Czechoslovak Mathematical Journal

Ludék Zajicek
Fréchet differentiability, strict differentiability and subdifferentiability
Czechoslovak Mathematical Journal, Vol. 41 (1991), No. 3, 471-489

Persistent URL: http://dml.cz/dmlcz/102482

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102482
http://dml.cz

Czechoslovak Mathematical Journal, 41 (116) 1991, Praha

FRECHET DIFFERENTIABILITY, STRICT DIFFERENTIABILITY
AND SUBDIFFERENTIABILITY

LupEk ZAJICEK, Praha

(Received June 5, 1990)

INTRODUCTION

Sections 1—3 of the present article contain some general theorems concerning
Frechet and strict differentiability of mappings between Banach spaces. In Section 1
we give a characterization (Theorem 1) of the points of Frechet differentiability of
mappings, which is similar to a (simpler) characterization of the points of the strict
differentiability contained in [14]. As an application of Theorem 1, we easily obtain
that the set of points of the Frechet differentiability of a mapping between Banach
spaces is an F_; set. It is probable that this result, which is well-known for real
functions of real variables, is not new, but [ know no reference. Another consequence
of Theorem 1 is Theorem 4, a slight generalization of a ““separable reduction theorem”
(concerning Frechet differentiability on a dense set) of Preiss [12]. Our proof is
similar to that of [12], the only difference being that Preiss formulated his theorem
only for continuous mappings, since he used a characterization of the points of
Frechet differentiability which holds for continuous mappings only, and Theorem 1
gives an alternative characterization which holds also for discontinuous mappings.
Further, we give a generalization (Theorem 8) of a “separable reduction theorem”
(concerning generic Frechet differentiability) from [15]. The present proof is more
transparent than that of [15], since we now use explicitly the notion of the strict
differentiability and the theorem ([16], [1]) which asserts that the set of the points
at which a mapping between Banach spaces is Frechet differentiable but not strictly
differentiable is of the first category. Note that we also show (Note 3) that this last
mentioned theorem can be easily deduced from Theorem 1.

In Section 5 we generalize some results from [ 15] which concern subdifferentiability
(called “almost subdifferentiability” in [15]) of functions on Banach spaces. For
example, we prove in Theorem 10 that if f is a lower semi-continuous function on an
Asplund space, then the set of the points at which f is subdifferentiable but not
Frechet differentiable is a first category set. In [15] this result is proved in the case
when f is Lipschitz and subdifferentiable at all points. The results of Section 5 are
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applied in Section 6 to functions which are defined as a supremum of a “good”
family of functions. As is shown in [15], such “supremum functions” are frequently
subdifferentiable.

1. A CHARACTERIZATION OF THE POINTS OF FRECHET
DIFFERENTIABILITY

In this paper, all normed linear spaces are real. Unless otherwise specified, the
same symbol [+ | is used for norms in various normed linear spaces that enter the
discussion as this does not entail any confusion. The open ball with center x and
radius r is denoted by B(x, r).

If X, Y are normed linear spaces, D < X, xe D, ve X and if F: D - Yis a map-
ping, then we define the one-sided directional derivative of F at x in the direction v
as D, F(x) = lim (F(x + hv) — F(x)) h™'. The usual two-sided directional derivative

h-+0+

will be denoted by d,F(x). Obviously 9,F(x) exists if and only if D,F(x) = —D_, F(x).
Now let us recall the definition of the well-known notion of the strict derivative

(cf. e.g. [3], [4], [10]).

Definition 1. Let X, Y be normed linear spaces and D < X. A mapping F: D » Y
is said to be strictly differentiable at a point a € D if there exists a continuous linear
operator A: X — Y such that for each ¢ > 0 there exists a 6 > 0 such that

[F) = F(x) = Ay = x)]| = ey = ¥

whenever |x — a| <6 and [y — a|| < 4. In this case the operator A is called
a strict derivative of F at a.

Note that the notion of the strict derivative is more restrictive then the notion of
the Frechet derivative, and for continuous convex functions on a normed linear
space these two notions coincide. In the following we shall need the following defini-
tion from [14].

Definition 2. Let X, Y be normed linear spaces, S = X, and F: S — Y a mapping.
Then for any &€ > 0 we define the set D(F, ¢) as the set of all points a € S for which
there exists 6 > 0 such that

|F(y + ko) — F(y) _ F(y) = F(y — hv)
| p p
whenever ve X, o] = 1, k > 0, h > 0 and the points y, y — hv, y + kv belong to
B(a, ).

The following characterization of the points of the strict differentiability is given
in [14], Proposition 3.7.

<e¢

Theorem A. Let X be a normed linear space, S < X, and let Y be a Banach space.
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Let F: S — Y be a mapping. Then F is strictly differentiable at a point a€ S if
and only if F is continuous at a and a € [\ D(F, ¢).

€>0
We shall give a similar characterization also for the points of the Frechet dif-

ferentiability. To do this we have to change Definition 2 in the following way.

Definition 3. Let X, Y be normed linear spaces, S < X, and F: S - Y a mapping.
Then we define for any ¢ > 0, ¢ > 0 and & > O the set D(F, c, &, &) as the set of all
points a € S such that

(1) |F,(x_tﬁli:,ﬂx) _ FO) = Fly = o)

k h
whenever
(2) veX, o] =1, k>0, h>0, yeB(a.d), y— hoeB(a, ),

y + kve B(a,8) and min(k, h) > c[y — a| .

Note 1. Obviously D(F,cy, ¢ 8) < D(F, ¢y, 8) if ¢, < ¢, D(F,c,€,6)
< D(F,c, ¢,,6)if &, < ¢,, and D(F, ¢, &, 68,) = D(F, ¢, ¢, 6,) if 6, < &,.

