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1. Introduction. J. K. Pachl [9] observed, studying the Radon measures as func-
tionals on the space U,(X) of all uniformly continuous norm bounded functions on
a complete metric space X, d, that the properties of the weak topology w(M (X),
U,(X)) may be determined from the behavior of functionals in M,(X) on Lip,(X),
where Lip,(X) is the space of all norm bounded Lipschitz functions on X, d and M (X)
denotes the space of all norm bounded Radon (= tight) measures. Our aim is to
show:

a) Let B = {f: []f” < 1, fe Lip,(X)} be provided with the topology of uniform
convergence on the compact sets (here [ f]| = sup {|/(x)|: x € X}). Then M(X) can
be identified with the space of all bounded linear functionals on Lip,(X) whose
restrictions to B are continuous.

b) w(M,(X), Lip,(X)) determines on the sphere {m: [m|X = 1, me M,(X)} the
same compact sets as w(M,(X), C,(X)) and this result holds if we drop the complete-
ness assumption of X and replace M,(X) by M (X) or M (X) where M (X) and M_(X)
denote the space of all norm bounded z-smooth and g-smooth Borel measures on X,
respectively.

¢) w(M(X), Uy(X)) is sequentially complete if and only if X, d is compact.

2. Representation theorems. In this section we need not assume that X, d is a com-
plete metric space. We will seek to adapt the representation theory developed in
[l, 11,12, 13] to some classes of linear functionals on Lip,(X).

Lip,(X) with the usual operations of addition and multiplication can be viewed
as a vector lattice containing the constant function | and satisfying the Stone con-
dition 1 A fe Lip,(X) for all fe Lip,(X). If we denote by 4(X), #(X) and #'(X)
the classes of all open, closed and compact sets, respectively, and if #(X) is the
g-algebra generated by #(X) then

Lemma 2.1. i) for each F € #(X) there is fe Lip,(X) such that f = 0 and F =
= {x: f(x) = 0};

ii) #(X) is the smallest a-algebra with respect to which all fe Lip,(X) are
measurable;
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iii) if Fe #(X) and K e #(X) are disjoint then there is f e Lip,(X) such that
F ={x:f(x) = 1} and K = {x: f(x) = 0}.

Proof. i) For each Fe #(X) we have | A d(F, x)eLip,(X) and F =
= {x:1 A d(F, x) = 0}. ii) follows immediately from i). If Fe #(X), K € #(X)
are disjoint then there is a § > 0 such that d(F, K) = & (see [5, Theorem 4.1.14])
whence the function d(x, K)/(d(x, K) + d(x, F)) is in Lip,(X) and has the desired
property.

Lemma 2.2. Each bounded linear functional L on Lip,(X) is a difference of two
non negative linear functionals L* and L™ with the properties
L*(f) = sup L(h), L7 (f)= —inf L(h), [L|(f) = sup |L(h)|
0shsf 0shsys (T,
where |L| = L* + L™ and L=L" — L".

Lemma 2.2 is a special case of Theorem 1 in [2, Chap. II, § 2] and implies that the
system of all bounded linear functionals on Lip,(X) forms a vector lattice. We denote
it by L,(X).

Le L,(X) is said to be tight if lim L(f,) = O whenever (f,) = Lip,(X) is a net
converging uniformly to zero on compact sets with ||f,[ < L for all «. In other
terms, if B = {f: |[f|| < 1, fe Lip,(X)} is provided with the topology of uniform
convergence on the compact sets then Le L,(X) is tight if and only if the restriction
of Lfrom Lip,(X) to B is a continuous function on B. Le Ly(X) is said to be t-smooth
(o-smooth) if for each (countable) decreasing net (sequence) (f,) = Lip,(X) with
lim f,(x) = 0 for each x € X we have lim L(f,) = 0. Let L(X), LX) and L(X) be
the subspaces of all tight, t-smooth and g-smooth functionals in L,(X), respectively.
Then L(X) < L(X) < L,(X) and

Theorem 2.3. If @ € {t, 7, 6} then
Le Lo(X) <> L*, L™ € Lo(X) <> |L| € Lo(X) .
The proof of 2.3 coincides with the proofs of Theorems 7, 8 and 9 in [13, part I],

however we have to work with Lip,(X) instead of C,(X). The main result of this
section is

Theorem 2.4. If O €{t,t, 6} then there is a unique Borel measure m e Mo(X)
such that L(f) = m(f) for all f € Lip,(X) and ||[L| = |m]|.

