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A SYNCHRONIZATION FOR COMPOSED CHANNELS
BY MEANS OF A RANDOM CODING

IGOR VAIDA

(Received March 3, 1966.)

1. INTRODUCTION

The purpose of this paper is to prove that the total ergodicity of channels, required
in the earlier papers [2], [3], [4], yielding a solution of the synchronization problem
(cf. [5]). is not necessary to obtain a solution of this problem. In this paper a solution
of the problem for a class of composed (i.e. nonergodic) channels is given.

We have chosen to follow the terminology and notation employed in [5]; it is
assumed that the reader is familiar with [5].

Throughout the paper we shall assume that the alphabets 4, B, C are a finite non-
empty abstract sets.

Two memoryless channels (cf. Sec. 6 of [5]) v!, v* are said to be different (v + v?)
if there is a € % and E € % such that v!(E | a) + v*(E | a).

By saying “composed channel v> we shall understand the following two elements:

(I) A set of positive numbers {8, B, ..., B}, Where meI™, m > 1, and

(1'1) Z Bi=1.
(IT) A set of mutually different memoryless channels {v', v?, ..., v"} such that

(1.2) v(E

a)=.zlﬁiv"(EIa) forevery aeA, EeA.

It is easy to see that both memoryless and composed channels are stationary, i.e.
satisfy the condition

(1.3) v(TfE[ T/a) = W(E | a) forevery jel, Ee#, ael,
and satisfy also the zero-past-history condition
(1.4) v({b : (0} = b} | a') = v({b : (b) = b} | a%),
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for every nel*, 1 <i <j <n, beB" and a', a® € ¥, if the equality (a')] = (a?)]
holds.

The source y is said to be n-ergodic for n e I'*, if the measure p is ergodic in the
usual sense with respect to the transformation 7% i.e. if the following two conditions
are satisfied:

(I) (T"E) = p(E) for every E€ €.
(II) If E€ ¥, T"E = E, y(E) > 0, then p(E) = 1.
Instead of “l-ergodic” we shall say simply “‘ergodic™.

For every memoryless or composed channel v, for every nel*, ae A", and b € B
we define a number v,(b | a) by

(1.5) vi(b|a)=({b:(b); = b}|a), where ae, (a)j =a (cf.(1.4)).
For every ergodic source u and n e I'* we define
(1.6) (€)= p({c: ()} = ¢}) forevery ceC".

It was verified earlier (cf. Conclusion of [3]) that memoryless channels are n-ergodic
for all n eI™, i.e. that for every probability measure 3 on o/, for every memoryless
channel v, and n e I'*, the probability measure @ defined on & ® % by

(17) o(E) = fﬁv({b {(a.b)eE} |a)dd(a), Ecod ® 2,

is ergodic with respect to the transformation T" of the space A ® B into itself. (Cf.
(2.3) of [5]).

If v is a memoryless channel, then we define the capacity C*(v) by

C*(v) = sup Z log ‘(;)% (cf. (1.5))

where the supremum is taken over the set of all probability measures p on the finite
space A, and where
a() = To(- |0) o)

is a probability measure on B.

1t follows from [1] that a capacity of the composed channel v can be defined in
several different ways. We define the capacity C(v) as the supremum of entropy rates
of all ergodic sources p such that, for every A > 0, there exists neI* and (n, n)-
encoder ¢ such that

(1.8) e(p, p,v) < A (cf. (4.7) of [5]).
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Up to the end of the paper the following convention is used: If n, peI™ and ¢ is
an (n, p)-encoder, then ¢ is said to be a random (n, p)-encoder or (n, p)-encoder
according as %, = {0, Y} or & = {0, Y} (cf. [5]). The intuitive motivation of this
terminology is obvious.

Remark. It is easily verified that the value of C(v), for any composed channel v,
does not depend on whether ““(n,n)-encoder” or “random (n,n)-encoder” in its
definition is used.

In the literature a source p satisfying the condition (1.8) for every A > 0 is usually
called transmissible over the channel v. It can be shown by a simple reasoning that,
for every composed channel v, the set of all transmissible (over v) sources is non-empty.
Hence, the definition of C(v) above has alwyas a logical meaning.