Theorem 1. Let X be a normed linear space, S = X, and let Y be a Banach space.
Let F: S —» Y be a mapping. Then F is Frechet differentiable at a point a€ S if
and only if F is continuous at aand ae () () U D(F, c, &, 6).

c>0e>06>0
Proof. First suppose that F has at a a Frechet derivative F'(a) = 4, and ¢ > 0,
¢ > 0 are arbitrary numbers. We have to prove that there exists 6 > 0 such that
a€ D(F,c, ¢ 6). Choose a number o, 0 < o < (¢/(4 + 2c)) &. We shall prove that
it is sufficient to choose § > 0 such that

|F(a + h) — F(a) — A(h)| < w|h| whenever |lh| <.
Thus suppose that for some v, k, h, y the conditions (2) hold. Then

(3) [F(y + kv) = F(a) — A(y + kv — a)|| < o]y + kv — a],
(4) |F(y = hv) — F(a) — A(y — hv — a)|| < 0|y — hv — a|
and

(5) |F(y) = F(a) — A(y — a)] < o]y - al .

The conditions (3) and (5) imply
[E(v + ko) = F(y) = A(kv)]| < o([ly + ko = a] + |y = a]) <
S o2y - a| + k) £ 02c + 1) k < k2.

Consequently

(6) H o+ B2 FO) _ 4
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Similarly conditions (4) and (5) imply
[F(y) = F(y — hv) — A(ho)|| < o(]|y — ho — al + |y —4af)
< o(2|y — a|| + h) < h2

and

(7) H,F.(y): Fy = hv) _ A()| < ¢f2.

h

The inequalities (6) and (7) imply (1), consequently we have proved a € D(F, c, ¢, §).
Now suppose that ae () () () D(F, ¢, & 6) and F is continuous at a. We have

c>0e>06>0
to prove that F is Frechet differentiable at a. First we shall prove that all directional
derivatives 0,(F, a) exist and that the limit

im Fla + 1) = F(a)

li ———~ = 9,(F, a)
t—0 t
is uniform on the sphere {v: [v] = 1}. To prove this suppose that v with [[o]| = 1

and ¢ > 0 are given. Choose a § > 0 such that a e D(F, 1, ¢, §). Now consider
arbitrary numbers -6 <t;, <1, <0< t;<t, <d and put y =a, ¢ = 1. Then
for any choice (k, h) € {(t3, —t,), (t3, —t,), (14, —t;), (ts, —1,)} the conditions (2)
are satisfied. Thus (1) implies

F(a + tyv) — F(a) _ F(a + t,0) — F(a) <.
ts 1 -

Fla + ) = Fa) _ Fla + 1,0) = F(a)] _,
t3 tl = b

F(a + t,0) = F(a) _ F(a + tv) — F(a) <.
ty f =

F(a + tw) — F(a) _ F(a + t,0) — F(a) <
1 t -

nad consequently

F(a + tv) — F(a) _ F(a + ty0) — F(a)| _ 2
t3 ta -

F(a + t;0) — F(a) _ F(a + t,0) - Fa)] _ 2
ty 1 -

Thus we see that

diam{i(ﬁiy?—:—ﬁw :0<]t] <5}§28.
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Since Yis a complete metric space and the choice of  does not depend on v, we obtain

that

(8) 0,F(a) exists and the limit lim ((F(a + tv) — F(a))/t) is uniform on the
sphere {v: [v] = o

Let now v # w be given; we shall prove D, ., (F, a) = D,(F, a) + D,(F, a). Suppose

on the contrary that

9) | Do+ (F, a) — D(F,a) — D(F,a)| := 40 > 0.

Put ¢ = offv — w|, ¢ = o — w|/2]v + w| and find .a § > 0 such thatae

€ D(F, ¢, ¢, 6). Find now ¢ > 0 such that the points a + 2tv, a + 2tw, a + t(v + w)
belong to B(a, d),

[(F(a + 2tv) — F(a))]2t — D(F, a)| < »,
[(F(a + 2tw) — F(a))2t — D,(F,a)| < ®, and
[(F(a + t(v + w)) = F(a))Jt = Dys o (F,a)| < .
These inequalities and (9) imply
[(F(a + 2tv) — F(a))2t + (F(a + 2tw) — F(a))/2t —
= (F(a + t(v + w)) — Fa))t| > »,
which yields
[F(a + 2tv) = F(a + t(v + w)) = (F(a + (v + w)) — F(a + 2tw))| >
> 2tw .
Consequently we have

“F(a + 2tu) — Fla + t(v+w)) F(a+ t(v + w))— F(a + 2tw)

20[[v — w] .

On the other hand, the condition (2) obviously holds for y = a + t(v + w), 7 :=

= (v — w)[Jv —w| and h = k = t]o — w|. Consequently, (1) gives

”F(a +2tw) — F(a + t(v+w))  F(a + t(v + w)) — F(a + 2tw)
tlo — ] tlo = w]

= fo—w|

< offo - w],

which is a contradiction. Putting A(v) := D, F(a) we see that 4 is homogeneous and
additive, consequently it is linear. The condition (8) implies

[F(a + h) — F(a) — A(h)” = o(”h”) , h-0.
Since F is continuous at a we conclude that A is continuous and therefore A4 is the
Frechet derivative of F at a.

Note 2. By virtue of Note 1 we obtain that F is Frechet differentiable at a if and
only if F is continuous at a and

ae() U D(F, 1/n, 1/n, 1[k) .

n=1k=1
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2. THE BOREL TYPE OF THE SETS OF POINTS OF FRECHET
AND STRICT DIFFERENTIABILITY

Theorem 2. Let X be a normed linear space, S = X, and let Y be a Banach space.
Let F: S — Ybe amapping. Then the set of the points of the Frechet differentiability
of F is an F  set.