Proof. In virtue of 2.3 we can consider only the non negative functionals.

Let L be a non negative functional in L(X) and let m, be the set function defined
on Z(X) by moF = L*(y;) where L*(yy) = inf {L(f): yp < f < 1}. Then

i) moF 2 0 for all Fe #(X) and myp = 0,

i) moF, U F, < myF; + myF, whenever F, F, e #(X),

iii) moF, U Fy = myF| + myF, if F,, F, e #(X) are disjoint,

iv) if F{ 2 F, ..2F,2...20, OF, = 0 then lim myF, = 0.

i) and ii) are obvious. To prove iii) we show that if (f,) = Lip,(X) is a decreasing
sequence with lim f,(x) = yx(x) for some F e #(X) and all xe X then L*(y;) =

I 1IA
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= lim L(f,). Let ¢ > 0 be a fixed number. By the definition there is f e Lip,(X)
such that L*(y;) > L(f) — ¢ and f = xp. Clearly (f v f,) is a decreasing sequence
in Lip,(X) with lim f v f,(x) = f(x) for all x € X. Hence lim L(f,) < lim L(f v f,) =
= L(f) < L*(xp) + €.& > 0 can be made arbitrarily small, hence lim L(f,) <
< L*(x)-

At the same time L is monotone, thus lim L(f,) = L*(xy).

Now let F,, F, € #(X) be disjoint. By Lemma 2.1 there are f;. f; € Lip, (X) such
that fi,f, 2 0 and F; = {x: fi(x) = 0}, i = 1,2. Since gy, = lim(1 — L v nf))*
we have

moF U F, = L*(Zr‘urz) = L*(Xr.) + L*(xp,) = moFy + moF, ,
hence iii) holds.

If (F,) = #(X) is a decreasing sequence with (\F, = 0 then (G,) = %(X) defined
by G, = {x:d(F,,x) < l/n} is also decreasing with NG, = 0. Defining (f,) =
< Lipy (X) by f,(x) = d(x, Gy)/(d(x, G5) + d(x, F,)) (note that d(Gj, F,) = 1/n) and

(9,) = Lip,(X) by g, = Afi we obtain a decreasing sequence with lim g, = 0
i=1

pointwise on X. Since g, = xr, and lim L(g,) = 0, we have lim m,F, = 0. Thus iv)
holds.

m, with the properties i)—iv) is a g-smooth content and, as %(X) separates the
sets in #(X), Lemma 2.4 and Theorem 2.2 from [11] are applicable, i.e. m, has
a unique extension to a g-smooth Borel measure m. Using Theorem 2 in [ 12] we can
state that m is the unique measure in M (X) representing L on Lip,(X). Of course,
L) = £() = mX = |m].

If ®© = 7 then m, and its extension m representing L are t-smooth, because if
(F,) = #(X) is a decreasing net with (\F, = 0 then the class 2 = {f: 1 2 f > y,,
for some o, fe Lip,(X)} can be considered as a decreasing net tending pointwise
to zero. The last follows from the fact that if x € X then there must be F, such that
x ¢ F,. However, by Lemma 2.1 there is f € Lip,(X) for which f(x) = 0 and 1 = ..

