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ON PROPERTIES OF BINARY RANDOM NUMBERS

JAN AMos ViSEx

(Received April 30, 1973)

1. This paper was stimulated by investigating properties of random numbers
produced by physical generators (see [1]) The output of an ideal generator is a se-
quence of zeros and ones which can be viewed as independent relaizations of random
variables (rv) taking on values 0 and 1 with equal probability 4. Considered as a binary
expansion of a number from the interval [0, 1], such a sequence represents a rv
uniformly distributed over [0, 1].

A real physical generator, however, produces a sequence in which the probabilities
of zeros and ones are only approximately equal and whose terms are only approxim-
ately independent. Moreover, a real generator produces finite expansions only.
For these reasons, the produced random numbers are only approximately uniformly
distributed. The purpose of this paper is to investigate theoretically the-consequences
of violation of just one postulate of an ideal generator; namely, the consequences
of unequal probabilities p & g of zero and one. Particularly, the behaviour of sums
of such random numbers is studied, because by means of those sums normally distri-
buted rvs are usually simulated.

Some results (Proposition (i)) are known; others were obtained by applying
known general theorems to our situation (Propositions (vi) and (vii); also Proposition
(ii) can be deduced from a known more general result, but here a simple direct proof
is given); some other results are new, although not very difficult to prove by standard
tools of probability theory.

2. Denote by A" the set of all positive integers. Let {X,};=, , {X{"}e%,, je A and
(X, 1 <m < n, ned, be sequences of independent zero-one rvs with
P(X,=1)=p, P(X =1) = p; P(X;" = 1) = p,forallke A jeN, 1 S m, £
<nnedt andforsome0 < p < 1,0 < p, < 1;denote 4 = p—%,4,=p, — L

Put Y=YX,.27% v, =Y xP.27% v, =Y X{"". 275 S, = (Zle — nEY,)):
k= k=1 k=1 Jj=

1
: \/(n var Yl) and Snn — (z": Ymn —n E Yln)/\/(n var Y;,,)- Let G,,(x), Gnn(x) be distribu-
m=1
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tion functions (df) of S, and S,, respectively. Denote by ¢ the normal df with zero
mean and unit variance. A df is said to be singular if it is continuuous and if the
corresponding probability distribution is concentrated on a set of Lebesgue measure
Zero.
For rvs defined above, the following propositions hold true:
(i) Y is uniformly distributed over [0; 1] if p = 1.
(it) The df of Yis singular and increasing on [0, 1] if p # 3.
(ili) Y has the following central moments and cumulants:
My =% =P,
2 =%y = 3p(1 = p),
Lp(l = 3p +2p%),
Hq = 115 p(l - 2[) + 2p2 — p3).

K3 = X3

s = 15 p(1 = Tp + 12p* — 6p°),

Hs = g5; P21 — 625p + 2290p> — 2810p® + 1124p),

s = 37 p(1 — 15p + S0p* — 60p* + 24p*),

1t = o7 p(T + 20p — 211p* + 498p° — 471p* + 157p°),
#6 = g3p(1 = 31p + 180p* — 390p* + 360p* — 120p°) :
[y =%y =3+ 4,

Hz=%2=%‘lt_A2)’

iy = w3 = 34(5 — A7),

e =73z — 47 (§ + 47),

ke = 5 = 4 (647 = ).

ns = s574(y — 47) (11647 = 71),
o= AL — (1 - 6.
fs = 7o56(y — 47) (63 + 1044% — 25124%),

1 /1

e = 5L — 4%) (1 — 3047 + 1204%) .

iv) In the case p # % the distribution function of the random variable S, is singular
2
foralln = 1.

(v) For the characteristic function of the random variable Y we have

lim sup |@y(f)] < 1.

(L
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(vi) G,,(x) can be approximated as follows:

42n'/?

_ 2 63
\/(_ 21 >+x(3—x2)l 7p + 12p 6p N

40p(1 — p)*n

Gy(x) = ®(x) + exp (— +x?) (2n)” "2 I:(l - x?) p(l = 3p t—»zez).

_ 2\2
+ (x5 — 10x3 + lsx) ggLJ!),t%li + 0(;1_3'2)
392p(1 — p)’n

uniformly in x; particularly, for p = 4
2 —
Go(x) = B(x) + exp (—x2J2) (2m) 12 X223 o pmar2y,
20n
(vii) Let 0 < a < p, <t <1, neA". Then
(1) Go(x) = ®(x) +
2
+exp( — S} 2n)7 12| (15x° — 588x% — 30x* + 1689x — 30) —— +
2/ 980n

3
14n +

+ (4 + 64° + 304° + 14047 + ) (1 — x?).