Lemma. If v is a composed channel with positive capacity C(v), then for every
a € A there are a; € A, b; € B such that

(1.9) vi(bi| a) + vi(bi| a) forevery i=1,2,..,m (cf.(12)).

Proof. By Sec. 8 of [3], by Theorem 4 of [6], and by Theorem 2 of [1], the
inequality C(v) < C*(v'), for i =1,2,...,m and for every composed channel v,
can be proved. Therefore the assumption C(v) > 0 implies that

(1.10) C(v)>0 for i=1,2,...,m.
In view of Lemma in [4] and (1.10), it follows that there are a; € 4, b; € B such that
vi(b;| a;) > vi(bi| a) forevery i=1,2,...,m,

which completes the proof.

2. EXISTENCE OF SYNCHRONIZING RANDOM ENCODERS

Theorem 1. If v is a composed channel with positive capacity C(v) and p is an
ergodic source with positive entropy rate, then for every n, pel™ and for every
(n, p)-encoder ¢, there is a random (n, p + 1)-encoder @ synchronizing with
respect to p and v and such that

(2.1) e(®, u, v) < e(p, 1, v) + An, ),
where
(2.2) lim A(n, p) = 0.

If u is moreover an independent source, then
(2.3) An, p) < (3.
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Remark. If E(n, ) is a minimum n-dimensional positive set relative to p (cf.
Lemma 2, [3]) and if we put Y = {1,2,..., m + 1} then, for an apropriate choice
of aprobability measure n on %, we shall prove that the random (n, p + 1)-encoder ¢
defined by
(2.4) #(c, ) = (a, p(c))e A" for ceC" — E(n,p), yevy,

(2.5) (e, y) =(a,a,a,...a)e A" for ceE(n,p), y=12...,m
where a, for y = 1,2, ..., m is defined in Lemma,
(2.6) d(c,m + 1) =(a,a,....,a)e A”"" for ceE(n,p),

is synchronizing with respect to u and v and satisfies (2.1), (2.2), (2.3).

Proof. Let @ be defined as in Remark, let # be an arbitrary probability measure
on Y, and let

(2.7) 9= d!

be a probability measure on o7, defined by (2.4) and (2.6) of [5] for n and @ glven
above. By Lemma 2 of [2], thereis s € I *, probability measures g/ on @, j = 1, 2, .
and positive numbers a;, j = 1,2, ..., s, such that

=09 for ¥=(®Ho",
j=1

where p/ are n-ergodic and §/ are (p + 1)-ergodic measures (cf. (4.11) in [5]). If we
define

(2.9) y(E) = J‘Q(V(E | a) d9(a) for 9 defined in (2.8), Ee 4,

(2.10) PH(E) ='[ V(E|a)d9(a) for_i=1,...,m, j=1,..,s, Ee®,
A

then it is easy to see that y and y/ are probability measures on % and, moreover, that

(2.11) yT =3 BoyiTH forevery k=0,1,...p (cf.(1.2)),
tJ

where yYT* are for every i = 1,2,....,m, j=1,2,...,5, k=0,1,...,p, (p + 1)-
ergodic measures (cf. Sec. 8 of [3]).
Define on B a set of #-measurable functions

£(0) = x(0); E,={b:(0),=b}; r=12...m,
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where y is a characteristic function and b, are defined in Lemma. It is easily verified
that

o = f £, &yITH(D) = f f vi(b, | (B(c, )),) di(e) dn(y) =
B YJE
=y€Zy G"i(br | (@(c, ¥)) n(v) duwi(c) = ZY CEZmV’i(br | (@(c, y))o) n(y) i) =
= Y vilb,| (e, ) uile) +

Cr—E(n,n)
@)+ 20 (0

+ 1(E(n, w) [vi(b,

ay) - Vi(b, ] a))] ’

where the last equality holds for every k = 1, 2, ..., p. Using (2.4) and (2.5) we obtain
that «ff = vi(b,| a) for all j = 1,2, ..., s; hence we may write o, instead of 9. Let
us denote for i, I = 1,2, ....m; j=1,2, .. s;k=1,2,...,p,