Let © = t. Because the tight functionals are o-smooth we have only to show that
the Borel measure m representing Lis tight. We can proceed like in [12]. Let m be
not tight. Then there is ¢ > 0 such that mX — K > ¢ for all K €4°(X). m is regular,
hence for each K € #°(X) there is Fx e #°(X) contained in X — K with mFy > e.
By Lemma 2.1 iii) there is fx € Lip,(X) such that f. = 0 on K, fx = 1 on Fg and
0 < fx < 1. #(X) can be directed by inclusion and clearly, (f)tends to zero uniformly
on compact sets. Thus lim L{fx) = 0. However, L(fy) 2 mFg > ¢ for all K € A#'(X)
and this leads to a contradiction. Thus m € M,(X).

3. Compactness in w(M,(X), Lip,(X)). In this section we will consider only com-
plete metric spaces. It is well known that for these spaces M,(X) = M,(X). The set
M < M,(X) is said to be uniformly tight if for each & > 0 there is K € (X)) such
that [m| X — K < ¢ for all m e M. If we denote by N(Y, ) the open & > 0 neigh-
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bourhood of Y = X (i.e. N(Y,6) = {x: d(Y, x) < é}) and by N(Y, 5) the closed &
neighbourhood (N(Y; 8) = {x: d(Y, x) < 6}) then

Lemma 3.1. M = M,(X) is uniformly tight if and only if for each ¢ > 0 and
6 > 0 there is a finite set Y = X such that
(1) |m| X — N(Y,8) < e forall meM.

Proof. In virtue of the uniform tightness for each ¢ > 0 there is K € #°(X) such
that

(2) m| X —K <& forall meM.
Hence for each 6 > 0 the sets N(x, §), x € X form an open covering of K which must
contain a finite subcovering N(xy, 6), ..., N(x,, 8). Clearly Y = {x,, ..., x,} satisfies

(1).
Conversely, if we can find for a given ¢ > 0 a sequence (Y,) of finite subsets of X
with
|m| X — N(Y,,27") < e2™" forall meM andall n

then K defined by K = () N(Y,,27") is a totally bounded closed subset of the com-
n=1

plete metric space X, d. Thus K € #°(X), K satisfies (2) and M is uniformly tight.
The set M = M,(X) is said to be uniformly t-smooth (c-smooth) if for each
decreasing net (sequence) (F,) = #(X) with (\F, = 0 and for each ¢ > 0 there is «,
such that [m| F,, < ¢forallme M. M <= M,(X)is said to be relatively (sequentially)
compact in the topology w(M,(X), Lip,(X)) if each net (sequence) (m,) = M contains
a subnet (subsequence) with lim m, (f) = m(f) for all f e Lip,(X) and some m e
€ M(X). Replacing Lip,(X) by C,(X) we obtain the definition of relatively compact
sets in the topology w(M,(X), C,(X)). The basic references for compactness and the

main properties of the topology w(M,(X), C,(X)) are [5] and [13].

Lemma 3.2. If M = M,(X) has the property |m| X = 1 for all me cl(M) (the
closure of M) then M is relatively w(M,(X), Lip,(X)) compact in M(X) if and
only if it is uniformly t-smooth.

Proof. Since M,(X) = M(X) and since the verification of the relative w(M(X),
Lip,(X)) compactness of M in the case when M is uniformly t-smooth requires only
the usual arguments, we will prove only the second part of the assertion.

Let us assume, using the method of indirect proof, that there is a decreasing net
(F,) = #(X) with N\F, = 0 and an ¢ > 0 such that for each m e M there is an «
with [m[ F, > ¢ for the corresponding F,. Then we can find a net (m,) = M with
|m,| F, > ¢ for all a. Let (m,,) be a subnet of (m,) which converges to m e M,(X)
in w(M,(X), Lip,(X)). Then for each o

|m| X — F, <lim|m,|X — F, <lim [m,X — F,, < 1 —¢
(see [13, part II, Theorem 3] which holds also for w(M,(X), Lip,(X))) and, con-
sequently, [m| X = lim|m| X — F, £ 1 — .
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However, this contradicts the fact that m e cl(M), i.e. that [m| X = 1. Con-
sequently, M is uniformly t-smooth.