+ (4% + 44* + 164° + 674°% + ..) (15x° — 588x> + 166x> + 1689x — 618) .

] + 0(n12),

1
980
where — after disclosing the parentheses — only those terms A, are preserved for
which the relation

(2) lim |4, n** = o0
holds true.

1/2

Particularly, for 4, = dn™""* we have

G,(x) = ®(x) + exp (—x?*[2) (27)"/%.

1
.1 15x° — 588x% — 30x% + 1689x — 30) — + g(1 — xz) i + O(n“”l) .
980n n 14

(viii) Let {h,}, be a sequence satisfying

(3) 0 < lim inf A,n* < lim sup h,n* < ©

n—oc n— o0
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for some s > 0. Then we have

L Glx ) = G(x) _ exp (= x°[2)

n—= o h,, \/27'[
uniformlyinxe[—N,N],Ne A"
(ix) Let {h,}., be a sequence satisfying (3). Let r = [s],r <s <r + 1.
Then we have
_ 2 2r
G,,(X + hn) Gn(i)_ — exp( X /2) + qv(x) + 0("—7)
h, J2n =1 n'?

uniformly in x e[ =N, N], N e A", where q,(x) are polynomials of degree 3v — 2,
defined by (12).

3. In this section, the proofs of proposition just stated will be given.
Propositions (i) and (ii). Let @y, be the chf of X,. Then

ox(t) = g + pexp {it},
whereg = 1 — p. Hence

) oy = [1(q + pexp {it.274)).
k=1
Now for p = 1 we get
oy = [13(1 + exp {it.27%}) =
h=1

= H Hexp {— it . 27** D} 4 exp {it . 27* D exp {it . 27**V} =
k=

1
= exp {4it} []cos (t.27** D),
k=1
Using the Viet formula
mx_ [Tcos(x.27%)
x k=1

we obtain

oy = sin 12 exp {i . 1]2) — exp {i.t} -1 ‘
12 it

Le., Yis uniformly distributed over [0, 1].

Now for p = 1 let us define new rvs Z, = ) X, .27 and denote by F,(x) their dfs.
k=1
It follows from the definition of Z, that F,(x) = 0for x < 0, F,(x) = 1 for x > 1 and

F,(x) is constant over every interval (j.27" (j + 1)27"], 0 <j £2" — 1. As all
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rvs X, are equally distributed and independent, the discontinuity jumps of F,(x)
will be of size

(5) pn—lql
forsome I € {0, 1. ..., n}. Hence
V(e > 0)3(npeA), Y(n=ny, net), V(je{0,1,..,2" - 1}):

F(j.27"+0) = F(j.27") <,
As

F(j.27"+0)=F((+1).27"),
we have also

(6) F(ji+1).27)=F(j.27")<e.
Notice that

V(neA)V(m =2 n,ne4)V(je{0,1,2,....2" — 1})

) R 277) = G277
As (7) holds we can define a function F* on the set
A={x:xel[0, 1], x=j.27" nedt", je{0,1,2,...,2" — 1}}

by the relation
FY(j.27") = Fy(j.27").

F* is continuous and increasing on A4 as follows from (5) and (6). Let us define
a continuous function F on [0, 1] such that F(x) = F*(x) on A. The sequence
{F,(x)}s=1 converges uniformly to F on [0, 1] as can be seen from (6). Thus we
have proved that the sequence {Z,}7., converges in law. Consequently, F is the df

of Y=73 X,.27% Denote by m,(t) the number of ones among the first n digits in
k=1

the binary expansion of the number z. Obviously the binary expansion of the number

X is 0, X,X, .... As all rvs X, have the same distribution with expectation p, it

follows from the strong law of large numbers that

p(for im mEID < pf) =

P, ({x: xelo 1], 1::121"-’?‘—) - p}) ~1.

and hence
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On the other hand,

/{({x: xefo, 1], lirgrﬁrg—ﬂ = ;}) =1

(wherc 4 is the Lebesgue measure), which proves that F is singular.

Proposition (iii). The central moments and cumulants were obtained by direct

calculation from the chf of Y.

Proposition (iv). First, we shall quote a definition and a theorem (see [3]) that
will be used in the proof.