= e [ T ] (0 D)) l©)] = 1] @)

W(E(n, 1)) cn=E(np

(uf;(E(n, 1)) > 0 forall j = 1,2,...,s). If there are i, j, k, [ such that ﬂ',‘,' #+ 0, then
define a number 6 by the condition:

0 < &< min [B4 + 0]
i,j,k,l

If pi; = Oforall i, j, k, I, then put 6 = 1. In view of (1.10), there exist numbers (),
y =1,2,..., m, such that

0 < n(y) < 1
m

0< !Z n(y)(vi(b,- l a,) — vi(bi | a))l <6, i=12,...m
y=1
a\nd, consequently, such that
nm+1)=1-=Yn()>0.
y=1
If the distribution n on Y satisfies this conditions it is easily verified that
(212)  aff* o forall i,I=1,...m; k=1,...,p; j=1,...5.

We shall prove that the random encoder @ is synchronizing with respect to u and v
provided that (2.12) holds. Define E7, E; € % by

ij

N-1
B = {b Hlim Y f(TU* D0 p) = “?'}}’
q=0

N-w
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for every i, j, k, r under consideration,

N—-w q=0

N-1
E} = {b :lim 1 Y fAT®+Vp) = zx’,} , Lbr=1,...,m,
and put

E=U NE;.

i=1r=1

In view of Theorem 1 of [5], to prove that @ is synchronizing with respect to p
and v, it suffices to prove that

(2.13) WE) =1,
(2.14) YTE) =0 for k=1,2,...,p (cf.(2.7),(2.9))

or, in view of (2.11) that
WE) =1,
Y(TE) =0 forall i=1,...m; j=1,...,s; k=1,...,p.

By the definition of EJ, E} and by the ergodicity of the measures yT* proved above,
we can write
yHE) =1,
YITEY) =1 forall r=1,2..,m
and, consequently, y(E) = 1 as well as
PO B = 1
r=1
for all i, j, k under consideration. To finish the proof it suffices to show that

EH(AE?}):@
r=1

for all i, j, k under consideration. To prove the latter equality one can use (2.12)
to obtain -

EINEf=0 for I=12..,m
or, consequently,

UENES=90 forall i=1,...m; j=1,..,s5; k=1,..,p
=1
and then to use the following relations:

EcUE, NEfcES

=1 r=1

that evidently holds for all i, j, k under consideration.
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Next we prove that (2.1) holds for A(n, ) = u,(E(n, ). Let ¢ be an arbitrary
(p, n)-decoder (i.e. according to [ 5], let a measure space (Z, Z, () andtrans a forma-
tion y(b, z) of B” ® Z into C" be given). Define a (p + 1, n)-decoder ¥ by

(2.14) ¥(b, z) = y((b);" ', z) forall beB’*', zeZ.

In view of the definition of ¢(®, y, v) in [5] and in view of (1.4), it follows that

@15) et wn) YO u) = T G(ule) + Y 6(e) o),
cn Cn—E(n,n) E(n,u)

where

G(e) =1 - j j vy (7, 2) | B, ) dn(y) de(z)

(cf. (2.9), (2.10), (2.11), (4.7) in [5]). Since by (2.4), for every ce C" — E(n, p),
P(c, y) = (a, ¢(c)) for every ye Y, we obtain using (2.14) that G(c) = G,(c) for
all ce C" — E(n, p), where

Gyle) =1~ f f v(v (e, 2) [ o(c, ¥)) dn(y) d(z)
ZJY
Hence, by an evident inequality 0 < G(c) < 1 and by (2.15), we can write
(2.16) e(P, 1, v) §C ; )Gw(c) €) + w(E(n, p))
n—E(n,n

for every (p, n)-decoder . By the definition of e(¢, u, v), for every & > O there is
a (p, n)-decoder y such that

;GW(C) uu(c) =< e(a’a H, V) + €

and hence, such that
2 Gy mfc) S e(p,mv) + .

C"—E(n,n)

Because of that ¢ may be arbitrary and in view of (2.16), it follows the desired result

(2.1).

