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REALISATION OF RENDEZVOUS BY THE TRANSFER ORBIT
WHICH IS TANGENTIAL TO THE ORIGINAL
AND TERMINAL ORBITS

KAREL MiSox

(Received February 22, 1972)

The rendezvous realised by the cotangential transfer between two prescribed flight-
pathes is studied. General formulas based on the two bodies problem are in the con-
clusion applied to a numerical example calculated for the earth gravitational field.
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§ 0. LIST OF NOTATION

Roman numerals in brackets indicate the corresponding columns of the tables
in §8.

a semi-major axis of the ellipse (4, 1)

semi-major axis of the orbit (XI), (6, 7), the parking flightpath and the
trajectory

space ship transferred from 2 to .7 (§ 2)

semi-minor axis of the ellipse (4, 5)

semi-minor axis of the orbit (6, 7)

the object passing along the final trajectory 7 (§ 2)
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half the distance of foci of the ellipse (4, 4)

half the distance of foci of the orbit (XIII), (6, 7), the parking-flightpath
and the trajectory

eccentric anomaly of Kepler’s ellipse (4, 10)

functional dependence characterising the type of the orbit in the depen-
dence on the launch point (IX), (7, 1)

tangent point of the transfer orbit and the parking flightpath (§ 6)

tangent point of the transfer orbit and the final trajectory (§ 6)

transfer orbit tangential to both the parking flightpath 2 and the final
trajectory 7 (§2)

transfer orbits distinguished with respect to the launch points (§ 3)
parameter of the ellipse (4, 1), semi-latus rectum (half the focal chord
perpendicular to the axis of the curve)

parameter of the orbit (X), the parking flightpath (2, 1) and the trajectory
1)

parking flightpath (§ 2)

radius vector of a point of the conical section (X VIIL, XXVIII), (2, 1)
radius vector of the point M (III), (6, 2)

time (§ 4)

(or t;, (5, 1)) time of the periapsis passage of the orbit (§ 1), the parking
flightpath (§ 2) and the trajectory (ibid.)

common tangents of the conic sections 2, 7 (§ 7)

or t(¢, + ¢;), dependence of time on the vectorial angle (II, XXVI or
XXV), (§ 3), (5, 1) (““flight schedule”)

flight time from the periapsis to the point with the true anomaly ¢, (for the
orbit XXII, XXIII), (4,9)

orbital period (4, 6)

or T;, orbital period on the orbit (XIV), (6, 7), the parking flightpath
and the tajectory

transfer time of the orbital flight from 2 to 7 (XXIV), (§ 6)

transfer time on the orbit denoted by 0; (§ 3)

final trajectory (§ 2)

orbital velocity (XXX), (§4)

orbital velocity at the point M (V), (6, 3), escape velocity at the point
M (VI), (6, 5)

launch velocity realising the transfer of the object A from the parking
flightpath £ to the transfer orbit ¢ (VII), (6, 4)

impulse change of velocity at the moment of the transfer from 2 to 0
(VIII), (6, 6)

eccentricity of a conic section (4, 3)

eccentricity of the orbit (XIII), the parking flightpath (2, 1) and the tra-
jectory (ibid.)



9 tangent angle; the angle between the velocity vector and the zenithal
direction (XX, XXIX), (§4)

In tangent angle corresponding to the point M (IV), (6, 1), (7, 1)

7 constant of the central body; gravitational parameter (4, 1); numerically
for the earth field (8, 5)

15*) or 7,;, moment of the passage of the body A4 through the launch point
of the parking flightpath 2 (II), (§ 2) (to the orbit @, respectively (§ 3))

75%) or t,;, moment of rendezvous of the body A (flying along the orbit @;

(§ 3)) with the body B (§ 2) (reaching by the body A of the trajectory 7,
respectively (§ 3))

1) vectorial angle (polar coordinates) (2, 1), (§ 4), (I)

Pa true anomaly (for the orbit (XV), for the trajectory (XXI)) (4, 7), (5, 1)

Po.p,7 or ¢;, vectorial angle of the periapsis of the conic section @ (XVI), 2, 7~
(2, 1); for @, cf. (4, 8)

P2j.7j vectorial angle of the tangent point of the orbit 0; with the conical sections
P, T (§3,¢)

Poj sequence (j = 1,2,...) of vectorial angles of the tangent points of 2
with @ (§ 6)

Py v vectorial angles of (variable) points M (I), (§ 6) and N (XVIL), (§ 6)

@, 7**) vectorial angle of the (fixed) launch point (tangent point of @ with %)
to the orbit (§2, «) and of the (fixed) transfer point (tangent point of 0
with 77) to the trajectory (§ 2, §)

The list does not include auxiliary quantities o, &, # (§ 6) used ad hoc only as well
as the quantities appearing only in § 8.

