * - < U , . . . , » . 

IIA4. Distribution of B„ m 

The statistic B„,m has been defined in Reimann-Vincze [4], p. 294, as 

Bnm = max \H„im(x) + i(m - n)\ - ^ ( m - rc) = 
— oc < JC < oo 

= max \HnM(Z) + ±(m - n)\ - i(n - m), 
0^i^2n + d 

and its distribution given in [4], p. 296. We can find the distribution of Bn m by means 
of the distribution of the statistic Un from 11.12. It is easy to see that 

P(B„,m < k) = P(max \Hn,m(Z) + -W| -\d < k) = 
i 

= P(max (H„,m(Z,) + id) < fc + irf; - min (W„,,„(Zj) + ±d) < k + id) = 
f i 

= P(Km < fc; -D;,m < k + J ) . 

Therefore the distribution of B„ m is 

P(P„,m < fe) = 1 - £ [ - ( „ _ ik _ (,- _ i)(fe + d)) ~ \ n - 2ik - (i - 1) d) ~ 

2n + d 
n - i(2k + d) 

2n + d\ 1 

, íor k = 1, 2, . . . , n . 
/z 
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The distribution in [4] is given in the following different form 

(9) P(Bn,m = *) = (m + n Y J \(m I » ) - ( mJl )], 
7 \ n J yJ^ooWm + ysj \m + k + ysj] 

where s = 2k + m — n. 
We have not been able to show the equivalence of our formula and formula (9). 
However, if we put k = n in (9) we obtain 

Р(В„>т = « ) = 1 - 2 m + n 
1 

1 YYI —j— n \ 
and this is not true, since evidently P(Bnm = n) = 2 I J - 1 ; thus it 
there is some error in (9). ^ ' 

n 
_ ( m + n\_ 1 

seems 

III. APPENDIX 

III.l. Let Ŵ , ^ 2 , , .., Wfc be the random variables defined in part I. Then 

p* - P(Wl = W2 = . . . = Wk = 1) = f P(WX = w2 = . . . = wk = 

00 

= 1 j T = 2n + d) P(T = 2n + d) = £ P(Ff1 = JF2 = . . . = Wk = 

= \\T=2n + d)P-n + d\ pnqn+d(\ - 2p) 

Theorem. Since 

^,-^.. .=^.ir=2 n V)-(\+_v)C":f 
g formula holds 

/ = n | ( 2 n
n

+ _ k
_ / C ) ( M ) " ^ ( l - 2 p ) , for - e (0,1/2), 

by the proof of the Theorem. Since 

the following formula holds 

k = 0, 1, . . . , n 

III.2. Let us verify the formula 

jf y (In + <f 

^(T31йү- в ^»-^' ы n -
To do it, we use the result from III.l for p2k, and we get 

pk ҷ[2n + d-2k\, ,n_k ҷ[2n + d\, ,„ 
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III.3. We are going to prove the formula 

/ = Ml - (1-4M)1/2]]* = kjt(2n - k)-- (^ : fj{Pqy 

which has been proved in [1], too. Since 1 = p2 + 2pq -f q2, and 1 - Apq = 

= p2 — 2pq + q2 = q — p2, the following formula is valid 

P = i ( l - q + P) = i [ l ~ (1 ~ W ' 2 ] , for q > p . 

The 1-1 mapping pq = t of the interval <0, 1/2) onto the interval <0, 1/4) has the 
inverse 

p = i [ l - ( l - 4 , ) 1 / 2 . 

Using the result III.l for Pk~\ d = 0, we have 

/-1
 = ari[i-(i-4Qi/2]'-1

 = ^ nn - k +1\ „ 
l - 2 p (l-4t)1/2

 n = t l , \ « - f c + l ( 

By integrating both sides with respect to t, 

(if [i - (i-401/2T = knl_(n + iy^n
n: * + | ) ,»- = 

= > - ) - ( 2 ; : : ) -

The integration cpnstant is determined from ř = 0. 

Acknowledgement. The author's thanks are due to RNDr. Zbyněk Šidák, DrSc, 
for his guidance and advice. 
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S o u h r n 

JEDNODUCHÁ NÁHODNÁ PROCHÁZKA A POŘADOVÉ STATISTIKY 

IGOR OČKA 

Článek obsahuje zobecnění Dwassovy metody [1] výpočtu rozdělení dvouvýbě-
rových pořadových statistik, která je založena na analogii funkcí na jednoduché 
náhodné procházce a dvouvýběrových pořadových statistik. 

První část práce obsahuje odvození metody. Rozšíření Dwassova postupu na dva 
výběry o m a n prvcích, m, n libovolné, je založeno na tom, že rozdíl m — n = d 
je považován za libovolnou, ale pevně danou konstantu, zatímco m není fixováno. 
První část je zakončena větou, která udává vztah mezi rozdělením funkcí na jedno­
duché náhodné procházce a odpovídajícími pořadovými statistikami. V druhé části 
jsou spočtena rozdělení vybraných pořadových statistik. 

Authoťs address: RNDr. Ing. Igor Očka, Ústav ekonomiky a organizace stavebnictví, Zbra­
slavská 5, 152 57 Praha 5. 
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