Definition. A4 rv X is said to have a distribution of pure type if either
i) there is a countable set D such that P(X € D) = 1 or

ii) P(X = x) = 0 for every x € R, but there is a set D € B of Lebesgue measure
zero such that P(X € D) = 1, or
iii) P(X e dx) < A(dx) (4 Lebesgue measure).
Recall that u < v denotes that p is absolutely continuous with respect to v; R denotes
the real line and A the set of all Borel sets.
Theorem (Jessen-Wintner). Let U, U,, ..., be independent rvs such that

i) YUy, - U as.,
k=1

it) for each k, there is a countable set F, such that P(U, € F,) = 1. Then the distri-
bution of U is of pure type.
Now we shall show that Jessen-Wintner theorem applies to rvs S,,:

S,=[(XY)—nEY][nvarY]"'? =
j=1
=Y Yx2.27Y)—nEY][nvar Y]V =

j=1k=1

(S S XD 2N — wEY][nvarv] 2

k=1 j=1

Evidently, S, satisfy both conditions i) and ii). Thus S,, is a rv of pure type. S, cannot
be a discrete rv as its df is the n-th convolution power of the df of (¥Y; — E Y}):
: /(n var Y,) and thus continuous. We shall show that the df of S, cannot be absolu-
tely continuous, either. As the chf of S, \/(var Y;) + n E Y, is

[fj[(q + pexp {it. 27"
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we must find that

o

limsup |[[[T(q + pexp{it.277})]"| > 0
1

[l j=

and then apply the Riemann-Lebesgue lemma. Let us estimate the absolute value
of this chf at the point 2% . 2r for some k.

(8) |[,-E11(q + pexp {it. 27Y)]"| =

= [_Hllq + pexp{it.2_j}|]".
=
For 1<j<k, g+ pexp{it.2n.27/} =1,
for j=k+1, g+pexp{it.2n.27} =q—p

and the remainder of the product (8) will be

R = [rfjan + pexp{n.27}H]".

Let us compare R with the absolute value of chf ¢, of a sum on n rvs distributed
uniformly on [0, 1], at the point 7. We have
n . —% n
n

|ou(m)] =
|on(m)| = [r]i[ll% + Jexp {in . 277}[]".

exp {in} — 1
in

and at the same time

Let us compare first

%) rlj‘q + pexp {in.27"}|

and

(10) I

r=1

1+ texp{in.277}),
the n-th factor in (9) being

a, = |q + pexp {ir.27"}|,
the n-th factor in (10)
b, =4 + Lexp{in.27"}.

We find easily that a, = /(1 — 2pg(1l — cos =.27")). Let us minimize a, with
respect to p. The minimum is achieved at p = { and is equal to b,. Thus we obtain

angbn’
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hence

for every k € A". Finally we have

]1msup|[n g+ pexp{it.277}]"| £ 0.

Jt]=

Proposition (v). Let us assume ¢ € (0, 2r). We shall show that |¢(t)] < ¢, < 1
forall |f| = e Let 1 > 0, t fixed. Let us take the largest k, such that

t.2 7k >

Nl“

As 1.27%e* D) < 1g we have e < 1.27% < &. As the ky-th factor in product (8)
has the form

ay, = /(1 = 2pg(1 — cost.27%)),
we have q, < ¢,, wherec, = \/(1 — 2pq(1 — cos }¢)) < 1, because (I — cos 1¢) > 0.

Proposition (vi). The following theorem is stated in (4). Let {Z;}2, be a se-
quence of equally distributed ros with df V(x),EZ; = 0, EZ} = ¢* > 0. Let v(t) be

the chf of Z, and H,(z) = P({(c \/n)"' Y. Z; < z}). If E|Z]]* < oo for some k = 3,
i=1

then for all z and n

B~ o) - 3 ) <

< o(k) {o 7 n" P21 4+ [zl)_"‘[ Iy]" dv(y) +
Iylzovn(1+]z])

+ g Th IR 4 |Z[)_k_lf ly|kH dv(y) +
Iyl <avn(1+]z]>
+ (suppyzs [o(1)] + 5,7 nH*T D1+ [2]) 7

where 6 = ¢*/(12 E|Z,|*) and c(k) is a positive constant depending on k only. The
Sunctions Q(z) are defined by

0.2) - - “"i @Ry T - (-———-——)

m=1 k! \(m + 2)! g"*2
where the summation runs through all nonnegative solutions of the equations
s=k +k,+...+k,,

v==ky + 2k, + ... + vk,
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and where H(z) is the j-th Hermite polynomial. Inserting proper values into the
relations defining Qv(z) we obtain Proposition (vi), if we put k = 4 and if we estimate
the remainder in the following way. There is an n, such that for all n = n,, the set
{y:]y] = (1 + iz]) o/n}is of measure zero. Thus the first term of the remainder is
annihilated. For the same reason, the integral in the second term equals to the
(k + 1) -st absolute moment for all n = n,, the upper bound for the second term
being thus

0_—5/2n—3/2 E|Y1|5 — [:%_p(l - p)]—5/2 n’3/2 E|Y1|5 .
As sup |py (1)) <1, we have also (sup |@y,(f) + 1/2n) £ w < 1 for all n suffi-
It]zé HEL)

ciently large; hence w"n!® is a upper bound for the third term of the remainder.
Now it is easy to see that the whole remainder is of order O(n™3/2).

