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1. INTRODUCTION

The question of existence of special (e.g. continuous or measurable) single-valued
selections is one of the main questions in the theory of set-valued mappings (or
multifunctions or correspondences). In the present paper we are interested in con-
tinuous selections only. Many results about continuous selections are known in the
case of convex-valued mappings. Let us mention the most famous one which asserts
that any lower semi-continuous mapping with nonempty closed convex values from
a paracompact space into a Banach space admits a continuous selection (Michael
[9]. see also [10], [2], [8])-

The non-convex case is much more complicated. For example, there exists a con-
tinuous set-valued mapping F of the interval [0, 1] into B? such that its values are
homeomorphic to [0, 1], but F has no continuous selection ([7], see also [1], [2]).

The simplest class of set-valued mappings with non-convex values is probably the
class of finite-valued mappings. As the main result of this paper we prove the
existence of continuous selections (even in the strong sense, see below) of continuous
finite-valued mappings from a locally connected treelike space X into an arbitrary
Hausdorff topological space (Theorem 3.3). This result, together with a counter-
example (Theorem 4.2), enables us to give a characterization of spaces X having
the property that each continuous finite-valued F:X — 2' (with Y Hausdorff)
admits a continuous selection, in a certain class of locally connected normal spaces
(Theorem 4.4), which contains e.g. the family of compact locally connected spaces.

Let us start with some definitions and notation. By 24 we denote the set of all
subsets of a set A, the symbol # A4 means the number of elements of A4 (#Ae
€{0,1,2,..., 0}). Let X, Y be topological spaces. We shall identify a set-valued
mapping F: X — 2¥ with its graph as a subset of X x Y, for instance (x, y)e F
and y € F(x) will mean the same. For F: X — 2" (or equivalently: for F < X x Y)
we denote D(F) = {xeX; F(x)* 0} and FIM =Fn (M x Y) for M c X.
(Clearly D(F/M) = D(F)n M.)

F is upper semi-continuous, shortly u.s.c. (lower semi-continuous, shortly l.s.c.)
at xo € D(F) if for any open V < Y with F(x,) = V (F(xo) n V # @) there exists
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a neighborhood U of x, such that F(x) = V (F(x)n V # 0, respectively) for any
x € U. F is continuous at x, if it is both u.s.c. and l.s.c. at x,,. F: X — 2% is continuous
if D(F) = X and F is continuous at each point of X. F is continuous on M < X
if M = D(F) and F/M is continuous as a mapping M — 2Y.

An F:X — 2¥ admits a selection if there exists a continuous (single-valued)
mapping f: X — Y (selection of F) such that f(x)e F(x) for any x e X. We shall
say that F admits selections in the strong sense if for any (xo, yo) € F there exists
a selection f of F with f(x,) = y,.

Let us briefly mention some known and elementary facts about selections of finite-
valued mappings F: X — 2¥ with D(F) = X. Simple examples show that neither the
upper semi-continuity nor the lower semi-continuity are sufficient for the existence
of a selection. Even if we suppose a constant number of values, i.e. #F(x) = n
for any x € X, the selections need not exist if F is u.s.c.. For example, X = [—1, 1],
Y=[-2,2], n =2, F(x) = {sgn(x), x + sgn (x)} for x 0, F(0) = { -1, 1}. With
lower semi-continuity of F the situation is different, because together with a constant
number of values it easily implies that F is continuous. The following theorem holds.

1.1. Theorem (S. Banach and S. Mazur [3]). Let X, Y be metric spaces and let X
be simply connected (i.e. any two paths in X with the same initial points and the
same terminal points are homotopic in X with a homotopy which leaves the initial
and terminal points constant) and locally pathwise connected. Then for any ls.c.
F: X - 2¥ with #F(x) = n < oo for any x € X, the graph of F is a disjoint union
of n graphs of continuous single-valued mappings. Consequently, F admits selec-
tions in the strong sense.

The assumption of simple connectedness of X cannot be omitted in the above
theorem, as the following example illustrates. Let us remark that the same simple
idea is used in Theorem 4.2.

1.2. Example. Let S = {z€ C; |z| = 1} and let ¢: S — 2% be “the complex square
root”, i.e. ¢(z) = {se C; s> = z} for ze S. Then ¢ is continuous and #¢(z) = 2
for any z € S. It is easy to see that ¢ has no selection.

If continuous finite-valued mappings (with non-constant number of values) are
considered, the situation is more complicated. However, if the space of values is R
(or homeomorphic to R), a selection always exists.

