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SVAZEK 19 (1974) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

ON PROPERTIES OF BINARY RANDOM NUMBERS 

JAN AMOS VISEK 

(Received April 30, 1973) 

1. This paper was stimulated by investigating properties of random numbers 
produced by physical generators (see [1]). The output of an ideal generator is a se­
quence of zeros and ones which can be viewed as independent relaizations of random 
variables (rv) taking on values 0 and 1 with equal probability \. Considered as a binary 
expansion of a number from the interval [0, 1], such a sequence represents a rv 
uniformly distributed over [0, 1]. 

A real physical generator, however, produces a sequence in which the probabilities 
of zeros and ones are only approximately equal and whose terms are only approxim­
ately independent. Moreover, a real generator produces finite expansions only. 
For these reasons, the produced random numbers are only approximately uniformly 
distributed. The purpose of this paper is to investigate theoretically the consequences 
of violation of just one postulate of an ideal generator; namely, the consequences 
of unequal probabilities p =f= q of zero and one. Particularly, the behaviour of sums 
of such random numbers is studied, because by means of those sums normally distri­
buted rvs are usually simulated. 

Some results (Proposition (i)) are known; others were obtained by applying 
known general theorems to our situation (Propositions (vi) and (vii); also Proposition 
(ii) can be deduced from a known more general result, but here a simple direct proof 
is given); some other results are new, although not very difficult to prove by standard 
tools of probability theory. 

2. Denote by Jr the set of all positive integers. Let {Xk}k=z x , {X[j)}k=z x , j e Jr and 
{ X (

k
m , n ) } k

X )
= 1 , I = m = n, ne./T, be sequences of independent zero-one rvs with 

p(Xk = 1) = P, P(X[j) = 1) = p; P(X™>n = 1) = pn for all keJr; jeJ^, 1 = m, = 

= n, n eJr and for some 0 < p < 1, 0 < pn < 1; denote A = p-~h An = pn - \. 
00 00 °° " 

Put Y = £ * * . 2~k; Yj = £ X<k». 2~\ Ymn = IXk
m'n). 2~\ S„ = (£Yj - nBYt) : 

* = 1 k=l fc==l J 1 

: V(n var Yx) and Snn = ( f Ymn - n E Yln)jJ(n var Yim). Let G„(x), Gjx) be distribu-
m = l 
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tion functions (df) of Sn and Snn respectively. Denote by <£ the normal df with zero 
mean and unit variance. A df is said to be singular if it is continuuous and if the 
corresponding probability distribution is concentrated on a set of Lebesgue measure 
zero. 

For rvs defined above, the following p r o p o s i t i o n s hold t r u e : 

(i) Y is uniformly distributed over [0; 1] if p = \. 

(ii) The df of Yis singular and increasing on [0, 1] if p 7-= \. 

(iii) Y has the following central moments and cumulants: 

Mi = * i = P , 

H2 = x2 = |p( l - p) , 

W-3 = *3 = 7 K 1 - 3P + V ) > 

^4 = rs K 1 - 2P + 2 P 2 - P3) > 

x4 = ^ p ( l - 7 p + 12p2 - 6 p 3 ) , 

M5 = - ^ p(21 - 625p + 2290p2 - 2810p3 + 1124p4), 

x5 = ± p(1 - 15p + 50p2 - 60p3 + 24p4) , 

Me = 4J1 P(7 + 2°P - 2 1 1 P 2 + 4 9 8 P 3 - 471F4 + 1 5 7P5) » 

x6 = ^ p ( l - 31p + 180p2 - 390p3 + 360p4 - 120p5) : 

HX = %! = \ + A , 

2̂ = 2̂ = K i - ^ 2 ) > 

Ms = X3 = | z l ( i - A2) , 

M4 = M - z i 2 ) ( ! + A2), 

K4 = 1 L ( I ~ A 2 ) ( 6 A 2 ~ i ) , 

a5 = 6 i T z i a - A 2 ) ( 1 1 6 A 2 - 7 1 ) , 

x5 = ^ A ( I - A 2 ) ( 1 - 6 A 2 ) , 

^6 = T r k a ~ Al) ( 6 3 + 10442 ~ 2 5 1 2 ^ 4 ) , 

x6 = ^ ( i - A2) (1 - 3 0 z l 2 + 120A4). 