Proof. It is well-known (cf. [9]) that the set of all continuity points of F is a G, set.
Thus Note 2 implies that it is sufficient to prove that the set D(F, 1/n, 1/n, 1/k) is
closed for all n and k. To this end suppose that n and k are fixed and a sequence
x; = x such that x; € D(F, 1/n, 1/n, 1/k)is given. To prove that x € D(F, 1/n, 1/n, 1/k)
consider arbitrary ve X with o] =1, p> 0, h > 0 and ye B(x, 1/k) such that
y — hve B(x,1/k), y + pve B(x, 1/k) and min (p, h) > (1/n) ||y — x||. Now we
easily obtain that there exists a natural j such that y € B(x;, 1/k), y — hv € B(x;, 1/k),
y + pve B(x;, 1/k) and min (p, h) > (1/n) |y — x;]. Since x; e D(F, 1/n, 1/n, 1[k),
we conclude that |(F(y + pv) — F(y))/p — (F(y) — F(y — hv))/h|| < 1/n. Con-
sequently x € D(F, 1/n, 1/n, 1/k), which completes the proof.

Theorem 3. Let X be a normed linear space, S = X, and let Y be a Banach space.
Let F: S — Y be a mapping. Then the set of points of the strict differentiability
of F is a Gy set.

Proof. Since obviously () D(F,&) = () D(F, 1/n) and the set of all continuity

n=1

£>0

points of F is a G, set, Theorem A implies that it is sufficient to prove that D(F, 1/n)
is open for each natural n. To prove this suppose that x € D(F, 1/n) and finda §, > 0
from Definition 2. Then each y € B(x, 6,/2) belongs also to D(F, 1/n), since we can
choose 8, = §,/2.

Note 3. The following theorem is proved in [16] and [1]:

Theorem B. Let X, Y be normed linear spaces and F: X — Y a mapping. Then
the set of all points at which F is Frechet differentiable but not strictly differentiable
is a first category set.

We shall show that, in the case when Yis Banach, this theorem can be easily deduced
from Theorem A and Theorem 1. Using proofs of Theorem A and Theorem 1 it is
possible to obtain Theorem B in the full generality.

Proof of Theorem B. Denote by Vthe set of all points of the Frechet differentiabili-
ty and by W the set of all points of the strict differentiability of the mapping F.
Theorem A and Theorem 1 imply

(10) V- W=C) V — D(F, 1/n) =
cn(:)l( QI(D(F, 1, 1/2n, 1/m) — D(F, 1/n))).

Now suppose that ¥V — Wis a second category set. Then we can find n, m and a ball
B(c, r) such that the set D(F, 1, 1/2n, 1/m) — D(F, 1/n) is dense in B(c, r). Choose
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a point a € B(c, r) — D(F, 1/n). Using Definition 2 we can find ye X, ve X, § > 0,
k > 0and h > 0 such that [[v] =1, § < 1/4m, B(a, §) < B(c, r), the points y, y —
— hv, y + kv belong to B(a, 5) and
F(y + kv) — F(y) _ F(y) — F(y — hv)
k h
Now put s = min (1/2m, k, h) and choose x e B(y, s)n D(F, 1, 1/2n, 1/m). Since
x € B(y, s), we easily obtain x ¢ D(F, 1, 1/2n, 1/m) and this is a contradiction which

completes the proof. Using the proofs of Theorem A and Theorem 1, it would be
easy to prove (10) and consequently also Theorem B in the general case.

{'>I/n

3. SEPARABLE REDUCTION THEOREMS

In the differentiation theory, the separable reduction method was probably first
used by D. Gregory [7]. This method was subsequently used e.g. in [12], [5], [15].

The following theorem is a generalization of a Preiss [12] theorem; Preiss has
proved his theorem for continuous mappings.

Theorem 4. Let E be a normed linear space and let F be a Banach space. Let
G < E be an open set, f: G - F an arbitrary mapping and V < E a separable
subspace of E. Then there exists a separable closed subspace W of E such that
V < Wand f is Frechet differentiable at every point of W G at which f[W is.

Theorem 4 obviously implies the following theorem.

Theorem S. Let E be a normed linear space and let F be a Banach space. Let
G < E be an open set and let f: G — F be an arbitrary mapping. Suppose that for
each closed separable subspace W fo E the partial mapping f|W is Frechet dif-
ferentiable at all points of a dense subset of W G. Then f is Frechet differentiable
at all points of a dense subset of G.

Proof of Theorem 4. First we describe a construction which assigns to each
closed separable subspace X < E a closed separable subspace X containing X.
Construction: Choose a countable dense subset S = S(X) of X. Now, for each
s € S and each natural number n choose points p(s, n), q(s, n) from the ball B(s, 1/n)
such that

(11) 1/(p(s, m)) = f(a(s, m))]| > (3) diam f(B(s, 1/n)) .

Further, for each s € S, each natural n and each rational numbers r; < r, denote
by Q(s, n, ry, r,) the set of all tetrads (y, v, k, h) such that ye E, ve E, [[o] =1,
k>0, h>0, riy<k<ry, ry<h<r, and |y —s| < nmin(k, h). In each
Q(s.n, ry, r,) find a tetrad (y(s, n, ry, r3), 0(s, n, vy, 73), k(s, n, 7y, 73), B(s, ny 7y, 73)) =
= (¥*, v*, k*, h*) such that

(12) “f(y* + ko) — f(3*) _ f(y*) = f(p* — h*o*)

k* h* g
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> ;sup{ ﬂy + ko) = f(y) _ f(») = f(y = ho)
k h

Now define X as the closed subspace of E spanned by X and by all points of the
form p(s, n), q(s, n), y(s, n, ry, r,) and (s, n, ry, r,). Define a sequence of closed
separable subspaces of E

:(v, v, k, h)e Q(s, n, ry, rz)} .