1. FORMULATION OF THE PROBLEM

The present paper realises the suggestion which is expressed in the final sentence
in [2,§5]:

The requirement of the contact of the conic section ¢ with two semi-confocal
conic sections 2, 7 which appears in studying transfer flightpaths of space ships
has been solved [11] from the geometrical view point by a grapho-analytical method
which is analytically transformed to the successive approximations. The present
paper shows that the kinematic approach allows to determine exactly the double
cotangential transfer path @. The crucial idea is to express the flight quadric in the
central field in the dependence on a fixed starting point and the flight direction
on Z with a variable scalar parameter of the magnitude of the orbital velocity, which

*) Values in brackets (5, 5) or ((t#,5)) denote the approximations in the iteration process

¢3,1).
**) For values in brackets (@2, 7) or (@2, 7)) cf. the preceding footnote.
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realises the transfer from 2 to @. The requirement of contact of ¢ and J makes
it possible to express explicitly the orbital velocity and hence all the elements of the
double osculating path 0.

The exact formula (6, 4) for the launch velocity in the dependence on the starting
point is used to find (successive approximations, § 3) the starting point on .2 from
which the object on 2 is transferred to O so that the moment of its arrival at the tan-
gent point with 7 coincides with the moment when the body moving along the path .7
passes through this point. Consequently, we deal with a rendezvous realised by a dou-
ble tangential passage which requires technically only two changes of the magnitude
of the velocity without a change of the flight direction.

Usual terms
Slightpath (path), orbit, trajectory

are specified in the paper so that the original parking flight 2 of the rocket is denoted
by the flightpath (path), the transfer (double cotangential) curve by the orbit @ and
the final quadric by the trajectory 7.

Besides a rendezvour of two space ships, the practical realisation of the suggested
manoeuvre may serve e.g. to launch a research probe into the head of a comet. The
probe awaits on a parking flightpath in the solar field the arrival of the comet and
(after determining more precisely the path of the comet) it is transferred by the
launch manoeuvre into the “body”’ of the comet.

The procedure given in the paper may be used for the transfer between any types
of non-degenerate quadrics. Nevertheless, in the paper we show the case of periodic
starting pathes as well as final trajectories (ellipses), the corresponding launch orbits
being not only elliptical but, as the case may be, also hyperbolical or even parabolical.

The case of coincidence of both the starting and the final ellipses, i.c., the problem
of double tangential rendezvous of bodies moving along the same ellipse with a given
time difference of the passage through the same positions is solved in [4].

2. MATHEMATICAL FORMULATION

Consider three non-degenerate conic sections
(2,1) (l +ecos(p—o))=p;; i=027,

where the subscripts 2 and J correspond to the (starting) parking flightpath 2
and the final trajectory 7 respectively while O correspond to the desired transfer
orbit (. In addition to the elements p;, &;, ¢;, | = 2, 7 we assume that the moments
15 - of the passage of the launched body A on the path 2 and of the body B (which
is the target of the rendezvous) on the trajectory 7 through the periapses are pre-
scribed. Then our task is to determine:
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o) the vectorial angle @, of the launch point, i.e., of the tangent point of the qua-
drics 2, 0, the moment 1, at which the body A4 passes through this point and the
impulse change of the orbital velicity;

B) the vectorial angle @ of the rendezvous point, i.e., of the tangent point of the
quadrics 0, 7, and the moment 7, at which the both bodies A, B meet at this point.

Auxiliary quantities for finding the values @, ,, 7, 5 are apparently the elements
Po> €0» Pe» 1o Which specify the shape, the location and the time of the periapsis
passage of the transfer orbit . Here t, may be a fictitious time in case that the periap-
sis of the transfer orbit does not belong to the launch section.

3. PLAN OF SOLUTION

Considering the character of our task, we cannot hope to express expiicitly the
quantities @, -, 7, 5. We choose the following scheme of solution:

a) We find the dependence of time on the vectorial angle of the body A4 on the path
2 and of the body B on the tajectory 7 (the “flight schedule”).

b) We discuss the sections of the parking flightpath 2 from which the cotangential
transfer to the trajectory .7 is at all possible. At the same time we determine the

sections of the final trajectory to which the cotangential transfer is possible.