1.3. Proposition. Let X be any topological space and let F: X — 2® be continuous
and finite-valued. Then the functions f,(x) = min F(x), f,(x) = max F(x) are
continuous selections of F.

Example 1.2 shows that the real line R cannot be replaced by much more general
spaces. For some results in this direction see [4].

We omit an easy proof of Proposition 1.3. Let us note that it is a consequence of
a more general well-known theorem: Let X, Y be topological spaces, let F: X — 27
be continuous and compact-valued, and let ¢: F — R be a continuous function
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(defined on the graph of F). Then the “marginal mapping” F(x) = {ye F(x);
o(x, y) = min ¢({x} x F(x))} is us.c. (cf. [2], [8]).

It is not known to the author for which spaces X in Proposition 1.3 there exist
selections in the strong sense. Corollary 3.4 shows that any locally connected space
in which the intersection of every pair of connected subsets is connected, is an
example of such a space.

Let us recall the definition and main properties of treelike spaces. Our terminology
is taken from L. E. Brouwer’s book [5]. Some authors use the term “dendritic space”
for treelike spaces.

1.4. Definition. A topological space X is treelike if it is connected and each two of
its distinct points are separated by a third point, or equivalently ([5]): for any two
distinct points a and b there is a point p such that a and b belong to different com-
ponents of X \ {p}.

1.5. Theorem. ([5, Th. 4 in Ch. II1, Th. 2 and Prop. 2 in Ch. II]).
For a connected locally connected space X the following assertions are equivalent.
(1) X is treelike.

(ii) X is a Ty-space and the intersection of any family of its connected subsets

is connected.

(iil) X is a Hausdorff space and the intersection of any two of its connected

subsets is connected.

(iv) X is a Hausdorff space and #(A n B) < 1 whenever A and B are disjoint

connected subsets of X.

It is easy to see that any connected subspace of a treelike space is treelike [5].
Compact treelike spaces (called trees) are always locally connected [12].

Recall that an arc is a continuum with exactly two non-cut points (which are called
endpoints of the arc), or equivalently: a non-degenerate orderable continuum.
A space is arcwise connected if each two distinct points are the endpoints of some
arc contained in the space.

2. AUXILIARY PROPOSITIONS

In this section we state several lemmas. Main results of the present paper are
contained in the next two sections. Throughout all this section, Y will denote any
Hausdorff topological space.

2.1. Lemma. Let X be connected and let F: X — 2Y be continuous and compact-
valued. If A, B are two disjoint open sets in X x Y such that

FnA+0, FANnB+0 and Fc AUB,
then D(F n A) = D(F n B) = X.
Proof. The lower semi-continuity of F easily implies that D(F n A4), D(F n B) are
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both open in X. If D(F n A) + X then D(F n A) cannot be closed since X is con-
nected. Let x, be an arbitrary element of D(F n A)\ D(F n A). Since {x,} x
x F(x,) = B, there exists a neighborhood U of x, such that {x} x F(x) < B for all
x € U, because F(x,) is compact and F is u.s.c. at x,. But this is a contradiction with

xo€D(FNA). m

22. Lemma. Let F: X — 2", x,€ D(F) = X, #F(x,) = n. Then the following
are equivalent.
(i) F is continuous at x,.
(i) There exist pairwise disjoint open subsetsVy, ..., V, of Yand a neighborhood U
of x, such that the sets F; = Fn (U x V;) (i = 1, ..., n) satisfy:

FlU=U F;, D(F)=U andF,is continuous at x, .

Proof. Let F(x,) = {yy, ..., ¥o}. If (i) holds, take arbitrary disjoint open sets
Vi, ..., V, in such a way that y,e V; for i = 1, ..., n. By the continuity of F at x,,
there exists a neighborhood U of x, such that

F(x)csUV:, Fx)nVi+0 for i=1,..,n.
i=1

whenever x € U. With these V;, ..., ¥,, U the condition (ii) is satisfied. If (ii) holds,
observe that necessarily each V; contains exactly one element of F(x,). Now (i)
easily follows from the continuity of F’s. g

2.3. Lemma (Intersection lemma). Let X be locally connected and let # be a family
of continuous finite-valued mappings from X into Y, linearly ordered by inclusion.
Then f = (& is continuous.

Proof. Observe that D(f) = X and that for any x, € X there exists an F € #
such that F(x,) = f(x,). Let n = #F(x,). For this F find V,, ..., ¥, and U as in
Lemma 2.2. We can suppose U to be connected. Define F; = Fn (U x V), f; =
=fn(U x V) fori=1,...,n NowD(f;) = U,i=1,...,n. Infact, forany xe U
there exists F,e # with F, < F and F(x) = f(x). By Lemma 2.1, D(F,n
A(U x V;))=Ufori=1,..,n,and hence xe D(f;) fori = 1,...,n.