The statements (2.2) and (2.3) were proved in Lemma 2 of [3].

3. CAPACITY OF UNSYNCHRONIZED COMPOSED CHANNEL

Denote by .# the class of all ergodic sources u for which, for every 4 > 0, there is
a random (n, n)-encoder ¢, synchronizing with respect to u and to a composed
channel v, such that (¢, 1, v) < A. If .4 = @, then we define the capacity C°(v) of
the unsynchronized channel v equal to zero and, if # =+ 0, then we define

Co(v) = sup H(p)
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where H(p) is entropy rate of the source w. The following inequality follows
immediately from the definition:

(3.1 Co(v) £ C(v)

The aim of this section is to prove that
(3.2) CO(v) = C(v)

holds, for every composed channel v.

Theorem 2. If u is an ergodic source with positive entropy rate H(u) and if v is
a composed channel with H(p) < C(v), then for every 1 > 0 there is a positive
integer n, such that, for every n > n,, there exists a random (n, n)-encoder ®
synchronizing with respect to u and v and such that e(®, p, v) < A.

Proof. In view of Theorems 3.2 and 3.4 of [7] and according to the McMillan’s
asymptotic equipartition property, for every & > 0 there is an integer n, = n,(¢)el”
such that, for every n > n,, there are subsets L, = C", S,_, = A", such that

L) > 1 —¢ v,y(Bi|a’)>1—¢ a'eS,_y, i=1,2,..,r, for at least one
disjoint decomposition

r
B! = U B,
i=1

where r = card (S,-,) > card (L,), card denotes the cardinal number.

Let A > 0 be an arbitrary fixed number. If we denote by n, = nz(/l) the least
element of I* such that, for every n > n,, the inequality A(n, ) < A holds (cf.
Theorem 1), and if we put n, = max {n(1[4), n,(4/2)}, then it is obvious that for

every n > n, there exists an (n,n — 1)-encoder ¢ such that e(p, u, v) < A/2. To
prove Theorem 2 it remains to apply Theorem 1.

Corollary. For every composed channel the equality (3.2) holds.

Proof. If C(v) = 0, then (3.2) follows immediately from (3.1). If C(v) > 0, then
it is sufficient to use Theorem 2 together with the well-known fact that for every
non-negative number o there is an ergodic source p with the entropy rate H(u) = a.
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Souhrn

SYNCHRONIZACE SLOZENYCH KANALU
POMOCI NAHODNEHO KODOVANI

IGOR VAIDA

SlozZeny sdélovaci kandl je definovdn jako koneény soubor diskrétnich staciondrnich
kandlt bez paméti s zadanymi pravdépodobnostmi ptipojeni jednotlivych kandlt na
zdroj informace [1]. V prdci se studuji moZnosti sdélovdni informace sloZenym kan4-
lem pomoci blokovych koédu za pfedpokladu, Ze vystup kandlu je synchronizovan
se vstupem a posteriori na zdkladé pfijaté zprdvy. V prdci je ukdzdna univerzdlni
metoda, umoZiujici libovolny blokovy (n, p)-kéd, tj. libovolné zobrazeni usekit
délky n zpravy ze staciondrniho ergodického zdroje v useky délky p vstupni zprdvy
kandlu modifikovat v synchronizagni ndhodny (n, p + 1)-kéd tj. v ndhodné zobraze-
ni Gseklt délky n pivodni zprdvy v useky délky p + 1 vstupni zprdvy kandlu, které
umoziiuje dostatecné dlouhou pfijatou zprdavu rozdé¢lit v bloky délky p + 1, které
by ,,Casové“ odpovidaly vstupnim blokiim s libovolné malou pravdépodobnosti
chyby. Nepatrné zvySeni pravdépodobnosti nesprdvného dekédovdni uvaZovanych
usekit délky n plivodni zprdvy piitom konverguje k nule, jestlize n — co. Na zdkladé
této metody se v prdci ddle dokazuje, Ze supremum rychlosti entropie vSech ergodic-
kych zdroju, které jsou pfenesitelné sloZzenym kandlem s libovolné malou pravdé-
podobnosti chyby pomoci blokovych (ndhodnych i deterministickych) (n, n)-kédi se
rovnd supremu rychlosti entropie vSech ergodickych zdroji, které jsou ve stejném
smyslu pienesitelné pomoci synchronizaénich blokovych (n, n)-kédit. Kapacita slo-
Zeného kandlu se tedy zachovd, jestlize vystup kandlu neni a priori synchronizovdn
se vstupem. Jestlize uvdZime, Ze sloZeny kandl neni ergodicky, pak z tohoto vysledku
plyne, Ze ergodicita kandlii, predpoklddand ve vSech dfivéjsich pracich zabyvajicich
se otdzkami synchronizace, neni nutnou podminkou pro existenci synchroniza¢nich
koédu ani pro zachovéni kapacity.
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Pe3rome