VicV,c...
such that @+ V, o V and V,,., = V,,. We shall prove that the closed separable

subspace W = (J V,, has the desired property. Thus suppose that f is not Frechet
m=1

differentiable at a point a € Wn G. We have to prove that f/W is not Frechet

differentiable at a. By Note 2 we know that either

(13) f is discontinuous at a

or

(14) acE— UDf1n 1/n, 1/k).
n=1k=1

If (13) holds, then we can choose @ > 0 such that the oscillation of f at a is bigger
than . We shall prove that then the oscillation of f/W at a is at least /2 and con-
sequently f/W is discontinuous at a. To this end consider an arbitrary natural
number n. We can obviously find points p, g € B(a, 1/2n) such that | f(p) — f(q)| >
> w. Since a € W, we can choose a natural number m such that B(a, 1/2n) NV, *0.
Further we can choose se S = S(V,,) which belong to B(a, 1/2n). Since obviously
p. q € B(s, 1/n), we obtain by Construction that ||f(p(s, n)) — f(q(s, n))| > w/2.
Since the points p(s, n), g(s, n) belong to B(s, 1/n) which is contained in B(a, 2/n)
and also p(s, n), q(s, n) e W, we have that diam (f/W) (B(a, 2/n)) > o/2. Since n
is an arbitrary natural number, we obtain that the oscillation off/Wat a is at least w/2.
Now suppose that f is continuous at @ and (14) holds. Consequently, we can choose

@
a natural number n such that ae (Y E — D(f, 1/n, 1/n, 1/j). By Theorem 1 it is
j=1

sufficient to prove that, for each & > 0, ae W — D(f|W, 1/5n, 1/2n, 5) (where the
role of X from Definition 3is played by the space W). To this end consider an arbitrary
4 > 0 and choose a natural number j such that (2n + 3)/j < 6. Sinceae E —
— D(f, 1/n, 1/n, 1]j), we can find y € E, ve E, |[v| = 1, and k, h > 0 such that the
points y, y + kv, y — hv belong to B(a, 1/j), n min (k, k) > |y — a] and

“_f_(_y + ko) = f(y) _ f(¥) = f(y — hv)
k h

= 1/n.

Put r, = 2[j and choose a rational number r; such that min (h, k) > r, >
> (4) min (h, k). Since ae W and nmin(k, h) > |y — a||, we can clearly find
a natural number m and x € V,, such that x € B(a, 1/j) and n min (k, h) > ||y — x|.
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Further we can choose se S = S(V,,) such that se B(a, 1/j) and n min (k, h) >
> ”v - s‘” Since (v, v, k, h) € Q(s, n, ry, r,), we have
‘ fy* + k*v *) =S¥ fO*) = f(r* = h*o*)
h*

> ]/Zn,

where y* = y(s, n, ry, rz), v* = o(s, n, ry, 1), k* = k(s,n,ry,ry) and h* =
= h(s,n,r,ry). Since [la —s| < 1/i, |y* = s| < nmin(k* h*) <n r, = 2nj
and max (h*, k*) < r, = 2/j, we obtain that the points y*, y* + k*p*, y* — h*v*
belong to the ball B(a, (2n + 3)/j} which is contained in B(a, d). Since min (k*, h*) >
> ry > (1/2) min (k, h), we obtain

v — a| < nmin(k, h) < 2n min (k*, h*),

”y - s” < nmin (k, h) < 2n min (k*, h*)
and
[y* = s| < nmin (k* h*).

Consequently [y* — a| < 5n min (k*, h*). Since the points y*, y* + k*v*,
y* — I*v* belong to W, we obtain a € W — D(f/W, 1/5n, 1/2n, §), which completes
the proof.

Now we will prove analogous results for the strict differentiability. Of course, since
Theorem A is simpler than Theorem 1, the proofs of separable reduction results on
the strict differentiability will be simpler than those on the Frechet differentiability.
We shall give the proofs via the following lemma which will be essentially used also
in Section S of the article.

Lemma 1. Let E be a normed linear space, F a Banach space, G < E an open
set, and let f: G —» F be an arbitrary mapping. Then there exists a mapping t
which assigns to each separable closed subpsace X of E a separable closed subspace
1(X) o X such that the following assertion holds: If Y is a closed subspace of E
such that the set D(Y):= U{X:4(X) < Y} is dense in Y, then f is strictly dif-
ferentiable at each point of Y G at which f|Y is strictly differentiable.

Proof. Let X be an arbitrary separable closed subspace of E. Choose a countable
dense subset S = S(X) = X. Now, for each s € S and each natural number n choose
points p(s, n), ¢(s, n) from the ball B(s, 1/n) such that

(15) [£(p(s. n)) = f(q(s, n))| > (1/2) diam f(B(s, 1/n)) .

Further, for each s e S and each natural n, denote by Q(s, n) the set of all tetrads
(v, v, k, h) such that ye E, ve E, |[v] = 1, k > 0, h > 0 and the points y, y + kv,
y — hv belong to B(s, 1/n). In each Q(s, n) choose a tetrad (y(s, n), v(s, n), k(s, n),
h(s, n)) = (y*, v*, k*, h*) such that

1) ‘ s k*lf*) —f0%) _ S0%) = ffy* — h*p*)
* 1*
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. ; sup {”Lﬂv Lki); SO) _ 10 =1 h(-\_’;ﬁﬂ

(v, k h)e Q(S-")}.