¢) In the admissible sections where the launch is possible we choose a sequence
of points by their vectorial angles ¢,;, j = 1,2,... We determine the'cotangential
transfer orbits 0}, j = 1, 2, ... whose tangent points with the path 2 are the points
¢,;> then we calculate the vectorial angles ¢;, j = 1,2, ... of the tangent points
of 0; and 7 and determine the flight time T,; through the section of the orbit 0;
between the angles ¢,;, ¢.-;. The values T,;, j = 1, 2, ... will be called the transfer
times.

d) Adding the transfer times T),; to the moments t,; of the passage of the body 4
through the points with vectorial angles ¢5; we obtain the moments 7; at which the
body A which is launched at he points ¢,; into the cotangential orbit ¢; reaches
the final trajectory 7. The diagram of the dependence of 7-; on ¢ ; will be called
the transfer flight schedule (from the parking flightpath to the final trajectory).

e) If both the transfer flight schedule and the final trajectory flight schedule are
considered in the same coordinates then every point of intersection of both fligh
schedules represents a possibility to realise the rendezvous of the body 4 with the
body B. The coordinates of the points of intersection are the values @, 7, which were
found in f8), § 2. We find their approximation from the graph.

f) We estimate the values (&), (1) corresponding to the approximation @, 7,
from e), determine the corresponding transfer orbit (0) and evaluate the corresponding
(P4), (7). If the values (®;), (t;) do not satisfy the final trajectory flight schedule
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with the necessary accuracy we pass from the estimate (@), (tp) to an estimate
((®p)), ((zp)) etc. until we reach the desired accuracy. Hence we find the pair @p, 7,
(which is to be found according to «), § 2) or the elements p,, g, to of the transfer
orbit @. This essentially immediate procedure is practically eliminated if a computer
is used with a suitable tabulation (Cf. § 8 below.)

4. INITIAL CONDITIONS

From the number of possibilities how to prescribe the initial conditions of the flight
along an ellipse we choose five values:

r ... radius vector

@ ... vectorial angle

9 ... tangent angle (i.e., the complementary or explementary angle to that between
the vector of velocity and the local horizon)

v ... orbital velocity

t ... the corresponding time

If need be, we can evaluate from these quantities: the parameter

(4,1) p = (rvsin 9)?[u,
the semi-major axis
(4,2) a=r/2— ro*lp),

the eccentricity

(4,3) e = /[l + (v® — 2ufr) (rvsin 9u)?],
the half distance of foci

(4.4) e =ag,

the semi-minor axis

(43) b=ay(l - ) = (@ - &)

and the orbital period

(4,6) T = 2nab[(rvsin® 9) = 2r /(a®[p) = 2n J{[p|(1 — €*)]*[u} .

The true anomaly @, of a point (r, ¢) is found uniquely from the pair of relations

(4,7) esin @, = vcos 9. ./(pln),
1+ ecos g, =vsin 9. /(p[n)

and hence the location of the line of apsides oriented with respect to the periapsis

(4.8) Po =9 — @,-
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The moment of the passage through the periapsis

(49) (o) — *(¢a)
is found from the given value #(¢) = t and from the evaluated value (Kepler’s equa-
tion for an ellipse)

(4,10) t*(¢) = T(E — &sin E)/(2n),
where

tg (Ef2) = tg([2). (1 = 9)/(1 + &)] .

In the sequel we follow the steps a) to d), § 3.

5. DEPENDENCE OF TIME ON THE VECTORIAL ANGLE

To determine the relation between the time and the vectorial angle (the flight
schedules)

(5.1) (@) = (@, + @) = (@) + t;; i =P, T¥

of the original path and the final trajectory we use Kepler’s equation.

6. TRANSFER ORBITS

Let @, denote an arbitrary one from the chosen values ¢@q;,j = 1, 2, ... to which the
starting point M corresponds on the parking flightpath 2. For the other elements
at this point we find the tangent angle 3,:

(6,1)  tg 9y = cotg(Py — @p) + [cosec(Py — 0p)][es; Ine(0,7),

the radius vector

(6,2) v = Ps(l + &5 cos (Py — @5))

and the corresponding orbital velocity on the parking path

(6,3) ope = J[#2[ry = 1]as)] -

Hence we calculate the necessary initial velocity to the transfer orbit

(64)

v = v (P7 - "M(] + &r COS( T ‘DM))) D7

n I . . .
M Py + (e — 1) (rysin 8y)* — 2psesrysin 9y . sin (Sy + Py — @)

*) We substitute a more or less arbitrary sequence for ¢, with respect to the desired accuracy
of the graph constructed (e.g. 9, = 0°, 10°, 20°, ...) without being limited by the pair or relations
(4, 7) which actually express a property of the orbit.
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with
(6,5) varn = /(20 ra)

denoting the parabolic velocity at the launch point M, so that the necessary in-
stantaneous change to the launch velocity is

(6,6) Av = v, — vy -

The four values @y, ry, 34, U, determine the shape as well as the location of the
transfer orbit whose elements

(6,7) Po> Ao €0y €05 hc’ T@? Po

are found from the formulas (4,1) to (4,8).

The vectorial angle @ of the point N of the rendezvous of the launched body
with the object moving along the final trajectory is given uniquely by the relation

(6,8) tg (dy2) = AL + &)

where
H = pees SN @ — pregsin Qg ,

&L = pet; COS P; — PrEcCOS P,
M= pr — pe.

