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REPETITIVE PLAY OF A GAME AGAINST NATURE

STANISLAV JiLOVEC, BRUNO SUBERT

(Received August 29, 1966.)

I. INTRODUCTION

Let us consider a repetitive play of a two-person game, that is a sequence of the
component games G identical in structure, with only the moves of players changing
at each step. The player I is supposed to possess the character of “Nature”, that is his
motivations are completely unspecified and, thus, his choices may constitute quite an
arbitrary sequence of strategies. The II"¢ player, on the other hand, may, at each
step, choose his strategy on the basis of the I** player’s past moves and his goal is to
minimize the average loss for fixed but arbitrary number of plays n previously
unknown to him.

If §,, the relative frequency vector of the I** player’s choices during the n plays,
were previously known to the player II, it would be the best for him to choose at
each step the strategy optimal with respect to J,, i.e. that minimizing his loss in the
component game G where his oponent uses the mixed strategy 3,. Hence, if &(3,)
denotes the minimum loss thus obtained in G, the problem in repeated play is to
determine the sequence of 11" player’s strategies s, s5, ..., 5,, Where s, depends only
on the first k — 1 moves 3,, 3,, ..., §,_ of the player I, and such that the average
loss approaches the minimum ¢(3,) whatever be the I* player’s choices.

This problem was first treated by Hannan [1], who has shown that there does
exist a sequence of strategies sy, s, ... such that the difference of the (expected)
average loss from &(3,) does not exceed ¢ :\/n, where c is a constant. The strategies s,
were independent on the number of plays and were defined as optimal strategies in G
against ““artificially randomized” relative frequency vectors 3,_;. However, unless
the artificial randomization was of a special type, the results were proved for finite
games only.

The Hannan’s idea was applied by Samuel [4] to the sequential statistical decision
problem with two parameter values. Here, the main difference is that the II™ player
(the statistician) cannot observe the values 9, (parameter values) directly but can
dispose only with their estimates obtained from observation of the sample variable.
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Again, it was proved that if the decision function at each step is Bayes against the
artificially randomized estimate of §, the average risk approaches the Bayes risk
&(3,).

Finally, using different method of the proof, Van Ryzin [3] has shown that the
artificial randomization is unnecessary for the sequential statistical decision problem
and extended the above result to loss matrices of arbitrary but finite size. Nevertheless,
the finiteness of the decision space was essential for the proof and his theorems do not
yield Hannan’s result as special case.

In this paper, general theorems are proved for the repeated play problem of
two-person game with two strategies of the I** player but infinite strategy set of the
11" player. The theorems yield directly the main results of Hannan and Samuel and
it is shown (Theorem 3) that they yield also the main result of Van Ryzin. This is
because the decision problem can be imbedded in a game theoretical model and the
theorems applied, which could not be made with Hannan’s theorems for the sake of
assumed finiteness. The restriction in number of I*' player strategies does not seem to
be essential for the proof and we believe it can be removed in the future.

II. PREREQUISITES

Throughout this paper the letter N will denote the set of all positive integers, I the
set of all integers and R the set of all real numbers.

If f is a real valued function defined on R then its variation V(f) will be defined by
V(f) = sup . [£(x,) = f(x,-1)]
ji=1

where the supremum is taken over the class of all finite increasing sequences x, <
< Xy <...< X, neN of real numbers.

The mathematical expectation of a random variable z will be denoted by Ez.

Let 4 be any nonempty set and let w(i, a) be a real valued function defined on the
cartesian product {0, 1} x A. Further on, this function will be assumed bounded by
a constant K < oo. The set A represents the set of II"! player’s choices and w the
payoff function in the component game G = ({0, 1}, 4, w).

The symbol @ will denote the set of all mappings 3 from N into{0,.1}. The value of
the mapping 3 in ke N will be denoted by 3,. Thus, every 3 € @ is a sequence
{9,}2% 1 of zeros and ones and represents a possible sequence of I** player’s choices in
the repetitive play. The relative frequency of ones among the first n members of
a sequence 9 € @ will be denoted 3,

g, =L
n

n

T

%%, neN and J,=0.

k=1
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For further purposes we shall consider the linear extension of the function w onto
R x A, which will be denoted by the same letter w and defined by the equation

) w(x,a) = (1 — x)w(0,a) + xw(l,a), xeR, acA.
The minimum or Bayes loss function @ is defined by

#(x) = inf w(x,a), xeR.

acA

It is well known that @ is concave and continuous in R.