By Lemma 2.2, f is continuous at x,, because the continuity of F; at x, immediately
implies the continuity of f; at x,. u

2.4. Lemma (Union lemma). Let X be a locally connected treelike space and let
F: X — 2Y be continuous and finite-valued. Let ./ be a family of nonempty subsets
of F, linearly ordered by inclusion, such that D(M) is connected and M is continuous
on D(M) for any M € M. Then N = \).# is continuous on the (connected) set D(N).

Proof. Clearly D(N) = U{D(M); M e .#} is connected and N < F. Since any
connected subspace of a treelike space is treelike, we can suppose D(N) = X. Observe
that for any x,€X there exists an M e .# such that M(x,) = N(x,). The lower
semi-continuity of M at x, immediately implies that N is l.s.c. at x,. Let us prove

552



that N is also u.s.c. at x,. If N(x,) = F(x,) then N is obviously u.s.c. at x, since F
has the same property.

Let N(xo) = {¥1, ..o vi}s F(xo) = {y1s - ¥u}s 1 £ k < n. Let W< Y be open
and such that N(x,) = W. Find V,, ..., ¥, and U as in Lemma 2.2 for F. We can
suppose that U is connected and that V; « Wfori = 1,...,k.Let xe U and M, € ./
be such that M, > M and M (x) = N(x). By Theorem 1.5, the set U n D(M,) is
connected. If N(x) " V; = M (x)n V; & @ for some j > k, then by Lemma 2.1
D(M,n (U x V;)) = D(M,) n U, and hence also M(x,) N V; # 0, which contradicts
the inclusion

k
M(xo) = U V;.
i=1
k
Therefore N(x) ¢ U V; « Wforany xe U and N is u.s.c. at x,.
i=1

2.5. Lemma (First extension lemma). Let X be a locally connected treelike space
and let J = X be connected. Let F: X — 2Y be continuous and compact-valued,
and let f = F be continuous on D(f) = J. If xoe J\J and #F(x,) < oo, then
there exists an f such that f = f < F, [ is continuous on D(f) = J U {x,} and
=1

Proof. Denote F(xo) = {yy, ..., ¥»} and find V;, ..., ¥, and U as in Lemma 2.2.
We can suppose U to be connected. Then also the set U’ = U n J is connected by
Theorem 1.5. Put B = {i; 1 < i < n, fn (U’ x V;) + 0} and define

f(x) = f(x) for xeJ, f(xo)={yiiep}.

Let us denote U, = (J U {x,}) n U = U’ U {x,}. Lemma 2.1 implies
D(fn(U x V,))=U" for ief and D(fn (U x V))=0 for
i¢p,

and hence f/U, = Uf, and D(f)) = U, for ie B, where f; = fn (U, x V;). The

continuity of f; fOIIOWS immediately from the fact that f; = F;:= Fn (U x V)
and fi(xo) = Fi(xo) = {y;}, i€ p. Now, Lemma 2.2 ensures the continuity of f
at x, (with respect to J U {x,}).

2.6. Lemma (Second extension lemma). Let X be a locally connected treelike
space and let J be a closed connected proper subset of X. Let F: X — 2¥ be con-
tinuous and compact-valued, and let f = F be continuous on D(f) = J.If #F(x) <
< oo whenever x belongs to the boundary 0J of J, then there exists a connected
set K = X containing J as a proper subset, and an f such that f c f< F, f is
continuous on D(f) = K and f|J = f.

Proof. Let W be a component of X \ J. The local connectedness of X implies
that Wis open in X ([6]). If W = X \ J, then the set Wis closed, because W is closed
in X \ J. But this contradicts the connectedness of X. Therefore Wn J + . By
Theorem 1.5 Wn J = {x,} for some x, € X. Clearly x, € 0J.
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Denote F(xy) = {y, ..., y,} and find V,, ..., ¥, and U as in Lemma 2.2. We can
suppose U to be connected. Denote F; = F n (U x V;) and define
f(x) = f(x) for xelJ,
f(x) = U {Fix); Fixo) = f(x0)} for xeUnW.
By Lemma 2.2, f is continuous on Un W= (Un W)u {x,}, which (together

with the continuity of f on J) implies that f is continuous on the connected set
K =Ju(Un W)= D(f), because x, is the only common point of the sets J,

K\NJ. o

3. EXISTENCE OF SELECTIONS

3.1. Theorem. Let X be locally connected and let Y be a Hausdorff space. Let
F:X — 2 be continuous, finite-valued and such that the following property is
satisfied:

(P) for any continuous (on X) G < F and any (x, y) € G, there exists a continuous
H < G (possibly set-valued) such that H(x) = {y}.
Then F admits selections in the strong sense.