The time of flight through the transfer section (transfer time T,) is found by means
of double use of Kepler’s equation (or, as the case may be, its modifications for hyper-
bolic or parabolic paths) or from Lambert’s equation.

7. LAUNCHING DOMAINS (KINEMATIC APPROACH)

The presented formula for the launching velocity (6,4) allows the kinematic ap-
proach to the problem of transfer orbits:

A real launching velocity and, consequently, also a real transfer orbit exists if and
only if the fraction in (6,4) is non-negative. If its value is zero, the launching section
degenerates to a point and the notion of contact becomes senseless. For given final
trajectory and parking path, the expression under the sign of square root is a function
of the vectorial angle @, ’

(7.1)
f(d)M) = ZP,;- — !){y[l * ey (.:OS (Py — ‘Pi)]/[l + 8::5’ cos (d)M - (P(y)] _—
ey — 1 Pop SIN Yy 2_ 2e7ppsin Gy sin (I + Py — @)
< w))

pr+
7 Py \I +éepcos(dy — 1+ &5 008 (Py — )
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where 9, is the tangent angle given uniguely (6,1) by the vectorial angle ®,,. Zero
launch velocity v, = 0 — which appears for f = 0 — evidently corresponds to the
intersections of the parking flighpath with the final trajectory. The infinite value of the
launch velocity v, » o0 means f — oo and hence zero value of the denominator
in fand points to a (fictitious) straight-line orbital flight, i.c., to the launch point at the
tangent point of common tangents f; ;; with the parking path. The behaviour off('(I)M)
yields the following launchihg possibilities: \

If /> 0 holds for all @, € <0, 2n) (2 and 7 have no common points), then the
double osculating transfer is possible from any point of the parking flightpath.

If f changes its sign according to the value of @, then there are four intervals
of the vectorial angles @,, with the following properties:

It is =<0 in two of them, f being strictly decreasing in one of the intervals
from zero under all bounds while in the other it is strictly increasing from minus
infinity to zero. Neither of the both intervals allows the cotangential transfer. In the
other two intervals, f = 0. In one of them, f increases from zero and comes back
to zero again (the domain of the inner launching) while in the other f decreases
from plus infinity and then increases to plus infinity again, remaining positive
all the time (the domain of the outer launching).

This describes all the possibilities of launching on the parking flightpath. If we
wanted to describe from the kinematic view point also the domain of rendezvous
on the final trajectory, it would be sufficient to repeat formally our argument re-
placing the parking path by the final trajectory and the final trajectory by the parking
path, i.e., interchanging the subscripts 2, 7 in the relation (1). ‘

In the conclusion of this section let us observe that for a positive value of f, the
inequality f(®,) < 1, >1 and = 1 indicates an elliptical, hyperbolical and para-
bolical orbital flight, respectively.

8. NUMERICAL EXAMPLE
In the end we shall present a numerical application of the method to a concrete

case of an elliptical parking path 2 which intersects the elliptical final trajectory 7.
We shall consider the same pair of ellipses as in [2]

a, = 140000 km , a; = 120000 km,
by = 121244 km, by = 113137km,
py = 10500-0 km , p,r = 10666-7 km ,
¢, = 70000 km, ¢, = 40000km,
¢p = 0,50000, e, = 0,33333,
¢, = 205°00'00", @, = 0°0000"
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with the additional choice of the moments of passage through the periapsis
tp = —4"08™56-2°, t, = 0"00™00-0° .
The following possibilities of the cotangential transfer between both ellipses were
found in [2]:
The domain of launching with outer contact on the parking flightpath is the in-
terval of vectorial angles

(8,1) (—49°47'10", 80°02'21")
which allows launching to the final trajectory in the domain
(8,2) (128°11°28", 262°04'04") .
The inner contact is possible on the parking path in the interval
(8,3) (106°1428", 286°14'26")
with the possible contact on the final trajectory in the range
(8,4) (—73°45'34", 106°14'28") .

The kinematic interpretation in the earth field with the gravitational parameter
[10]%)
(8,5) u = xm = 3,986032. 10° km?® s~ 2
yields for the corresponding orbital periods

(8,6) T, = 4"34™45-6°, T, = 3"38™02:2°.

Text to Table 1 (see next page)

Relation of the parking path £ and the transfer orbits ¢. The first and the last columns of the
table indicate the index j of the vectorial angle (§ 3, ¢) ¢g;. It distinguishes the positions on the
parking path (starting points M from § 6) to which the particular lines of all five tables refer.