Now define 1{X) as the closed subspace spanned by X and all points of the form
p(s. n), q(s. n), ¥(s, n), v(s, n). Clearly #(X) is a separable space. Suppose that Y is
a closed subspace of E, D(Y) is dense in Y and f/Y is strictly differentiable at a point
ae Y. We have to prove that f is strictly differentiable at a. Suppose on the contrary
that f is not strictly differentiable at a € Yn G. Theorem A easily yields that either

(17) [ is a discontinuous at a

or
(18) a¢gnm1ﬁy

If (17) holds, then we can choose @ > 0 such that the oscillation of f at a is bigger
than w. We shall prove that then the cscillation of /Y at a is at least w/2 and con-
sequently f/Y is discontinuous at a. To this end consider an arbitrary natural number
n. Obviously we can find points p, q € B(a, 1/2n) such that |f(p) — f(q)|| > w.
Since D(Y) is dense in Y, we can choose a separable closed space X such that
B(a, 1/2n) n X # Qand #(X) <= Y. Further we can choose s € S = S(X) which belongs
to B(a, 1/2n). Since obviously p, g € B(s, 1/n), (15) implies || f(p(s, n)) — f(q(s. n))| >
> /2. Since the points p(s, n), q(s, n) belong to B(s, 1/n) which is contained in
B(a, 2/n),and also p(s, n), q(s, n) € {(X) < Y, we obtain that diam (f/Y) (B(a, 2/n)) >
> /2. Consequently the oscillation of f/Yat a is at least w/2, which was to be proved.

Now suppose that a ¢ () D(f, 1/m). Fix a natural m such that a ¢ D(f, 1/m) and

m=1
choose an arbitrary natural number n. Since a ¢ D(f, 1/m), we can find y, v € E and
k > 0, h > 0 such that o] = 1, the points y, y + kv, y — hv belong to B(a, 1/2n)
and

> 1/m.

”L(r tho) = J0) _ S0) =Sy = k)|
k h |

Since D(Y) is dense in Y, we can choose a separable closed space X such that
B(a.1/2n)n X + 0 and t(X) < Y. Further we can choose se S = S(X) which
belongs to B(a, 1/2n). Since obviously y, y + kv, y — hv € B(s, 1/n), we have by (16)

" S* + ko) = f(y%) (%) = S(* = %)
| k> h

> 1/2m,

where y* = y(s, n), v* = v(s, n), k* = k(s, n) and h* = h(s, n). The points y*, y* +
+ k*v*, y* — h*v* obviously belong to B(a,2/n) and also to #X) < Y. Con-
sequently a ¢ D(f]Y, 1/2m) (here the role of X from Definition 2 is played by the
space Y) and therefore f/Y is not strictly differentiable at a, which is a contradiction
which completes the proof.
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Theorem 6. Let E be a normed linear space and let F be a Banach space. G = E
be an open set, f: G —> F an arbitrary mapping and V < E a separable subspace
of E. Then there exists a separable closed subspace W of E such thatV < W and f
is strictly differentiable at every point of W G at which f|W is.

Proof. Let ¢ be the mapping from Lemma 1. Define a sequence of closed separable
subspaces of E

VicV, c...
such that @ # ¥, o Vand V,,, = (V). Lemma 1 easily implies that the closed

separable subspace of E which is defined as W: = |J V, has the desired property.
n=1

Theorem 6 obviously implies the following theorem.

Theorem 7. Let E be a normed linear space and let F be a Banach space. Let
G < E be an open set and let f: G — F be an arbitrary mapping. Suppose that for
each closed separable subspace W of E the partial mapping f|W is strictly dif-
ferentiable at all points of a dense subset of W G. Then f is strictly differentiable
at all points of a dense subset of G.

Since a G;-subset of an open subset G of a Banach set X is dense in G iff it is
residual in G, Theorem 3 implies that Theorem 7 can be reformulated in the following
way, provided E is Banach.

Theorem 7*. Let E, F be Banach spaces. Let G = E be an open set and letf: G — F
be an arbitrary mapping. Suppose that for each closed separable subspace W of E
the partial mapping f|W is strictly differentiable at all points of a residual subset
of Wn G. Then f is strictly differentiable at all points of a residual subset of G.

Theorem 7 and Theorem B imply immediately the following theorem which
generalizes Proposition 1 from [15].

Theorem 8. Let E, F be Banach spaces. Let G = E be an open set and let f: G — F
be an arbitrary mapping. Suppose that for each closed separable subspace W of E
the partial mapping f|W is Fréchet differentiable at all points of a residual subset
of WA G. Then f is Fréchet differentiable at all points of a residual subset of G.

The following lemma which is similar to Lemma 1 will be used in the Section 5.

Lemma 2. Let E be a normed linear space, H < E an open set, and let M < H
be a residual subset of H. Then there exists a mapping s which assigns to each
separable closed subspace X of E a separable closed subspace s(X) > X such that
the following assertion holds: If Yis a closed subspace of E such that the set B(Y) :=
1= U{X:s(X) = Y} is dense in Y, then the set M N Y is residual in H " Y.