Proposition(vii). To prove Proposition (vii) we shall make use of Proposition (vi).
We have only to check that (vi) remains true also for p = p,. To this aim it is sufficient
to show that the set {|y| = (1 + |z|) o, /n} is null set with respect to V,(y) for every
n = n, and some n, and that ¢, *?n™*? E|Y,,|* = O(n™*/?). However both these
requirements are fulfilled owing to the fact that ¢, = p,(1 — p,) are bounded away
from zero. Finally sup |gy, ()] < ¢ <1 with some ¢ not depending on n, for the

t|Zon

same reason. Now we may put p = 4 + 4 in the formula given in Proposition (v1)
and expand the obtained expressions into power series in 4. We shall get

(11) G,(x) = o(x) +
33+ G+ k-

exp (=) @ a1+ (5

k=1 k!

)(‘M (1 —x ))
\/_ - [A2(2(4A2)k)(15x — 588x3 — 30x* + 1689x — 30) +
+§0(4AZ) (49x2 — 147)] %10_"} + 0(n=372),

and after a rearrangement, the relation (1).

Proposition (viii). To prove Proposition (viii) we shall make use of the following
theorem proved in (4):

Let {Z}2, be a sequence of independent equally distributed rvs and let H, be the
df of [ Y, (Z; — EZ,)]|\/(n var Z,).If sup |u(t)| < 1,E|Z,|* < oo for somek = 3 then
i=1 |t]>s

H() = o) + 3 B 4 ooy
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uniformly in z(— o0 < z < o). We can write s = [s] + 4, 0 £ A < L. Let us use
the theorem just stated with k = 2[s] + 4. Then

im Gl ) = Gi(x) _ {<D(x + ) = ¥x)

n—w h" n-w hn
HIF20(x + k) — Ox) 1 G141
+ > < A+ = o(nm T -
Z n?h, h, ( )}
2 2[s]1+2 4
= exp(— i;—) (2m)~2 + lim [ > Qn%i") + hi o(n"(m“))] ;

where &, € (x, x + h,). The last member converges to zero, because

[s1+1 —([s1+1)
lim L o(n=®1* V) = lim " o(n M7 =
n—oo n— oo h,,nm“

0.

n

L S

Q;(f,,) is bounded by a constant depending on v and N only. Thus
2[s1+2
0Ue) _ o

lim =
n—w V;l nv/2
Proposition (ix). The proof of Proposition (ix) is based on the theorem quoted
in the proof of Proposition (viii), where we put k = 4r + 4:

Gy(x + h,) = G(x) _ ®(x + h,) — (x) N
h, h,

(12)

4r+4 -
+ Yy 0,(x + fvl/,,z)h 0,(x) + 1 o(n=r+ 1)
v=1 n n

n

d
qv(x) = Qv(x) .
dx
The last term is of order o(n™"), as

lim n'i o(n™* 1) =0.

The use of Taylor formula gives

P(x + hy) — P(x) _

(o o 279
h, Pl + = s
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where ¢e(x,x + h,). As lim h,n" =0, @"(¢)h, = o(n™"). Analogous consider-

ations are to be made for further terms and the members possessing only Q, with
v > 2r may be omitted, because they have order o(n™").

I wish to express may gratitude to Prof. RNDr. Vaclav Dupaé, CSc., under whose
guidance the paper was written.
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Souhrn
O VLASTNOSTECH DVOJKOVYCH NAHODNYCH CISEL

JAN AMmos ViSEK

Necht {X,}; | je posloupnost nezavislych nula- jedni¢kovych nahodnych veligin.
Potom dvojkovym ndhodnym &islem (dn&) rozumime Y =Y X,.27% Necht
k=1
P(X,=1)=131+4+4, — 1 <4 <1 V &anku je ukdzano, Z¢ Y ma rovnomérné
rozdéleni na [0, 1] pro 4 = 0 a singularni v ostatnich ptipadech. Déle je pomoci
Edgeworthova rozvoje studovdna rychlost konvergence normovanych sum dng
k normalnimu rozdileni zavislosti na 4 a to i v piipadé 4 = 4,.
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