Col. I: vectorial angle @, (the beginning of § 6)
1I: flight schedule 74 (5,1)
III: radius vector rgq (6,2)
IV: tangent angle & (6,1)
V: orbital velocity v (6,3)
VI: escape velocity vy (6,5)
VII: launch velocity v, (6,4)

VIII: instantaneous change of velocity 4vg (6,6) realising the start from the parking path 2
to the transfer orbit 0, i.e., the difference of values from Cols. VII and V. The tabulated
values arise by rounding-up; e.g., for j = 1 the difference 4774363 — 3612-107 = 1162-256
is rounded-up in the table to 4774:36 — 3612-11 & 116226, contrary to 1162-25 which
follows from the tabulated values.

*) We use the value 58 (8) (Clarce V. C., Kaula W. M, Kozai Y.).
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Table 2

[ - 1

I 3% f & X p ‘ XI a Xz | Xile | XIV T l

j - : AR R
1 1 l km ' km 1 ! km l h l m | s ;

[

L \05490150‘ 18 344-21 " 21 287-86 | 0-3718583 7916-07‘ 8 | 35 \‘ 10-61 ‘ 1
2| 4314804 1791840 | 1839901 | 1616214| 297367 | 6 | 53 | 5711 2 |
3| 5045719 | 19 285:56 | 20495-43 | 2429629 | 497963 8 | 6 “ 4081 3 |
4 | 8828689 | 2540712 | 7591422 | 8156703 | 6192098 | 5T | 49 | 1852 | 4 |
S 2597543 425721 679608 6112110 415384 1 | 32 ( 5567 | 5
6 | 4098607 | 623324 734420 3889484 | 285655 | 1 | 44 23756 ,
7 | 4874147 707911 | 756690 | 2538954 | 192120 | 1 | 49 | 1068 | 7 |
8 | 5258855 | 744237 7620117 | 1527486 | 116397 | 1 S0 1997 | 8
9 | 5361505 | 750929 | 755513 | 0779004 | 58855 | 1 | 48 | 5541 | 9 |
10| 5200794 | 730910 | 737666 | 0956976 | 70593 1 | 45 | 520 | 10 |
11 | 4718170 | 674977 | 705158 | 2068821 | 145884 | 1 | 38 | 1304 | 11
12 3707923 549456 | 648423 | 3906743 | 253322 | 1 | 26 @ 3633 | 12
13 1415800 | 222554 | S4IS12 | 7674721 | 415595 1 6 572 13
14 8510597 | 2128127 | 5452735 7808417 | 42 577-23 | 35 ] 1| 5587 14
15 4510289 17877 57} 18746:66 2153123 | 403638 7 | 5 | 4437 15 |
16 | 4510276 1787757 | 18 746:63 2153096 403633 | 7 | 5 | 4432 | 16
17 4510264 17877-57 18746:61 2153068 | 403627 | 7 | 5 | 4427 | 17
18 4510252 | 17877-57 | 18 746-58 | 2153042 | 403622 | 7 | 5 | 4422 | 18
19 04510239 | 17877-57\ 18746:56 | 02153015 | 403616 7 | 5 ] 4417 | 19

Transfer orbits O in the dependence on the launch point (the shape of the orbit, without the
localisation)

Col. IX: the dependence f(@,,) (7,1) whose value determines the type of the orbit (the end of § 7)
X: parameter p (4,1)
XI: semi-major axis a (4,2)
XII: eccentricity ¢ (4,3)
XIII: the half distance of foci e (4,4)
XIV: orbital perlod T (4,6)

Text to Table 3 (see next page)

Transfer orbits @ in the dependence on the launch point (relation to the parking path % and
the localisation)

Col. XV: true anomaly ¢, of the launch point with respect to the orbit ¢ (4,7)
XVI: vectorial angle ¢, of the line of apsides (4,8)
XVII: vectorial angle @, of the tangent point of the transfer orbit with the final trajectory 7
(6,8
XVIIIL: radius vector ry4 of the tangent point of the transfer orbit @ with the final trajectory 7
evaluated from the equation of the orbit @; the relation (2,1) fori = 0
XIX: the orbital velocity vy, at the tangent point with the trajectory J; according to (6,3)
vos = [1Q2[ros7 — 1/ag] with ag from Col. XI
XX: tangent angle 3,4 € (0, 7) at the tangent point with the final trajectory 7 evaluated
from the equation of the orbit O; according to (6,1) tg 95, = cotg (Py — ¢, +
+ (cosec (Py — p)]eg5 Y97 € (0, 1)
XXI: true anomaly @, of the tangent poin of the transfer orbit @ with the final trajectory T
measured on the orbit ¢, = @y — ¢o (-+360°). When compared with the difference
of values in Cols. XVII, XVI see the note to Col. VIII.
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4{57/10/15-95
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6| 1]16] 094
{7 1|24/3288
8! 1312070
9| 142148-80
10| 0]1734-56
11 0]254537
12| 0273451
13| 0]261928
14| 0372308
15] 2| 5|2645
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17, 2| 502662
18] 2| 52670
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0|35(47-58| 0|54 46:85| 1145752 0 | 8|40-40| 1]06/17-12
04215320 0|48|59-81 1/13/4294 0| 2/59-781 1|10 43-16
1| 0] 3-68 0’42 29-12 1 —3 23! 7-27| 3 |35 3l~10‘~—6 58 38-37
1. 0/3345| 034 48-08|—3 (26| 5:53| 3 |29149-61 |—6|55(55-14| 11
0|52(40-84| 0|25 6:33|—3130/21-04| 3 |23|3514|—6|53|56-18 |12
0[37(18-74| 010 5946 —3|3740-03| 3 | 16|19-81 —6|53(59-84 13 |
34i 5127753414 4-67| 31 07322'79 2 |41 2338 | 28 25/59-41 ) 14 |
6127(38-89| 4(221(12-44| 2| 8| 235/ 2 8220 0| 0| 0-15!
6271|3884 4(22/12:30] 2 8i 224, 2| 8,218, 0] O 0-06; 16
6(2738:80| 4{22/12-18| 2| 8 215/ 2| 8 2:17|—0| 0| 0-02|17 |
6273876 422 12:06 2 8! 206 2| 8| 2:115|—0| 0| 00918
6273871 4[22 1196 2 8‘ 199 2| 8| 213 —0] O 0-14} 19 |
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Time conditions of the rendezvous of the bodies on the transfer orbit @ and on the final traject-