Proof. Let (xg, yo) € F. Let o be the family of all continuous G = F with
(x05 ¥o) € G. Then & is nonempty and partialy ordered by inclusion. By the Inter-
section lemma 2.3 and the Zorn-Kuratowski lemma ([6]), there exists a minimal
element f e . The property (P) implies that f is single-valued, and hence it is the
selection with f(xo) = ¥o. m

3.2. Theorem. Let X be a locally connected treelike space, Y a Hausdorff space,
and let F: X — 2¥ be continuous and finite-valued. Then for any (x, V)€ F there
exists a continuous H = F with H(x) = {y}.

Proof. Let F(x) = {yy, ..., y,} with y; = y. Find V}, ..., ¥, and U from Lemma
2.2. We can suppose that U is connected and y = y, € V;. Denote F; = Fn
N (U x V). Then the family

M ={M;F, = M < F, D(M) is connected,
M is continuous on D(M), M|U = F,}

is partialy ordered by inclusion and nonempty, since F, € .#. The Union lemma 2.4
and the Zorn-Kuratowski lemma ([6]) imply the existence of a maximal element
H e J/. By the First extension lemma 2.5, D(H) is closed. By the Second extension
lemma 2.6, D(H) = X. o

3.3. Theorem (Main result). Let X be a locally connected treelike space and Y
any Hausdorff topological space. Then each continuous finite-valued mapping
F: X — 2Y admits selections in the strong sense.

Proof. By Theorem 3.2, each continuous finite-valued F satisfies the property (P)
from Theorem 3.1. g
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3.4. Corollary. Let X be a locally connected Hausdorff space in which the inter-
section of any two connected sets is connected. Then any continuous finite-valued
mapping from X into a Hausdorff space Y admits selections in the strong sense.

Proof. Each component of X is open, locally connected and treelike (Theorem

15). m
4. A COUNTEREXAMPLE AND CHARACTERIZATIONS

Instead of the property (iii) of Theorem 1.5 we can consider a weaker property
dealing only with closed subsets of the space X. Note that we do not require that X
be connected or compact in the following definition.

4.1. Definition. A topological space X is called hereditarily unicoherent if the
intersection of any pair of its closed connected subsets is connected.

The following theorem shows that for the existence of selections on a normal
space X, it is necessary that X be hereditarily unicoherent. The idea of proof is
based on Example 1.2.

4.2. Theorem (Counterexample). Let X be a normal space in which there exist
closed connected subsets C; and C, such that C; n C, is not connected (i.e. X is not
hereditarily unicoherent). Then there exists a continuous finite-valued F: X — 2°
into the two-dimensional ball B such that 1 £ #F(x) < 2 for any xe€ X, and F
has no continuous selection.

Proof. Since C; n C, is closed and not connected, there exist nonempty closed
sets K, Lc X such that Kn L= 0 and Ku L= C; n C,. Put fo(x) = 1 for xe K
and fo(x) = —1 for x e L. The mapping fo: C; n C; = KU L— C is continuous.
Denote S = {zeC; |z| = 1}, S* = {ze S; Im(z) 20}, S™ = {ze S; Im(z) £ 0}.
S* and S~ are both homeomorphic to a compact interval and fo(K) = S*, fo(L) =
= S”. Hence by the Tietze-Urysohn theorem ([6]), there exist f;: C; — S*,
f2: C, - S7, continuous extensions of f,. The mapping f: C; u C, —» S defined
by f|C; = f, for i = 1,2 is then well-defined and continuous. The connectedness
of C; clearly implies
(1) fl(C1)=S+» fz(C2)=SA,

f(C,uC)=ScB={zeC; |z| < 1}.
There exists a continuous extension f: X — B of f (note that B is homeomorphic
to a closed square in R? and consider Tietze’s extension of components of f). Let
@: B > 2” be the “‘comples square root”, i.e. p(z) = {s € C; s> = z}. Observe that ¢
is a continuous finite-valued mapping with #¢(z) = 2 for z # 0 and ¢(0) = {0}.
Finally, let us define F: X - 28 by F = ¢ . f.