In the language of game theory the elements a € 4 are called pure strategies of
the 11" player. However, we shall use this term in a broader sense. By the strategy
we shall understand a mapping from R into 4.

Let ¢ = 0. A strategy b, will be called ¢-optimal if
(P1) w(x, b(x)) < &(x) + ¢ forevery xeR.

It is easily seen that, for every ¢ > 0, an g-optimal strategy always exists.

Moreover, the class of all e-optimal strategies contains a nonempty subclass B of
regular g-optimal strategies with the following properties:

1) B contains an ¢-optimal strategy for every ¢ > 0.

2) There is a constant ¢, < oo such that

(P2) max V(w(i, b(.)) < ¢o + ¢

ie{0,1}
for every b, € B.

3) For every two strategies b,,, b,, € B and every x € R
(P3) max |w(i, b, (x)) — w(i, b,,(x))] < & + &, .
ie{0,1}

For the proof, fix e > 0 and let {b,},.y be a sequence of 1/n-optimal strategies such
that the limits
wo(x) = lim w(0, b,(x))

and
wy(x) = lim w(1, b,(x))
exist.
Obviously,
) D(x) = (1 — x) wo(X) + x wy(x) .

The functions w;, i = 0, 1, are nonincreasing in (— o0, i) and nondecreasing in (i, ).

385



This follows easily from the inequalities
(1= %) wo) + x,(5) = lim w(x, b,0)) = 9(x).
(1= ) wle) + 3 w() = lim w(y. b,(9) 2 20,

x, y € R, which, together with (2), yield
() = wi(5) = (1= ) () = ().
(1= = @) Sy () = )

Hence, for x < y < 1, we have

( X {_y> (%) = wi(7)) 0

1—-x 1

which implies w,(x) = w;(y), and the same with reversed inequality sign for 1 <
< x < y. Similarly for w,,.

The just proved property, together with the assumption that w is bounded, implies
that R may be covered by a sequence of nonempty, disjoint intervals {E,},; of at
most unit length with the property

€
3 mel, x,yekE,)= max |w(x)— w, < —
( ) ( Y ) ie(O,l}I ( ) (y)l 4(1 + d,,,)

where d,, = sup {|x| : x € E,;}. Let {x,,},.; be a sequence of numbers such that x,, €
€ E,, mel and {n,},.; a sequence of positive integers such that

€
4 max |(w{x,,) — w(i, b, (x,))] < —————.
4) max Insa) = vl b < ot

We may assume without loss of generality that the sequence {x,,},; is increasing.
We shall define the strategy b, by -

b(x) = b, (x,) whenever xeE,,.
Since, for every x € R there is m e I such that x € E,,, and since by (3) and (4)
W, bx)) — () < |1 = x| [n(0, b (1) = wolo)] +
+ |x] W1, B (x)) = wilx)| + |1 = x| [wo(x,) = wo(x)| +
+ x| wi(xn) — wi(x)| <&

the strategy b, is e-optimal. Further, for any y, < y; < ... < y,, neN, ie{0, 1},
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(3) and (4) imply n
£ 100, 50) = w(0 b0y )] S
< X vl i) = i b)) =
= 3 [vli b)) = s + 3 Do) = i) +
+ Z.I[Wi(xm«n) — w(i, b(x,-))| < &+ V(w)

so that b, satisfies (P2). However, from (3) and (4) follows easily that (P3) is satisfied
as well. Hence b, is regular, which was to be proved.

III. GENERAL THEOREMS

Before proving the two general theorems we shall prove the following fundamental

Lemma. Let F, and F, be distribution functions, let f be a real valued function
defined on R. If f is of bounded variation on R, then

-[del jde

where the integrals are Lebesgue-Stieltjes.