Proof. Since M is residual in H, there exists a sequence (G,,),‘f;l of open dense

subsets of H such that () G, = M. Let X be an arbitrary separable closed subspace
n=1
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of E. Choose a countable dense subset D = D(X) < X. For each se D n H, each
natural number k and each natural number n choose a point x(s, k, n) such that
x(s, k, n) € G, 0 B(s, 1/k). Now define s(X) as the closed subspace of E spanned
by X and all points of the form x(s, k, n). Clearly s(X) is a separable space. Suppose
that Y is a closed subspace of E such that B{Y) is dense in Y. Since G, n Y is open

in Yand N (G, N Y) = M n Y, it is sufficient to prove that all sets G, N Y are dense
n=1

in H n Y. To this end fix a natural n, ze H n Yand ¢ > 0. Since B(Y) is dense in Y,
we can find a separable closed subspace X and be Y B(z, ¢/2) such that be X
and s(X) < Y. Further choose s e D(X) which belongs to B(z, ¢/2) and a natural
number k such that 1/k < ¢/2. Then x(s, k,n)e G, B(z,&) ns(X) = G,n Y
N B(z, ). Consequently G, n Yis dense in H N Y.

4. POINTS OF SUBDIFFERENTIABILITY

The following notion of subdifferentiability of an arbitrary function is a natural
generalization of the notion of subdifferentiability of a convex function and was
considered in a number of articles. The subgradient defined below is called Frechet
subderivate in [2] and almost subdifferential in [15]. Rockefellar [13] suggested
for this notion the name lower semigradient to distinguish it from the Clarke sub-
gradient. The aim of the present section is to prove Proposition 1 which says that
the set of all points of subdifferentiability of an arbitrary lower semicontinuous
function in a normed linear space has the Baire property. In fact, we prove that it is
a Souslin set. This result is quite sufficient for our purposes in the present article,
but it would be of some interest to know whether it is always a Borel set.

Agreement. In this section X will be an arbitrary fixed normed linear space, f a real
function defined in X and u ¢ X*. For x € X we put u(x) = (x, u).

Definition 4. We say that u is a subgradient of f at a point a € X if
F) ~ fa) = (x —aw)

lim inf — — =
x-a ”X - a”

The set of all subgradients of f at a is called the subdifferential of f at a and denoted
df(a). The set of all points of subdifferentiability of f (i.e. of points a at which
df(a) =+ 0) will be denoted by S(f).

Definition 5.
(a) Fore > 0and § > 0, we define S(f, u, &, §) as the set of all a € X for which
f(x) = fla) 2 (x — a,u) — ¢]|x — a|

whenever ”x — a“ < 0.
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(b) We put
S(f, u,e) = S(furé)
We say that u is an e-support of f at a ([5]), if a € S(f, u, ¢).
(c) For a natural K, put

Skl(f.e.0) = U (S(f, u. e.8) : |u] < K}
and

Sk(f.e) = U {S(fiu, &) : [lu] <K} .
Note 4. Obviously u € df(a) iff a e ) S(f, u, ¢).
£>0

Lemma 3. Let f be a function defined on an open set G < X. For each natural

number K and each k-tuple (ny, n,, ..., n,) of natural numbers put
(19) A ﬂSUulhl ) ul = K5
Then

S(f) = U U ﬂA ..... me s

K=1 (ng,n2,...) k

where the union is taken over all sequences (n, n, ...) of natural numbers.

Proof. Let a € S(f) and let u be a subgradient of f at the point a. Choose a natural
number K such that |u| £ K. For each natural number i, we can find (cf. Note 4)
a natural number n; such that a € S(f, u, 1/i, 1/n;). For these K and (ny, n,,...) we

obviously have a e ﬂ A,,l .- One inclusion is proved. To prove the second inclusion,

suppose lhdt ae U U nNAay .

K=1(ny.n>y....) k=1
Then we can, for each natural k, choose a functional u, € X*,

m is given. Choose K and (ny, n,,...) such

that a € ﬂ A

k=1

Ju,] < K such that aeﬂS(f ug, 1/i, 1/n;). Since the set {ueX*: |u] < K} is
-compact there exxsts u eX* ” ul| < K, which is a point of accumulation of the
set U = {uy, u,, ...} in the w*-topology. Now we shall prove that u is a subgradient

of fat the point a. To this end choose an arbitrary ¢ > 0 and find a natural number p
such that 1/p < &. It is obviously sufficient to prove that a € S(f, u, ¢, 1/n,). To prove
this choose an arbitrary x € B(a, 1/n,) and an arbitrary & > 0. Since u is a point of
accumulation of U — {uy, ..., u,_} in the w*-topology, we can find k = p such
that |(x — a, ) — (x — a,u)| < w. Since a e S(f, u,, 1/p, 1/n,) = S(f, uy, ¢, 1/n,),
we have f(x) — f(a) = (x — a,u) —e|x —a]| =2 (x — a.u) — 0 — &|x — 4.
Since w > Oisan arbltrary number, we obtain f(x) — f(a) = (x — a, u) — sl]x — al
which completes the proof.

Lemma 4. Let f be a lower semicontinuous function defined on an open subset G of
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a normed linear space X. Let the set Ay. . be defined by (19). Then it is closed
inG.

Proof. Suppose that x,, » x € G and x,, € 4, . for each m. For each m choose

s
a functional u,, € X*, ||u,,| < K, such that x,, € () S(f, u,, 1/i, 1/n;), and a functional
i=1
ueX*, ”u” < K, which is a point of accumulation of the set U = {u,, u,, ...} in the
k
w*-topology. It is sufficient to prove that x € () S(f, u, 1/i, 1/n;). To this end choose
i=1

an arbitrary ie{l,...,k}, ye B(x, 1/n;) and @ > 0. Find an index m, such that
for each m = m, the point y belongs to B(x,. 1/n,), |x,, — x| <  and f(x,) >

> f(x) — w. Observe that
(20) FO) = ) Z (0 = X ) = (/i) [y = xa] -

Since u is a point of accumulation of U — {uy, u,, ..., u,, -} in the w*-topology,
we can find m = m, such that |[(y — x, u,,) — (v — x, u)| < w. Using this inequality
and (20), we obtain f(y) — f(x) = (f(¥) = f(xn) + (f(xn) — f(x))> =0 + f(y) -
) 2 0 1 (7~ ) — (1) 5 — %] Z 0 + (v = ) + (x ~ %),
u+ (uy —u)) = (i) ly = x| = (1fi) [|[x = x| = =0 + (y — x, u) +
+(x = Xpu) + (v = X up —u) + (x = x4, —u)— (1/i) |y — x| -
—(fi)|x = x,] 2 —0 + (y — x,u) = Ko — o — 2Ko — (1/i) |y — x| -
- (1)i) o.