ory I

Col. XXII

XXIII:

XXIV:

XXV:

XXVI:

XXVII:

262

: time of (fictitious) flight 7,5 from the periapsis of the launch orbit @ to the launch
point on the parking path 2

point with the final trajectory 7~

adding (j = 3 to 9) the orbital periods from Col. XIV

trajectory 7, i.e. the sum of values from Cols. II, XXIV

time of fictitious flight 7, from the periapsis of the transfer orbit ¢ to the tangent
transfer time Ty i.e., the difference of values from Cols. XXIIT and XXII, possibly
moments 7, at which the body moving along the transfer orbit ¢’ reaches the final
moments 7, at which the body moving along the final trajectory J reaches the

tangent points with the transfer orbits €
time 7, between the passages of the body from the transfer orbit ¢ and the body

moving along the final trajectory .7~ through the tangent point of ¢ and .7 i.c.,

the difference of values from Cols. XXV and XXVI



Table 5

B _ S
XXVIII XXIX XXX XXXI | XXXIL | XXXm |
j r7e 70 vro dvg rog — rge l o5 — Y70 ! i
km tj ) } ’ ” [‘ m/s m/s m l ” !
5 L
1] 14942:46 | 103 | 28 | 7-40 | 4487-19 | —1 39731 —0-183 | 003 | I
2| 1587757 | 94 | 57| 43-28 | 412222 | —1220-56 061 | 00 | 2
30 1586271 | 84 | 45| 751 | 412792 | —1 42260 977 | 2 3
4] 1491384 | 76 | 23| 2:72 | 4498-58 | —2 44429 488 02 | 4
5| 1055259 | 71 | 45| 29-13 | 650608 | 2 395-84 183 | 00 | 5
6| 950423 | 74| 33| 1838 | 7117-74 1 676:67 244 00 6
7| 875311 78 | 19 | 5937 | 7606:58 1 409-83 006 | 00 7.
8| 827172 | 82| 42| 501 | 794735 130895 122 00 8
9| 803336 | 87| 23| 31-88 | 8125:28 130781 | 427 00 9
10| 802373 | 92| 12| 328 | 8132:60 1 400-56 | 214 — o1 10
11| 824453 | 96 | 56 | 22:40 | 796733 1629-47 f 006 01 11
12| 871358 | 101 | 23 d 41-57 | 763369 215488 |  — 006 — 02 12
13| 946139 | 105 | 16 | 53-58 | 7 144:37 3 880-99 000 — 09 13
14| 1345479 | 108 | 13 | 44:06 | 510233 | —2 104-65 793 - o1, 14
15 15662:18 | 98 | 5| 38:56 | 420514 | —1 23889 — 732 08 |15
16 15662:19 | 98 | 5| 3812 | 420513 | 123889 — 305 04 | 16
17| 1566220 | 98 | 5| 3775 | 420513 | —1238-89 977 — 07 17
18] 1566221 | 98 | 5| 3728 | 420512 | —1 23889 732 05 |18
19 1566222 | 98| 5| 3681 | 420512 | —1 23889 0-549 —0-03 19
| 1

Relation of the transfer orbit ¢ and the final trajectory J~

Col. XXVIII:

XXIX:

XXX:

XXXI:

XXXII:

XXXII:

radius vector r g, of the tangent point of the transfer orbit @ with the final traject-
ory 7 evaluated from the equation of the trajectory .7 ; relation (2,1) for i = 7
tangent angle 34, at the tangent point with the final trajectory J evaluated from
the equation of the trajectory 7 ; according to (6,1) tg 3,4 = cotg (®y— ¢ ;) -+
4 (cosec (D — @ N6 S50 € (0 n)

orbital velocity vs ¢ on the final trajectory J at the tangent point with the transfer
orbit €; acording to (6,3) vy o= /[uQ2/rse — 1]a)]

instantaneous change of velocity 4v, realising the insertion from the transfer orbit
@ to the final trajectory Z; i.e., the difference of the values from Cols. XXX and
XIX with the same note as in Col. VIIT

ros — rze (the difference of values from Cols. XVIII and XXVII), i.e., the dif-
ference of two numerical values obtained for the same quantity. This is a test
of accuracy. To obtain non-zero differences, it was necessary to use more digits
compared with Cols. XVIII, XXVIIl; note also the change from kilometers
to meters

307 — $50 (the difference of values from Cols. XX and XXIX), again a test
of accuracy as in the preceding column. Again the note te Col. VIII is to be con-
sidered.
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The numerical solution for chosen bodies is presented in Tables 1 to 5, the results
being illustrated by two figures. The author expresses his gratitude to Ing M. Volf
for the program (FORTRAN) and calculation (MiNsk 22).

Figure 1. A system of double cotangential orbits between the parking flightpath & and the
final trajectory 7.

The numbers inserted indicate the indices from the first and the last column of the tables.
The ellipse @ is the common graph corresponding to the values of j = 15 to 19 which cannot be
distinguished in the scale of the figure. The tangent points of the orbits with both & and I
(including those corresponding to the values j == 6, 8, 10, 12 whose ellipses are not introduced
for the sake of clarity) are indicated by circles. The same holds for the tangent points (1), (2)
of both common tangents (drawn by dot-and-dashed lines) as well as for the points of inter-
section of 2 and J whose vectorial angles were found in [2] to be 106°14'28” and 286°14'26”
respectively. Dotted segments indicate the ends of the periapsis radius vectors, the periapsis
radius vector of the trajectory 7 coincides with the polar axis. The transfer sections of the orbits
Jj =5, 6 intersect the body of the earth.

Figure 2. Flight schedules and orbital transfer.

Notation #, ; indicates the ranges of a possible launch from the parking path; the subscript
distinguishes the outer and inner osculation of the orbit with the parking path (e or i, respec-
tively). The ranges of the dotted sections of the outer launch £, corresponding to hyperbolical
orbits are limited by unit values of the function f (which is tabulated in column IX; the selection
given in the tables does not include these values). Similarly, by f/‘e’i the launch section on the final
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trajectory are denoted. The corresponding
endpoints are connected by dotted lines.
The curves Z and Z are the flight sched-
ules of the body on the parking path and
the final trajectory, respectively; they cor-
respond to columns II & XVII. The curves
0,,; show the contact of the transfer orbits
with the final trajectory distinguishing
again the outer and inner osculation by 7
subscripts (columns XVII & XXV). The
shaded area indicates the range where the
launch sections pass through the earth o
body. The right boundary of the shading

(p* = 106°14'28”) corresponds to the 7
fictitious case of a degenerate transfer

ellipse (the osculation becomes senseless)

on the connecting line of the point of 2
intersection Z X 7 (p*) with the central
point F. Formally, the corresponding
launch time is

P

T =2n J@|w = "
3 --Z'———»n r<
= 21 Jlp /(1 4 &5 cos p*)°/ 1] = !

\/ Pl g / *7424" . ,,,,,,Zp,, . “"z
~ (hy3m 0° 90° 80° 270° J60°
~ . - S S S O |

2334 S 67 890 nnns g

The beginning of the section €; on # for p** = 286°14'26” corresponds to the launch at the point
of intersection & X J (p**) with zero transfer time when the notion of osculation becomes sense-
less. The beginning of the section ¢, for ¢ = 128°11'28” 1) corresponds to the limit case of launch
with zero transfer time from the point ¢ = 80°02'21” ?) (connected in the graph by a dashed
horizontal segment) by the straight-line flight with infinite velocity along the common tangent
of the quadrics 2, 7 between the tangent points. With increasing ¢ the points of the curve €, tend
to the asymptote (vertical dashed line in the graph) ¢ = 262°04’04” ) whose infinite point cor-
responds to the limit case of infinite straight-line flight from the point ¢ = 310°12’50” #) along
the common tangent of the ellipses #, J outside of its tangent points.