< V() sup [F(x) = Fa(0)]

Proof: Since f is of bounded variation there are two nondecreasing bounded
functions f; and f, such that f = f, — f, and V(f) = V(f1) + V(f,). Hence, it is
sufficient to prove the lemma for f nondecreasing and bounded.

Then V(f) = f(+00) — f(— ), where f(+o0) = lim f(x) and f(—o0) = lim
f(x). Let x>t o

Fa = fecs(=) + I W) < 109 5 s(=0) + W)
m=12..., j=0,1,...,m

and let {f,,},.cy be a sequence of simple functions defined by

) ) =3, (5=0) + LU, 9

where xg, , denotes the characteristic function of the set En,;- Obviously, f,, are
bounded, Borel measurable functions such that

sup |£,(x) — f(x)| £ Vi) , meN.
xeR m
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It follows
(6) deﬂ—jfd& éjlf—fmldFlJrJ\f—fm\szw“

“ fmdF, — fmsz\ +£V(f).
| Com

+ Uf dF, — jfm oF,

Further, let u;, i = 1, 2 denote the probability measure induced by the distribution
function F;. From (5) we have

[pmars = [ruars = D5 ) e =

H/\

m

=MD (00 En) = 12(U e

m j=j

since the sets {E,, ;}7_, are disjoint. Obviously,

m i1
#i(UEm,k)zl—”i(UEm,k)’ i=152’ j=1?2""9m

k=j k=0

so that

0 [ror- o =M08 (U ) = 1(U En).

Jj—1
Since, by assumption, f is nondecreasing, the sets U E, . j = 1, ..., m, are either
k=0

empty sets or intervals of the type (— 0, ay or (— o0, a). It follows

ji—1 i—1
\.uZ(kL:}OEm,k) - l'[l(kBOEln,k)‘ é sug ‘Fl(x) - FZ(X)l 4

which together with (6) and (7) yields

deﬂ “jdez; V() sup [Fi(x) = Fof) +ﬁV(f) meN .

The statement is now obtained by letting m — oo.

\

Theorem 1. Let {y,};%, be a sequence of real numbers, let {0}, be a sequence
of positive real numbers such that

(Cr) ko < (k + 1) oy, forevery k=0,1,...

Let {z,}y-o be a sequence of random variables satisfying the conditions

(C2) sup Elz| =¢, < o0,

keNU{0}
(C3) E(z| zee) = (L = %) zisy as. k=0,1,...
let b, k = 0,1, ..., be regular g-optimal strategies.
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Then for every 3 € ® and ne N,

n

1 B _ 1 n—1
E=% w(% boe_ (Femy + omy2i1)) — (9,) < 2Ke, (20(,, + =3 k%\hl) +
n ¥=1 nK=1

n n | _ 3 __g_
+ L Yk + e + g—y) + ! > (co + &) sup |F (i gk) — Fioy (L—u>\
n k=1 n k=1 \

xeR oy
|

Ay -1

where F, k = 0, 1, ... is the distribution function of z,.

Proof: Notice first that (P2) implies that, for b, _, regular, w(9,, by (Fe-1 +
+0,_,x)) are bounded Borel functions of x and, hence, w(9,, b, _,(Jx-1 + %1%k~ 1)
are random variables with finite expectations.

Let 3 € © and let us denote

Se = b (S + z), k=0,1,...,

1 &
Q,=E=Y W%, s)— o3,

nk=1
1 n
Q,=E ‘n‘kzl(w(gk, Si-1) = W% ) 5

so that the left-hand side of the inequality to be proved is Q, + Q,. Using (l), the
expression Q, can be written as follows:

®) Q=LY (ol 50 = (k= 1) w(d, 1. ) — 0(5) =
—E ‘; (é;lkw(gk, 5) _:gkw(gk, See1) — n &(3,)) =

1 n—1 ) _
=E— ( 2 k(w(gk’ Sk) - W(gk# Sk + 1)) + n(w(‘gm Sn) - (D(‘gn))) .
n k=1
Further, since b, is g-optimal,

w3, + 24 5) £ WK + o4z Sy) + &, k=01,
which, by using (1), yields

9) W 5) = W8, si1) = ozil(w(0, 5) — w(0, s44)) —
— ozl (WL, 5) — WL, s,40)) + 8, k=1,2,...