Since w > 0 is an arbitrary number, we obtain f(y) — f(x) = (y — x, u) —
— (1/i) ||y = x|. Consequently x € S(f, u, 1/i, 1/n;), which completes the proof.

Proposition 1. Let f be a lower semicontinuous function defined on an open subset
G of a normed linear space X. Then the set S(f) of all points at which f is sub-
differentiable has the Baire property.

Proof. The proposition is an immediate consequence of Lemma 3 and Lemma 4,
since the Baire property is an invariant of the (/) — operation (cf. [9]).

5. DIFFERENTIABILITY VIA SUBDIFFERENTIABILITY

The proof of the following theorem is based on the same idea as Theorem 2 of [15],
which deals with a Lipschitz function f.

Theorem 9. Let X be a normed linear space and P a separable subset of X*.
Let G = X be an open set and let f be a lower semicontinuous function on G. Then
the set A of all points x € G at which of(x)" P £ 0 and f is not Frechet
differentiable at x is a first category set.

Proof. For each x € 4 choose a subgradient s, € P n 9f(x). Now for each natural
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number m define a set 4,, as

A, = {xeA : lim supf(x +h) = f(x) = (1) > l/m}

h=0 h

o

It is easy to see that A = |J A, Since P is separable we can clearly choose for each m
m=1

a sequence {A, .}, such that A, =U A,  and [s, — s, < 1/3m whenever
k=1 @
X, y € Ay Further, for each m, k we can find sets A, ;,, such that 4, , = U Am.
s=1
and

(h,s:) = (f(x + h) = f(x))
h

It is sufficient to prove that each set 4, , , is nowhere dense. Suppose on the contrary
that a set A, , is dense in a nonempty open set H. We can obviously suppose that
diam H < 1fs. Put T = A, H. Choose a point x € T. Since x € 4,, we can find
a point y € H such that

) = f(x) = (y = x.5) = (1m) [y = x| > 0.

Since T'is dense in H, y € H and the left hand side of the above inequality is lower
semicontinuous, we can find z € T such that

(21) f(z) = f(x) = (z = x,8) — (1/m) |z = x|| > 0.
Since X, z € Ay, and [|x — z[ < 1/s, we have
(22) f(x) = f(z) = (x = z,5.) + (1[3m) |x — z| > 0.
Adding the inequalities (21) and (22), we obtain

(z —x, 5, — s — (2/3m) |z — x|| > 0,

< 1/3m whenever |[h]| <1]s.

which is a contradiction since
2 = x5 = )] S s = 5] = = x] < (1/3m) = - ] .

Note 5. Theorem 9 immediately implies that if X* is separable and f is a lower
semicontinuous function on an open set G < X, then the set of all points xe G
at which f is subdifferentiable and is not Frechet differentiable, is first category set.
If we moreover assume that f is Lipschitz, then the exceptional set is not only a first
category set, but it is small in a more strict sense — it is g-porous ([15]).

Theorem 10. Let X be an Asplund space and let G = X be an open set. Let f be
a lower semicontinuous function on G. Then the set A of all points x € G at which f
is subdifferentiable and is not Frechet differentiable, is a first category set.

Proof. Put S := {x € G : f is subdifferentiable at x} and D := {x € G : f is strictly
differentiable at x}. It is sufficient to prove that S — D is a first category set. Suppose
on the contrary that S — D is a second category set. Theorem 3 and Proposition 1
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imply that S — D has the Baire property. Consequently there exists an open set
0+ U < G such that U — (S — D) = (U — S)u (U D) is a first category set.
Since by Theorem 3 the set D is a G4 set, we conclude that D is not dense in U and
consequently there exists an open set § &= H < U such that H n D = Q. Obviously
the set S n H is residual in H. Let ¢ be the mapping from Lemma 1 which corresponds
to E = X and G = H. Further, let s be the mapping from Lemma 2 which cor-
respondsto E = X, H = Hand M = S n H. Let X, be a closed separable subspace
which intersects H. Further put X,, = #(X,,_,)and X5,+; = s(X,,)forn = 1,2, ....

Now consider the closed separable subspace Y:= (J X,,. Since obviously both D(Y)
n=1

(see Lemma 1) and B(Y) (see Lemma 2), are dense in Y, we obtain that

23 f is strictly differentiable at each point x € Yn H at which f/Y is strictl
y
differentiable,

and that S H n Yis a residual subset of H n Y #+ 0. Since X is Asplund and Y is
separable, we know (cf. e.g. [11]), that Y* is separable. Further, f/Y is obviously
lower semicontinuous on H n Y and f]Y is subdifferentiable at each point of S
A H N Y. By Theorem 9 (cf. Note 5) f/Y is Frechet differentiable at all points of
a residual subset of H n Y. Theorem B implies that f]Y is also strictly differentiable
at all points of a residual subset of H n Y. But this fact contradicts (23), since
H n D = Q. The proof is complete.

Finally, we shall prove a partial generalization of Theorem 10. We shall need the
following notion of ““separably related sets” from [6].