The introduced point of intersection of J~ X @, determines the position and the moment of ren-
dezvous of the body moving along the tangential transfer orbit with the object on the final tra-
jectory. It is connected by a dot-and-dashed line with the corresponding starting point on the
curve of flight schedule £. Here we deal with the case tabulated as j = 17 which coincides graphi-
cally with j = 15, 16, 18, 19. A shift of the curves @, ; in the direction of the time axis by whole
multiples of the orbital period Ty corresponds to the possibility of start during various circula-
tions on the parking path. The points of intersection of @, ; with J are then the images (at least
theoretically possible) of rendezvous of the body on the transfer orbit with the body on the final

trajectory.

1y Left boundary point of the interval ).

2) Right boundary point of the interval (1).

3 Right boundary point of the interval (2).

4) Left boundary point of the interval (1).
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The first four tables are sufficient for the solution of the rendezvous. Tab. 5,
besides showing the impulse changes realising the common flight of both bodies
is a testing view on the numerical accuracy of the calculation: the radius vectors
as well as the flight directions at the tangent point of the transfer orbit and the final
trajectory, are calculated on the one hand from the equation of the transfer orbit,
on the other hand from the equation of the trajectory. Numerical differences of thou-
sand kilometers lengths do not reach even one meter and the angle differences of di-
rections one second. This shows altogether an accuracy which is much better than
the approximative character of the approach to the problem of two bodies together
with the technical possibilities of both the localisation and the non-instantaneous
impulse changes of the orbital velocity might require.

The choice of the transfer orbit is made according to column XXVII of Tab. 4.
The change of signs*) between the lines j = 1, 2 shows that in the interval (0°, 20°)
there exists a vectorial angle of the launch point of the parking flightpath which
leads to a cotangential transfer orbit realising the rendezvous. Its iteration is given,
with a finer step of argument &,,, by the lines j = 15 to 19. The numerical differences
between the five orbital flights are far below the technically accessible accuracy
of the project. As the final solution let us introduce the orbital launch j = 17:

The object on the parking flightpath has at the moment 7, = —2"14™10-03° the
polar coordinates rz, = 20 582,79 km, @, = 13°26'39” while the tangent angle
is 9y, = 78°53'30-09” and the orbital velocity 3203-13 m/s (the escape velocity at this
point is 6223-48 m/s; the value f ~ 0-45 shows that the transfer orbit is elliptical).
By an instantaneous increase of velocity equal to 976-47 m/s the object passes with
the velocity 4179-60 m/s to the bicotangential transfer orbital ellipse

ap = 1874661 km, by = 1830693 km . pe = 1787757 km ,

ep = 403627km, g = 0,2153068, T, = 7°05™44-27°% ,

Qg = 245°49'23-45" .

After the time interval T, = 4"22™12-18°% i.e., at the moment 7,, = 2"08™02-15",
it reaches the final trajectory at the point r,,- = 15662-20 km, &, = 196°53'27-74"
with the orbital velocity vy, = 5444:02 m/s, tangent angle ., = 98°05'37-68", true
anomaly @, = 311°04’05-34” meeting the object moving along the trajectory. By
decreasing its orbital velocity by 1238-89 m/s to the value 4205-13 m/s the object
passes from the launch orbit to the final trajectory on which the rendezvous is realised.

*) The sign change between the lines j = 4, S accompanies the discontinuous transfer between
the outer and inner launching by excluding the vectorial angles from the interval (80°02°02",
106°14'28”) — i.e., the right endpoint of the interval (1) and the left endpoint of the interval (3)
without giving a possibility of realising the rendezvous of the two bodies. Nor do the sign changes
between the pairs j == 9, 10 and j == 13, 14 which correspond to multiple circulations along the
final trajectory yield a possibility of the rendezvous.
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Souhrn

KOSMICKE SETKAN[ USKUTECNENE
DVOJDOTYKOVYM PRECHODOVYM ORBITEM

KAREL MiSoN

Vysetiuje se prevedeni umélého kosmické télesa ze znamé parkovaci drahy do dané
komplanarni cilové trajektorie tak, aby se zde setkalo s télesem obihajicim trajektorii
a obé télesa pak pokracovala spoleénym letem v trajektorii. Pfevedeni se uskuteciiuje
keplerovskym navadécim orbitem dotykajicim se jak parkovaci drahy, tak i cilové
trajektorie. Jde tedy o stanoveni okamzik a pfrislu§nych impulsovych zmén rychlosti
(beze zmény jejiho sméru), pievadgjicich umglé kosmické téleso z parkovaci drahy
do navadéciho orbitu a odtud pak do cilové trajektorie. Ze tii disjunktiv (cilova
trajektorie je celd uvnit¥, resp. vng, resp. protina parkovaci drahu) v zasadg odlisnych
je posledni (thematicky nejir$i) moznost numericky i graficky konkretisovana pfi-
kladem vztazenym na zemské gravitaéni pole.

Author’s address: Karel Misor, CSc., CVUT — elektrotechnicka fakulta, Suchbatarova 1902,
166 27, Praha 6.
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