Remark 3.3. Clearly, Lemma 3.2 holds if we drop the completeness assumption
about X, d and replace M,(X) by M,(X). The same can be proved using the o-
smoothness instead of the t-smoothness and M,(X) instead of M (X).

The idea used in the proof of 3.2 resembles the one used in the proof of Theorem
111.3.4in [ 10]. Combining 3.1 with 3.2 we obtain a version of the Prohorov condition:

Corollary 3.4. If M < M(X) with |m|X = 1 for all mecl(M) is relatively
w(M(X), Lip,(X)) compact in M(X) then it is uniformly tight.

Proof. In virtue of 3.2 M is uniformly z-smooth. Thus foreache¢ > 0andé > O M
has the property (1) from 3.1 which implies the uniform tightness of M.

Theorem 3.5. If M = M,(X) is a relatively w(M,(X), Lip,(X)) compact set with
|m| X = 1 for all m e cl(M) then w(M(X), C,(X)) coincides with w(M(X), Lip,(X))
on M.

Proof. By Theorem 2.4 w(M,(X), Lip,(X)) is a Hausdorff topology and due 3.4 M
is uniformly tight and norm bounded. However, such sets are relatively w(M,(X),
Cy(X)) compact [13, part II, Theorem 28, Remark III]. So we have on M two
relatively compact Hausdorff topologies. But such topologies coincide [5, Theorem
3.1.14].

Remark 3.6. Theorem 3.5 holds as well if we drop the completeness assumption
and replace M,(X) by M (X) or M(X).

The assumption |m| X = 1 (or more generally |m|X = ¢ for a fixed ¢) cannot
be dropped as the following example shows.

Example 3.7. Let us assume that U,(X) % C,(X). If fe U,(X) — C,(X) then there
is ¢ > 0 such that for each n there are x,, y, € X with d(x,. y,) < 1/n and |f(x,) —
— f(»,)] = & Now let us define a sequence (m,) = M(X) by m,(g9) := g(x,) — g(»,)
for all g e C,(X). Clearly lim m,(g) = 0 for all g = U,(X), while lim m,(f) = &,
ie. m, > m for m=0 in w(M/(X), Lip,(X)) but m,+ m in w(M/(X), C,(X)).
Moreover, ]m, X = 0 while ]m,,l X =1 for all n.

Let us suppose that the assertion of 3.2 holds. Then there is K € #(X) such that
|m,| X — K < ¢ for all n. K must contain infinitely many x, or y, (the supports
of the m,). Say there is (x,,) < (x,) which is contained in K. Then (x,,) must contain
a convergent subsequence and we can assume that (x,,) itself converges in X to
x € X. But in virtue of our selection we have y, — x and |f(x,) — f(»,)| = 0,
which is a contradiction because |f(x,,) — f(y,.)| = e

Let Lip, be the subset of Lip,(X) defined by

Lip, = {f: |f] = 1. |f(x) = f(»)] £ d(x,y) forall x,yeX}.

The reader can easily verify that Lip, is compact in the topology of uniform conver-
gence on compact sets. We use Lip, in order to obtain some relations between the
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compactness and the sequential compactness in w(M,(X), Lip,(X)) (compare with
[9D)-

Lemma 3.8. If (m,) = M,(X) is a sequence, if me M,(X) and (m,) converges
to m in w(M,(X), Lip,(X)) then (m,) converges to m uniformly on Lip; whenever
lm,,IX = [mIX = 1.