Definition 6. A subset K of a dual Banach space X* is separably related to a subset
A of X provided for every separable, bounded subset S of A4 the set K is separable
for the topology of uniform convergence on S.

Theorem 10*. Let X be a Banach space, G = X an open set and let f be a real
Sunction on G. Let K = X* be separably related to X and df(x) n K + 0 for each
x € G. Then f is Frechet differentiable at each point of a residual subset of G.

Proof. Let W be a closed separable subspace of X. By Theorem 8 it is sufficient
to prove that the partial function f/W is Frechet differentiable at all points of a residual
subset of Wn G. But this fact immediately follows from Theorem 9, if we put P =
= {g/W: g e K}. In fact, clearly d(f/W)(x)n P + @ for each xe G n W, and sepa-
rability of P easily follows, if we choose in Definition 6 for S the unit ball of W. The
easy observation that the subdifferentiability implies the lower semicontinuity of f
completes the proof.

Corollary 1. Let X be a Banach space, G = X an open convex set, and let f be
a continuous convex function on G. Let K ¢ X* be separably related to X and
of(x) " K # 0 for each xe G. Then f is Frechet differentiable at each point of
a residual subset of G.
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Note 6. (a) Theorem 2.13 of [6] asserts that if K is weak* closed and convex,
then K is separably related to X iff K has the Radon-Nikodym property.

(b) If K is weak* closed and convex, then the result of Corollary 1 follows from
Corollary 3.16 from [6].

(c) If the only assumption on K is that each nonempty bounded subset of K
admits weak* slices of arbitrarily small diameter, then (modified) Corollary 1 also

holds. For the proof it is possible to apply Kenderov’s method [8] to a suitable
selection of 9f(x).

6. DIFFERENTIABILITY OF FUNCTIONS WHICH ARE DEFINED
AS A SUPREMUM OF A FAMILY OF FUNCTIONS

The following proposition immediately follows from the proof of Lemma 1 from

15], where the “dual” proposition for superdifferentiability of infimum functions
p
is proved.

Proposition 2. Let X be a Banach space, G = X an open set and E < G. Let
{f.: a€ A} be a system of functions for which the following conditions hold:
(i) There exists K > 0 such that all f, are K-Lipschitz on G.
(ii) Each f, is Frechet differentiable at each point of G — E, and for each
x € G — E the limit
lim (f,(x + hv) = f,(x)) h™"
h—0

is uniform with respect to (x, v) e 4 x {v: o] = 1}.
(iii) F(x):= sup {f,(x): we A} < oo for each x € G.
Then F is subdifferentiable at each point xe G — E. Moreover, for xe G — E we
have 0F(x) n D}" # 0, where D, = {f.(x): a € A}.
The following theorem was proved in [15] in the special case E = . It provides
a further generalization of an Ekeland-Lebourg result.

Theorem 11. Let X, G, E, {f,, € A} and F be as in Proposition 2. Let moreover X
be Asplund and let E be a first category set. Then F is Frechet differentiable at
each point of a residual subset of G.

Proof. Theorem is an immediate consequence of Proposition 2 and Theorem 10.

If we use Proposition 2, Theorem 9 and Theorem 10*, we immediately obtain the
following result:

Theorem 12. Let X, G, E, {f,: a € A}, F and D, be as in Proposition 2. Suppose
moreover that either

(i) E is a first category set and D :=\) {D¥": xe G — E} is a separable subset
of X, or
(ii) E = 0 and D is separably related to X.
Then F is Frechet differentiable at each point of a residual subset of G.
Finally, we present an application of Theorem 12.
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Proposition 3. Let {d,} - be a bounded sequence in I, and let {c,} - be a bounded
sequence of real numbers. For xel, put F(x):= sup(c, — (x, d,)?). Then F is
Frechet differentiable at all points of 1, except those which belong to a first category
set.

Proof. Put f,(x) = ¢, — (x,d,)? and find C > 0 such that |d,], < |d,]. £ C
for each n. Fix an arbitrary R > 0 and put G = B(0, R) < I,. For arbitrary x, y€ G
we have [f,(x) — f,(0)] = [(x + 7. do) (x = y.d)] = Jx + vl [ [x — o],
. |du]l.. <2RC?|x — y]|;. Thus the condition (i) of Proposition 2 is satisfied. Now
let xe G, [v], =1, h > 0 and ne N. Then

fn(x + h;:) -fn(x) — (x’ dn)z - (hx + hv’ dn)2 — ""h(l), dn)Z . Z(X, (I,,) (L‘, (l',,) s

which converges to —2(x, d,) (v, d,) uniformly with respect to (n,v)e N x
x {v: |o], =1}, since for such (n,v) we have (v,d,)? < (||v],[d.[.)* < C*.
Therefore also the condition (ii) of Proposition 2 holds; the validity of condition (iii)
is obvious. Now we shall prove that the set D from Theorem 12 (for E = 0) is
a separable subset of (I,)* = I,,. In fact, the set P:= {zel, = I, : |z[|, £ 2RC?}
is obviously a w*-closed separable subset of I, and f,(x) = —2(x, d,) d, belongs to P
for each x € G. Consequently, Theorem 12 implies that F is Frechet differentiable at
each point of a residual subset of G. Since R > 0 is an arbitrary number, the state-
ment of our proposition follows.

Note 7. The proof of Proposition 3 works also in the case when F is defined as
F(x) = sup (¢, + (x, d,)?). However, in this case F is convex and the result follows
from [6] (see Note 6). In particular, F((x;, x,,...)):= sup x, is Frechet dif-
ferentiable at all points of a residual subset of /,. Proposition 3 e.g. implies that
F((xy, x5, ...)) := sup (1/n — x}) is Frechet differentiable at all points of a residual
subset of /,.
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