CUHXPOHM3ALIA COCTABHBIX KAHAJIOB CBJ3U
IIPU MIOMOIIN CIIYUANHOIO KOJAMPOBAHUS

HUT'OP BAMJA (IGOR VAIDA)

CocraBHBI KaHajJ CBS3U 3a7aeTCst KOHEYHBIM HaOOpOM MMCKPETHBIX KaHAJIOB
6e3 mamsiATH UM HAbOPOM COOTBETCTBYIOIUMX BEPOSTHOCTEH BKJIIOYEHUS KaHAJOB
B cucTeMy Tepenaun coobuienuit [1]. B paboTe u3yyaroTCsi BO3ZMOXHOCTH HEPeJauy
COOOIIEHHIA IT0 COCTABHBIM KaHajaM MpH ITOMOIIH OJIOYHBIXK OJIOB B CIyYae, KOraa
Ha BBIXOJe KaHaJla HEU3BECTCH MOMEHT HayaJia repenadyv, T.e. KOrAa BXOJ W BBIXOM
CHHXPOHU3UPYIOTCSI AIIOCTEPUOPU HA OCHOBE MPUHSTOTO coobuienus. [lpemiaraeTcs
YHUBEPCANBHBIA METO., IO3BOJIAIOLIMIL 11060l Grounblit (n, p)-kon, T.e. Jiroboe
oToOpaxeHue OJIOKOB THHHBL 1 COOOILECHUS M3 CTAIIMOHAPHOTO ¥ 3PTOJUYECKOTO
UCTOYHUKA B OJIOKH [JTMHHBL p BXOJHOTO COOOIICHUS KaHAJa TPaHCHOPMHUPOBATH
B CIIyYailHBIi CUHXpOHU3MpYIOWWii (1, p + 1)-Kox, T.e. B CIyyaiiHoe O0TOOpa)keHue
COOTBETCTBYIOUIMX OJIOKOB JIMHHBL 1 B OJIOKM JUIMHHBL p + 1, KOTOpOE MO3BOJISICT
IIOCTATOYHO [JIMHHYIO BBIXOJHYIO MOCIEIOBATEIHLHOCTD Pa3OUTh Ha OJIOKW JJIMHHBI
p + 1, KOTOpBIC ,,BpEMEHHO‘‘ COOTBETCTBYIOT BXOJHBIM OJIOKAM C INPOM3BOJIBHO
MaJIoi BepOSTHOCTHIO olIMOKkUM. HexoTopoe yBemuueHue BEpOSTHOCTH OIIMOOYHOTO
JIeKOAMPOBAHMS COOTBETCTBYIOLIMX OJIOKOB JTMHHBL 1 IIPU 3TOM CTPEMUTCS K HYJIIO,
ecian n — 00. C MoMOUIbIO 3TOr0 METOJA B CTAThE JOKA3BIBAETCS, YTO MPOIYCKHAS
CIIOCOOHOCTH COCTABHOTO KaHaja COXPAHSETCS, €CIM BBIXOJ KaHaJla He SBJIACTCS
anpuoOpu CUHXPOHU3VPOBAHHBIM C BXOJIOM.

Author’s address: Igor Vajda, Ustav teorie informace a automatizace CSAV, Vysehradska 49,
Praha 2.

382



		webmaster@dml.cz
	2020-07-01T23:49:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