(iv) In the case p •=£ \ the distribution function of the random variable Sn is singular 
for all n ^ 1. 

(v) For the characteristic function of the random variable Y we have 

lim sup |<Py(l)| < 1 . 
| l | - o o 
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(vi) Gn(x) can be approximated as follows: 

Cn(x) = $(x) + e x p ( - i x 2 ) ( 2 n ) - 1 / 2 | " ( l - .24 K 1 - 3P + 2P2) 
42и' n 

27 

P3(l - Pf 
+ x(3 - x2) 

40p(l - p)2 n 

+ (x5 - 10x3 + 15x) 

2 > 1 - Ip + 12p2 - 6/>3 

392p(l - p)3 

+ 

3(1 - Ъp + 2p2) 

?] + 0(и" 3 ' 2 ) 

uniformly in x; particularly, for p = \ 

G„(x) = Ф(x) + e x p ( - x 2 / 2 ) ( 2 я ) - ' / 2 í í ^ - ì + 0 (« - 3 / 2 ) . 
20n 

(vii) Let 0 < a < p„ < k < 1, n e~W~. Then 

(1) Gjx) = *(x) + 

- — )(2тr)" 1 / 2 (15x5 - 588x3 - 30x2 + 1689x - 30) + 
980n 

+ (A + 6A3
 + 30A5

 + 140A7
 + ...)(1 - x

2
). Vr^ + 

+ (A 2
 + 4A 4

 + 16A6
 + 67A8

 + ...)(15x
5
 - 588x

3
 + Í66x2 + 1689x - 618) 

-l-l+O^"3'2), 
980nJ 

where — after disclosing the parentheses — only those terms An are preserved for 
which the relation 

(2) lim IAJ n3 /2 = oo 

holds true. 

Particularly, for An = dn~i/2 we have 

12 G„(x) = 0{x) + exp ( -x 2 / 2 ) (27I)-1 

. | 1 5 X 5 - 588x3 - 30x2 + 1689x - 30) - i - + - ( l - x2) 
980/2 n 

(viii) Let {h„}"=1 be a sequence satisfying 

(3) 0 < lim inf hnn
s ^ lim sup hnn

s < oo 

+ 0(n~3'2). 
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for some s > 0. Then we have 

Hm G " ( x + K) ~ Gn{x) = exp(-x2/2) 

л-»co П n ҳ/ZIГ 

uniformly in x e [ — N, N],N e^V. 

(ix) Let {hJ^Li be a sequence satisfying (3). Let r = [s], r < s < r + 1. 

Then we have 

Gn(x + hn) - G„(x) = exp(-x2/2) 2^ v(x) , _ r ) 

h„ V2TT V=I nv/2 l ^ 

uniformly in x e [ — N, N], N e ^ , where qv(x) are polynomials of degree 3v — 2, 
defined by (12). 

3. In this section, the proofs of proposition just stated will be given. 

P r o p o s i t i o n s (i) and (ii). Let cpXk be the chf of Xk. Then 

<Pxk(t) = q + Pexp{it}, 
where q = 1 — p. Hence 

oo 

(4) (By = Y\(q + pexp{it.2~k}). 
* = i 

Now for p = ^ we get 
oo 

Vy = 1 1 - 0 + exp {(< . 2-"}) = 
* = i 

= fli[exp{- i/.2-(* + 1)} + e x p { / r . 2 - ( t + 1 >}]exp{a .2-« + 1 >} = 
/ c = 1 

00 

= exp{iit}ncos(t.2~(fc+1)). 
k=\ 

Using the Viet formula 
sin x J^ , ,x 

= ] ~ I C 0 S ( X - 2 " ) 
X / c = l 

we obtain 

sint/2 r . , . exp{it} - 1 
<By = — - - - exp {i . t/2} = E-LJ . 

I.e., Yis uniformly distributed over [0, 1]. 

Now for p + ̂  let us define new rvs ZM = ]T Kfe . 2~fc and denote by F„(x) their dfs. 
* = 1 

It follows from the definition of Zn that F„(x) = 0 for x = 0, Fn(x) = 1 for x > 1 and 

Fn(x) is constant over every interval (j . 2~w, (j + 1) 2~"], 0 ^ j = 2" - 1. As all 
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rvs Xk are equally distributed and independent, the discontinuity jumps of F„(x) 
will be of size 

(5) p-y 

for some le {0, 1, . . . , n}. Hence 

V(s > 0) 3(n0 BJr), V(n ^ n0 , n e / ) , V(je {0, 1, ..., 2" - 1}): 

E„(j.2-" + 0 ) - F „ ( j . 2 - " ) < £ , 

As 
F„ ( j .2 - " + 0) = F„(( ;+ 1 ) . 2 " " ) , 

we have also 

(6) F„((; + l ) . 2 - " ) - F „ ( ; . 2 - " ) < £ . 