Let b, be regular ¢-optimal strategy. For the same reason

w(3, + 0,2, 8,) S W(3, + 2,2, b(5,)) + &,
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which implies

w(8,, s,) — &(3,) = 2,z,(w(0, 5,) — w(0, b(3,))) —
- O(,,Z"(W(l, S,,) - W(l’ bs(‘gn))) + & + W(gm be(gn)) - (D(gn) :

Letting ¢ — 0 yields
(10) W 5.) — D) £ 2 w(0, 52) — wo(5,) —
— a,z,(w(1, 5,) — wi(5,)) + &,.

Substituing from (9) and (10) into (8) we obtain
1 1 . n—1
(11) Q,=E . ZO(—I)' (AZ ke z(w(i, s) — w(i, Spe)) +
i= (=1
+ na,z(wii, s,) — wi3,))) + L > ke, <
=

%; ( iJE(kakzk —(k = 1) omy 24— ) Wi, sk)l + lEnzx,,z,,w‘-(g,,)l) + :;lkélks .

Since w(i, s), i = 0,1, k = 1,2, ..., is a Borel function of the random variable z,
we may apply well-known theorems on conditional expectations. We obtain

Ezi_y w(i, ) = EE(zp—y w(i, 5,) | 24) =
= Ew(i, ) E(z4~1 | 2) = (1 = ye—y) Ezg w(i, 5,)

where the last equality follows from the condition (C3).
Thus, the summands in (11) become

]E(kackzk (k= 1) oty yzp—y) w(i, Sk)l =
= l(kock k — 1) o — 1(1 — Vi— 1) Ezk ’ Sk)‘
< (kak (k = 1) a—y) E(z w(is Sk)l +
+ (k= 1) “k—ll?k—ll Elzk W(i’\sk)l , k=12,

since koy, — (k — 1) o, is positive accordingto(C1). However, (C2) and the assump-
tion that w is bounded by K yield

E|zk w(i, sk)l < Ke;, k=1,2,...
and

< Kc, .

Substituting back into (11) we obtain at last
1 n—1 1z
Q) < 2Key (20, + — Y keyfyli ) + = Y ke
N k=1 N k=1
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It remains to establish a bound for Q,. Writing
IE(W(Sk’ Sk—x) - W(‘9k9 Sk))l =
= IE(W(Sks bek_‘(gk—l + (xk—lzk—l)) - W(‘Qkﬂ bck(gk-l + Wo1Z-y))) +
+ [E(W(‘gks be (81 + % 1Zk-1)) — W(S bek(gk + akzk)))|

and applying (P3) to the first term and the lemma and (P2) to the second one, we
obtain the bounds

& + &y

) (55
v -1 i

for the second one. Hence we have

Siuen e S s wap (28) - (225

xeR | k —1

for the first term, and

(co + &) sup

xeR

0, =

=j>—

and the assertion is proved.

Theorem 2. Let {8,},.y be a sequence of real numbers, let {a,};%, be a sequence of
positive real numbers satisfying the condition (C1) of Theorem 1.

Let {z,};%, be a sequence of random variables satisfying the condition (C2) of
Theorem 1 and the condition

(C4) E(zisr | 2e) = (1 — Oksy) 2c as. keN,

let b, k = 0,1, ... be reqular g-optimal strategies.
Then for every 3€ © and ne N,

Z W(Sk, bEk—x(gk—‘l + O(k—lzk—l)) - (D(gn) =

gl
nk
ln—l X 1 n
. > — 2Ke, + 20, + = Y (k+ 1) oy |eq] ) — = Y ke
n k=1 n K=t
Proof: Let us denote again s, = b, (3, + »z,). Then

(12) EX Y W sior) - 0(3,) =

nk=1

—EL S k(B sim1) = w(Bh )+ E(w(T,5,) — B(3).

nk=1
Since b,, is ¢-optimal

w3 + zp 50) < w8 + oz Si—y) + &, keN
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whence, denoting for short g, = w(1, 5,) — w(0, ),