Let us denote by Q; the i-th closed quadrant in the complex plane C (i = 1,2, 3, 4),
ie. Q;={zeCN{0}; Arg(z)n[(i — 1)n/2, in2] + 0} U {0}.

Suppose that F has a selection. Then also F/C; u C, = ¢ o f must have a selection,
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let us denote it by g. Now, by (1)
()  (01)(C)=9(s*) = Sn(Q U Q) and
(pof)(C2)=0(S7)=5n(Qu Q).

The connectedness of C; implies that g(C;) is a connected subset of (¢ o f) (C;) and
hence

(3) g(C)=SnQ, or ¢g(C;)=Sn Q;, andalso
g(C;) = SnQ, or g(C,)=SnQ,.

Since g(K) = (¢ o f)(K) = {1, —1} and g(K) = g(C,), we have by (3) that g is
constant on K. Similarly, g is constant on L. Let g(K) = {1}. Then by (3) we have
9(Cy) = Sn Q, and ¢(C,) = S Q,. Conseqeently, g(L) = g(C,)n g(C,) = Sn
N Q, n Q, = {1}, which is a contradiction with g(L) = (¢ o f) (L) = {i, —i}. The
assumption g(K) = {—1} leads to a contradiction in an analogous way. u

It is not known to the author whether any normal connected and locally connected
space which is hereditarily unicoherent, must be treelike. However, some results
in this direction are known.

4.3. Theorem. Let X be a connected locally connected space satisfying at least
one of the following conditions.
(I) X is compact.
(11) X is locally compact.
() X is locally arcwise connected and separable.
(IV) Each connected subspace of X is arcwise connected.
Then X is treelike if and only if X is hereditarily unicoherent and Hausdorff.
Proof. In all the above cases, the necessity is an immediate consequence of
the implication (i) = (iii) in Theorem 1.5. Sufficiency:
(T) See [13, Theorem 9].
(IT) By (I), any subcontinuum of X is treelike. Apply [ 14, Corollary to Theorem 3].
(IIT) A hereditarily unicoherent space does not contain any simple closed curve
(i.e. the union of two arcs having just only their endpoints in common). Apply
14, Theorem 2].
(IV) In a hereditarily unicoherent space each two points can be connected by at
most one arc. Apply [11, Theorem 3]. o

These results allow us to characterize some situations in which there exist selections
of continuous finite-valued mappings.

4.4. Theorem. Let X be a locally connected normal space satisfying at least one
of the conditions (I), (II), (II), (IV) of Theorem 4.3. Then the following assertions
are equivalent.

(i) X is hereditarily unicoherent.

(i) Each component of X is treelike.
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(iii) Any continuous finite-valued F:X — 2Y, where Y is a Hausdorff space,

admits selections in the strong sense.

(iv) Any continuous finite-valued F:X — 2¥, where Y is a Hausdorff space,

admits a selection.

(v) Any continuous finite-valued F: X — 2% with #F(x) < 2 for any x € X has

a selection (B denotes the two-dimensional ball).

Proof. The equivalence (i) <> (ii) is a consequence of Theorem 4.3. Observe that
each component of X is open in X. Consequently, the implication (ii) = (iii) follows
from Theorem 3.3. The implications (iii) = (iv) = (v) are obvious. Finally, the
implication (v) = (i) is a consequence of Theorem 4.2. g4

Let us explicitly mention another consequence of our results, giving the charac-
terization of selectionability of finite-valued continuous mappings between convex
sets in topological linear spaces. Let us recall that the dimension of a convex set is
the dimension of its affine hull.

4.5. Proposition. Let K be a convex subset of a Hausdorff locally convex topo-
logical linear space X and let C be a convex subset of a Hausdorff topological
linear space Y. Then the following assertions are equivalent.

(i) Any continuous finite-valued F: K — 2€ has a selection.

(if) dimK =1 or dimC < 1.

Proof. If dimC £ 1 (dimK < 1) then F has a selection by Proposition 1.3
(by Theorem 3.3, respectively). If the dimensions of K and C are both greater than 1,
each of them contains a triangle which is homeomorphic to the two-dimensional
ball B. Let us denote these triangles by Ty and T.. By Theorem 4.2, there exists
a continuous finite-valued mapping G of Ty into T, without selections. Since any
plane in X is a retract of X and a triangle in a plane is a retract of the plane, there
exists a retraction r: K — Ty. Let i: T - C be the identity embedding. Then the
mapping F = ioGor: K — 2 is finite-valued and continuous, but admits no
selection. g
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