Notice that 
V(« e Jr) V(m ^ n,ne Jr) V(/ e {0, 1, 2, ..., 2" - 1}) 

(7) Fjj . 2~") = F„(/, 2"") . 

As (7) holds we can define a function F* on the set 

A = (x: x G [0, 1], x =j . 2~\ « e / , ; e {0, 1, 2, ..., 2" - 1}} 

by the relation 
E*(j.2-") = F„ ( j . 2 - " ) . 

F* is continuous and increasing on A as follows from (5) and (6). Let us define 
a continuous function F on [0, 1] such that F(x) = F*(x) on A. The sequence 
{F„(x)},f=1 converges uniformly to F on [0, 1] as can be seen from (6). Thus we 
have proved that the sequence {Zn}n

G
=l converges in law. Consequently, F is the df 

00 

of Y = Yj^k - 2~k- Denote by mn(t) the number of ones among the first n digits in 
/ c = l 

the binary expansion of the number t. Obviously the binary expansion of the number 
X is 0, KJK2 •••• As a ' - r v s Xk have the same distribution with expectation p, it 
follows from the strong law of large numbers that 

-(h-^H)-
and hence 

PMX: x e [0, 1], lim - ^ - ) = p\\ = 1 . 

379 



On the other hand, 

A ( j x : x e [ 0 , l ] , l i m ^ = i } ) = l 

(where A is the Lebesgue measure), which proves that F is singular. 

P r o p o s i t i o n (hi). The central moments and cumulants were obtained by direct 
calculation from the chf of Y 

P r o p o s i t i o n (iv). First, we shall quote a definition and a theorem (see [3]) that 
will be used in the proof. 

Definition. A rv X is said to have a distribution of pure type if either 

i) there is a countable set D such that P(X e D) = 1 or 

ii) P(X = x) = OfOr every x e R, but there is a set D e ^ of Lebesgue measure 
zero such that P(X e D) = 1, or 

iii) P(X e dx) <^ l(dx) (X Lebesgue measure). 

Recall that p. <^ v denotes that p is absolutely continuous with respect to v; R denotes 

the real line and & the set of all Borel sets. 

Theorem (Jessen-Wintner). Let [/,, U2, •••, be independent rvs such that 
00 

i)Y,Vk-+U a.s., 
*= 1 

ii) for each k, there is a countable set Fk such that P(Uk e Fk) = 1. Then the distri­
bution of U is of pure type. 

Now we shall show that Jessen-Wintner theorem applies to rvs Sn: 

Sn = [(iY,)-n£Y][nvzrY]-l'2 = 
1=1 

= [ ( £ ix{».2-*)-nEY]invzrY]-^ = 
j = l k = l 

oo n 

= [ ( ! ZXi» .2-') - n£Y][nnrYyli* . 
k=l j=1 

Evidently, Sn satisfy both conditions i) and ii). Thus S„ is a rv of pure type. S„ cannot 
be a discrete rv as its df is the w-th convolution power of the df of (Yl — E Yt) : 
: y/(n var Yj) and thus continuous. We shall show that the df of S„ cannot be absolu­
tely continuous, either. As the chf of Sn ^/(var Yi) + n E Yt is 

[fl(q + pexp{it.2^})]" 
7 = 1 
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we must find that 

l i m s u p | [ П ( g + Pexp{/t .2~J'})]Л| > 0 
| ř | — «> j=l 

and then apply the Riemann-Lebesgue lemma. Let us estimate the absolute value 
of this chf at the point 2k . 2% for some k. 