W(gk, Sj—1) — W(gk’ Sk) = “kzk(‘h - ‘Ik—1) - & -
It follows

1 & R 1 n 1 n
(13) E- 2 k(w3 55— 1) — (i) 2 E,_l Y kouz(d, — Qi-1) — " kzlkgk =
K= k=1 =
1 - 1
- Z E(koyzi — (k + 1) s 1Z0r1) dc + %aE2z,d, — % Ezyq0 — ;kzlkgk .
n k= =

Conditions (C1) and (C4) yield

E(koyz, — (k + 1) %s1Zk+1) i = (ko — (k + 1) %) 2Key —
- (k+1) “k+1|5k+xl 2Kcey

o 20
o(rlEznqn ; —2'7an1 s - ;1 EzlqO ; - 71 Kcl .

Substituting into (13) we obtain
] n
E; Y k(w(Fe si-1) — WS i)
k=1

2 1! 1 &
= — 2Kc, <_<x1 + 2o, + - Y (k+ 1)ak+1lék+1]> - ;12'1 ke, .

n n k=1

This, together with the nonnegativeness of the second term in (12), terminates the
proof.

1V. APPLICATION TO THE REPETITIVE PLAY

Theorems 1 and 2 can be applied directly to the repetitive play problem. By
a suitable choice of the sequences {a,}, {¢,} and the random variables z, we can obtain
both upper and lower bounds for the difference of the expected average loss from
Bayes loss of the type C/,/n. For example we may choose o, = k™% and ¢, = k™2
for k =1,2,... and ¢y = ¢, = 1. The radnom variables z, represent what is called
““artificial randomization”. The simplest choice is z, = z,, k € N with z, taking values
from a finite interval and the distribution function F, satisfying the Lipschitz con-
dition

|Fo(x1) = Fo(x5)| < Cilxy — x3], X1, %,€6R, C3 < +o0.

This is the case treated by Hannan and the main results of [1] immediately follow.
Of course, the choices of the player II are based on the relative frequencies 3.

In case of a sequential statistical decision problem, however, we usually have only
random estimates of these relative frequencies at disposal. The estimates are defined as
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arithmetic means of a sequence of independent random variables y,. As was men-
tioned in [3], these random variables may, under quite general conditions, be defined
as y, = ¥ + h,, where h, satisfy the conditions of the following theorem.

Theorem 3. Let {h,},.y be a sequence of independent, identically distributed
random variables such that
Eh, =0,
Ehl =62 >0,

El* <0, keN.

Let {&,}7°. o be a sequence of nonnegative numbers such that

S | =

z c
> ((k+ e+ e-0) < ”/2‘
K=1 N
for a constant ¢, < oo and every ne N, let b, k = 0,1, ..., be regular g-optimal
strategies.

Then there is a constant ¢ < oo such that for every $€ © and ne N,

! 1 n 1 k=1
ely W(Sk, b | <gk_1 + =3 h,)) — o3,

<~C~‘).
[ nk=1 k—1;j=

NAL

Proof: First, we shall prove that the difference is bounded from above.

As hy, k € N are inedpendent, identically distributed random variables, we have
E(he| Y h;) = E(hy | Y h;) aus. for every
i=1 Jj=1
k=1,2,...,n, neN. Obviously, for ne N,

g h, = E(élhk |j§lhj) =ki E(hy |j§1hj) a.s.

k=1

These two relations yield

k=1,2,...,n, neN, which implies

n—1

(14) E(X h |j=z"lh,.) =1 z h, as.

S
-

T k-1
1 -1 _ —
) We put (k — 1) jglhj~0forkfl.
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Let us define a sequence of random variables {z,};2, as follows:

LY
zo =0, zk=—
\/ iz
Since
E(zi | Zie1) = Zis ko as., keN,
k+1

according to (14), the random variables z, satisfy the conditions (C1)—(C3)

Theorem 1 with

1 k
oG = —, =1— [——, keN, ay=7y9,=1.
k \/k Yk /k+1 o = Yo

Hence, the theorem yields

(15) %z <9k, . ,<9k 1+_— z h) — o) <

k=1

§2Kcl<j 1y «/# i) + i(k+1)g,,+sk_1)+

2% (e + 59 sup m((x — 5) K = Ferl(x = Fey) Ok — 1)

for every 3€ @ and n € N.
Further, since for every ne N,

09 1% (1= ) e tE e - yn st 2

of

it follows that the first term on the right-hand side of (15) is bounded by 6Kc,[\/n.
The second term is bounded by ¢,//n by assumption and so it remains to prove

that there is a constant ¢, < oo such that

;kZI i‘:ple((X—g Vk) = Fioy((x = 8- 1)\/("_1)[ \/

forevery 3e @, ne N.