(8) | [ П ( « + P e x p { i ř . 2 ^ } ) ] " | = 
J = I 

= [ П І 9 + Pexp{iř .2-- '} | ]- . 
J = I 

For 1 ^ j = k , q + p exp {it. 2n . 2~j} = 1 , 

for j = k + 1 , q + p exp {it. 2n . 2~~J} = q — p 

and the remainder of the product (8) will be 

R = [fl\q + pexp{n.2-'}\]". 
r = l 

Let us compare R with the absolute value of chf cpn of a sum on n rvs distributed 
uniformly on [0, 1], at the point n. We have 

kOOl = 
exp {iҡ} — 1 

IҠ lì 
and at the same time 

Let us compare first 

(9) 

and 

(10) 

the n-th factor in (9) being 

the n-th factor in (10) 

k W I = [ n | i + i exp{ /7 t . 2 - r } | ] " 
r = l 

oc 

n | q + pexp{ / j c .2 - r } | 
r = l 

00 

n | i + i exp{m.2- r }) , 
r = 1 

an = \q + pexp {/TU. 2""}| , 

+ i-exp{/7r.2"n}| . 

We find easily that an = ^/(l — 2p^r(1 — cos n . 2 ")). Let us minimize an with 
respect to p. The minimum is achieved at p = \ and is equal to bn. Thus we obtain 

°n^ bn, 
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hence 

R > 
2V 

for every k e .,f. Finally we have 

OO 

lim sup | [ f j (q + P exp {it . 2~j}]"\ #= 0 . 
I t l - O O J - = l 

P r o p o s i t i o n (v). Let us assume s e ( 0 , 2n). We shall show that \(p(t)\ < ce < 1 
for all |t| _ ^. Let t > 0, t fixed. Let us take the largest k0 such that 

t . 2 - f c 0 > - . 

As t . 2~(fc0+1) < \e, we have \s ^ t. 2~ko < 8. As the k0-th factor in product (8) 
has the form 

ako = V(l - 2pq(\ - cos t. 2~*°)) , 

we have ak < ce, where ct = ^/(l — 2pq(\ — cos \e)) < 1, because (1 — cos \e) > 0. 

P r o p o s i t i o n (vi). The following theorem is stated in (4). Let [Zi]fL1 be a se­

quence of equally distributed rvs with df V(x), E Zt = 0, E Z2 = o2 > 0. Let v(t) be 
n 

the chf of Zj and Hn(z) = P({(a Jn)"1 £ Z{ < z}). If E|Zt-|
fc < co for some k = 3, 

then for all z and n l = 1 

Hn(z) - <P(z) - * £ 2 v ( z ) 

v = l П 
v/2 

+ 

= c{k) {<r-*n-<'-2>/2(l + |r |)-» f |v|< dV(y) + 

t r - * - ] « - ( * - 1 ) / 2 ( l + Izl)-*- 1 f |y|- + 1 dV(j;) + 

+ (suP | r | g,Kt)i + 2n)"^ ( t + i ) / 2(i + H r - i » 

where (3 = cr2/(12 E|Zj|3) and c(k) is a positive constant depending on k only. The 

functions Qv(
z) a r e defined by 

W - - ^=f^ E W •(«) 11 ± I. «£••»)" • 
^j2n m = i km\ \(m + 2)! <r" + 2 / 

where the summation runs through all nonnegative solutions of the equations 

s = k1 + k2 + . . . + kv, 

v = k1 + 2k2 + ... + vkv 
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and where H }(z) is the fth Hermite polynomial. Inserting proper values into the 
relations defining Qv(z) we obtain Proposition (vi), if we put k = 4 and if we estimate 
the remainder in the following way. There is an n0 such that for all n _ n0, the set 
{y -|y| = (1 + i~\) a^/n)is of measure zero. Thus the first term of the remainder is 
annihilated. For the same reason, the integral in the second term equals to the 
(k + l) -st absolute moment for all n _ n0, the upper bound for the second term 
being thus 

a~5/2n~3/2 ElY^5 - [ip(1 - p)]~5/2 n~3 / 2 E ^ 5 . 

As sup |<pyi(f)| < 1 , we have also (sup |<Py.(f)| + l/2n) _ w < 1 for all n suffl-
\t\=s | t |s* 

ciently large; hence w"n10 is a upper bound for the third term of the remainder. 
Now it is easy to see that the whole remainder is of order 0(n~~3/2). 

P r o p o s i t i o n (vii). To prove Proposition (vii) we shall make use of Proposition (vi). 
We have only to check that (vi) remains true also for p = pn. To this aim it is sufficient 
to show that the set {|y| _ (l + |z|) an -Jn} is null set with respect to Vn(y) for every 
n _ n0 and some n0 and that a~5/2n~3/2 E|YlB|5 = 0(n~3/2). However both these 
requirements are fulfilled owing to the fact that an = pn(l — pn) are bounded away 
from zero. Finally sup |<PylM(0| < c < 1 with some c not depending on n, for the 

\t\Z*n 

same reason. Now we may put p = \ + A in the formula given in Proposition (vi) 
and expand the obtained expressions into power series in A. We shall get 

(11) Gn(x) = <J>(x) + 

+ exP ( -x 2 / 2 ) (2TT)-1 / 2 j V l +(fi K i + l) : . . . .^(f + fc- 1) ^ j 2 ) f c ( J _ ^ 2A 

/ 3 °° 
. / [A 2 (£(4A 2 )*)( l5x 5 - 588x3 - 30x2 + 1689x - 30) + 

"V 14n fc = o 

+ f ( 4 ^ ) ( 4 9 x 2 - 1 4 7 ) ] - i - l + 0 ( n - ^ ) , 
k=o 980nJ 

and after a rearrangement, the relation (1). 

P r o p o s i t i o n (viii). To prove Proposition (viii) we shall make use of the following 
theorem proved in (4): 

Let {Zi}fL1 be a sequence of independent equally distributed rvs and let Hn be the 
00 

dfof[YJ(Zi - EZ1)] /> / (nvarZ1) . / /sup| i?(r) | < 1, E|-Zi|* <oo for some k _ 3 then 
; = i \t\>s 

Hn(z) = <P(z) +*£ 2M + 0(n-«-W) 
v = l П 
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uniformly in z(— co < z < co). We can write s = [5] + A, 0 = X < 1. Let us use 
the theorem just stated with k = 2[s] + 4. Then 

| i m Gjx + hn) - Gjjx) = H m f<P(x + h„) - g(x) + 

n-»oo nn n-»00 ( lZn 

2 [ r 2 Qv(* + y - QM + Lo(n-™+m\ = 

v = l « V / 2 l t„ h„ V ; j 

where cn e (x, x + hn). The last member converges to zero, because 

n-» 00 

As 

dx 

1 n [ s : i + Wn" ( [ s : l + 1 ) ) 
lim - o(n-(Ы+1>) = lim Щ > = 0 

K п-00 h„nísì+i 

exp("" T/H*^ = ~exp\ 2)Hk+1^' 

2v(£n) is bounded by a constant depending on v and N only. Thus 

2[s] + 2 0,<t \ 

-—' v/2 
v = l П 

P r o p o s i t i o n (ix). The proof of Proposition (ix) is based on the theorem quoted 
in the proof of Proposition (viii), where we put k = Ar + 4: 

(12) G„(x + hn) ~ Gn(x) = $(x + hn) - <P(x) + 

K K 

+

 4fy4 QX* + K) - QM + ±0(„-(2r+m 
v=i n v / 2 h„ K 

<IÁX) = — ôvOO • 
dx 

The last term is of order o(n r), as 

lim nr — o (n - 2 r _ 1 ) = 0 . 
n-* oo Hn 

The use of Taylor formula gives 

<P(X + K)-*M = nx) + mhn, 
K ' 2! 
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where £ e (x, x + h.,). As lim h„tir = 0 , <£"(£) h,, = o(n r). Analogous consider-
n-* oo 

ations are to be made for further terms and the members possessing only Qv with 

v > 2r may be omitted, because they have order o(n~r). 

I wish to express may gratitude to Prof. RNDr. Vaclav Dupac, CSc, under whose 

guidance the paper was written. 
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S o u h r n 

O VLASTNOSTECH DVOJKOVÝCH NÁHODNÝCH ČÍSEL 

JAN ÁMOS VÍŠEK 

Nechť {Xr}k
x>

=l je posloupnost nezávislých nula- jedničkových náhodných veličin. 
OO 

Potom dvojkovým náhodným číslem (dnč) rozumíme Y=]TXfc.2~fc. Nechť 
fc=i 

P(Xk = l) = \ + A, — \ < A < \. V článku je ukázáno, že Y má rovnoměrné 
rozdělení na [0, 1] pro A = 0 a singulární v ostatních případech. Dále je pomocí 
Edgeworthova rozvoje studována rychlost konvergence normovaných sum dnč 
k normálnímu rozdílení závislosti na A a to i v případě A = Ak. 
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