Denoting G(x) = (2n)™* [* , e /2 dt the normal distribution function, writing

(17) sup [F((x = 8) k) = Fua((x = 8e-0) (k= 1) <
s up it = 6 () g e - 6 () 4

+sup|G< (x-§)> (ﬂa;l)(x—gk_l)),

xeR |
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and applying the Berry-Esseen normal approximation theorem ([2], p. 288) to the
sequence {h,},.y We obtain

F(x) — G G)

where f is the Berry-Esseen constant. Since

<ﬁJ3h—\/|ik keN

sup

xeR

(18)

we obtained the desired bounds for the first two terms of (17)n For the last one, let
x € R. Since, for every x,, X, € R,

| pxs
j e /2 dt! < le — x2|
X |

we have, for every k e N,
o ) e )

VR~ gy - i@;” (x - 9k—1>!

|

IIA

M (= e =)+

k-1 k-1
l}l 9 - 1’_ z Iy 9,
0'1\/k, 1 \/(k— 1) /=1

< L’;j (Jk = J(k = 1)) + é [Vk = J(k =1

Let x,, k = 2, 3, ..., be a number for which

() o)
-| <w~ (0 gk)> <y1<_k_a—_l_> (%0 — 9>>‘ .

Such a number must satisfy the equation

(20) sup ‘G

xeR

X — 2x9, + k32 — (k — 1) 2, — o? log kJ‘_l

and hence
| <2+0.
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Applying this inequality to (19) and (20) we obtain

G <>-/_’f (x — 9,)) e (Ji"_o‘_’) (x — gkﬂl))l -

[Vk = k= D] + -

Jk

3+o

which, together with (18), yields the bound for the last term of (17). Hence, the upper
bound is established.
The proof for the lower bound of the difference is easy since

k+1 1 k

E(zx+1 Izk) \/(k ) (Z ‘ 2 h;) = m j;lhj =

k
=z, [—— as., keN.
k+1

Thus, the random variables z, satisfy also the condition (C4) of Theorem 2 with
Sesr =1 — J[Kk/(k + 1)] = y, and the lower bound follows immediately from
Theorem 2 and (16).

The proof is complete.
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Souhrn

OPAKOVANE HRANI HRY PROTI PRIRODE
STANISLAV JiLOVEC, BRUNO SUBERT

Clének se zabyvd opakovdnim hry dvou hragt. V k-tém kroku (tj.'v k-tém opako-
véni hry) druhy hrd& znd relativni Cetnosti strategii, kterych pouZil I. hrdé v predchd-
zejicich k — 1 krocich. Cilem II. hrace je minimalizovat svoji stfedni ztratu pro dany
pocet opakovdni, ktery je mu v8ak nezndmy. I. hrd¢ miZe své strategie volit zcela
libovolné; nepiedpoklddd se ani, Ze chovdni I. hrace 1ze popsat pravdépodobnostnim
zpusobem. Za téchto pfedpokladi muze IL. hrd¢ postupovat takovym zplsobem, Ze
jeho stfedni ztrdta v n krocich nepfevySuje &(3,) o vice neZ ¢ : /n. (Zde @(.) oznaduje
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Bayesovo riziko, 3, vektor relativnich Cetnosti, kterych pouZil 1. hrd¢ v prvnich n
hrdach, a ¢ konstantu, zdvislou pouze na vyplatni funkci.) To znamend, Ze II. hrdc¢
miiZe volit své strategie takovym zpisobem, Ze jeho stiedni ztrdta je nejvyse o ¢ : \/n
horsi nez minimadlni ztrdta, které by mohl dosahnout, kdyby predem védél, jaké budou
relativni Cetnosti strategii I. hrdce v prvnich n hrédch.

Tohoto vysledku vSak II. hrd¢ nemusi dosdhnout, voli-li v kazdém kroku strategii,
kterd je optimdlni vzhledem k relativnim Cetnostem I. hrdce v predchdzejicich hrdch.
Relativni Cetnosti je tieba vhodnym zplisobem zndhodnit a volit optimadlni strategie
vzhledem k témo zndhodnélym relativnim &etnostem. Véta 1 uddvd obecny tvar
takového zndhodnéni a v odstavci 4 je ukdzdno, Ze specidlnimi pfipady jsou zplsoby
zndhodnéni pouzité v [1] a [3].

Pe3rome

TMOCJIEAOBATEJIbHBIE TTOBTOPEHUS UI'PBI ITPOTUB IIPUPO/IbI
CTAHUCJIAB MINJIOBEL], BPYHO IYBEPT (STANISLAV JiLOVEC, BRUNO SUBERT)

Crarbsi 3aHUMACTCS TIOBTOPEHUEM UIPbI BYyX UrpokoB. B k-M ary (tT.e. B k-M
noBropenuu urpbl) II-if Urpok 3HaeT 4acTOTBHL CTPATETHid, NPUHATHIX I-M UrpoKOM
B npeaulecTByroumx k-1 urpax. Henp II-ro urpoka — MUHMMAaIM3UPOBATH CBOU
cpeaHue noTepyu Uit GUKCHPOBAHHOTO YUCIIA MOBTOPEHMUI, KOTOPOE EMY HEU3BECTHO.
I-if Mrpox MOXeT BBIOUPATH CBOM CTPATETHMM COBCEM NPOM3BOJILHO; HE MPEeroJia-
raercst Aaxe, 4To rnopejcHue I-ro urpoxa MoKHO OmMcaTh BEPOSITHOCTHBIM 00pa3oM.
IIpu 3TUX npennooxenusx II-i Urpox MoxeT MOCTYNaTh TAKUM 0OpPA30M, YTO €TO
CpejiHsisi IOTepst IPY 1 MOBTOPEHUIX MIPbl He npesocxomuT @&(§,) Ha Gonbure yem
c: \/ n.(3mech @(.) — dynxiust BailecoBekoro pucka, §, — BEKTOP 4aCTOT CTPATETHA,
MCIOJIb30BAHHBIX I-M MIpOKOM B MEpBBIX n MOBTOPEHMSIX UTPBI, ¢ — IOCTOSHHAS,
3aBUCALIASL TOJIBKO OT BHAA MUaTexkHod ¢yukumu.) 3uauur, I-i urpox Moxer
BBIOMPATH CBOM CTPATETMH TaKUM 00pPa3oM, YTO €T0 CPelHsis MOTeps NPU h MOBTO-
PeHUSIX UTPHl MAKCUMAaJIbHO Ha ¢ : \/ N BbILIE MUHUMAJILHOM MOTEPH, JOCTURKUMOMH
B TIPEAMOJIOKEHUM, YTO €My 3apaHee M3BECTHO, KakKue OYAYT 4acTOTBl CTpaTerui
I-ro urpoxa B nepBbIx n nrarax. Ho sroro pesynsrata II-if urpok He 1omkeH o6s3a-
TEJILHO JIOCTUTHYTh, €CJIM B KaX/OM 1lUAry NPUHUMACT CTPATETUIO, KOTOPasi ONTHU-
MaJIbHa OTHOCUTEJIbHO 4YacTOT crpateruil I-ro irpoka B npenplAyLIMX LIarax.
YactoThl cTpaTeruii HajAo0 MOAXOMAMM o00pa3om paHaoMusupoBath u Il-my
WUTPOKY MPUAETCS BBIOUPATH CTPATEIMIO ONITHUMAIbHYIO OTHOCUTEJIBHO 3TUX PaH/0-
MU3MPOBaHHBIX YacToT. Teopema 1 mokasbiBacT OOLIMH BHJ TAKOW paHIOMHU3AIMU
U B naparpade 4 mokaszaHo, YTO YACTHBIMH CJIy4aH SIBJISIFOTCS CHOCOOBI PAaHAOMHU3A LI
npumensiemble B [1] u [3].
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