Proof. By 3.4, (m,) is uniformly tight. We fix ¢ > 0 and K € #'(X) with |m,| X —
— K < ¢ for all n. Now we can find a finite sequence {f}, ..., f,} = Lip, such that
for each fe Lip, there is i c {1, ..., p} for which sup {[f(x) — fi(x)|: xe K} < &

For a sufficiently large n, we can achieve that [m(f;) — m,(f;)| < ¢ foralln > n,
and ie{l,..., p}. Hence for each f € Lip,(X) there is i for which

Im(f) = m,(N)] < [m(f = f)| + [(m = m,) (f)] + [m,(f = f)] <
S Ik (f = f)ydm| + |[x (f = fi)dm,| + Se < 7e

and this relation holds for all n > n,,.
If we denote the restriction of M = M,(X) to Lip; by M and the supremum norm
on M, by ””, then

Theorem 3.9. If M = M (X) has the property |m| X =1 for all me cl(M) then
the following conditions are equivalent:

i) M is relatively w(M(X), Lipy(X)) compact;

ii) M, is relatively ””, compact;

iii) M, is relatively sequentially ”“, compact;

iv) M, |||, is equicontinuous on Lip,;

v) M is relatively sequentially w(M(X), Lip,(X)) compact;

vi) M is uniformly tight.

Proof. i) = ii) Lip, provided with the topology of uniform convergence on
compact sets contains a countable dense subset (f;). The function ¢ defined on
M x M by

o(m,m) =Y 12" |(m — m)(f,)| forall m,meM

is a pseudometric. If (m,) = M is a net converging to m € M with respect to ¢ then
lim m,(f;) = m(f;) for all i. m is continuous on Lip, and (f;) dense in Lip;, thus m
is uniquely determined by its values on (f;) [5, Theorem 2.1.9], i.e. ¢ is a metric.
The topology defined by ¢ is weaker than w(M,(X), Lip,(X)), hence M, ¢ and M, o
are relatively compact. By [ 5, Theorem 3.1.14] and by the relative compactness of M
in w(M, Lip,) we can conclude that the topology defined by ¢ coincides with
w(M,, Lip,) on M. From 3.8 it follows that ¢ and “ . ”, define the same convergent
sequences. Thus the topology defined by ¢ coincides on M with the topology defined
by []-

ii) < iii) is a well known property of normed spaces.

iii) < iv) follows from the Ascoli theorem [8, Ch. 7, Theorem 17].
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iii) = v) follows immediately from the fact that for each fe Lip,(X) there is
a constant ¢ such that ¢f e Lip,.

v) = vi) was proved in Corollary 3.4.

vi) = i) can be easily derived from Theorem 3.5 and [13, part II, Theorem 28,
Remark III].

4. Completeness in w(M,(X), U,(X)). This remark is related to the question
whether w(M (X), U,(X)) is sequentially complete. For w(M(X), C,(X)) this question
was answered by V. S. Varadarjan [ 13, part II, Sec. 6]. However, in our case we have

Theorem 4.1. Let X, d be complete. Then w(M(X), U,(X)) is sequentially complete
if and only if X is compact.

Proof. If X is compact then U,(X) = Cy(X) and the completeness of w(M,(X),
U,(X)) follows from Varadarjan’s result in [13].

Conversely, let w(M,(X), U,(X)) be sequentially complete and let (m,) = M,(X)
be a sequence of probability measures. Then there is a closed separable subset X, = X
such that m, X, = m,X = 1 for all n and the m, can be considered as Radon
measures on a separable metric space X,.

If X, is separable then it can be endowed with such an equivalent metric that
Uy(X,) is separable (see [ 10, Exercise I11.3.13]) and U,(X,) contains a countable set
(f:) which is dense in U,(X,) with respect to the supremum norm. Using the diagonal
method we can find a subsequence (m,,) < (m,) for which lim m,,(f;) exists whenever
fi€(f:)- Since (f;) is dense in U,(X,), lim m, (f) exists for all f e U,(X,). Of course
lim m, (f) exists as well for all f € U,(X).

Under the assumption of sequential compactness the functional m defined by
m(f) = lim m,(f) for all f € U,(X) determines a unique Radon probability measure
on X. Thus we have proved that the set of all probability measures in M,(X) is
sequentially compact in w(M,(X), U,(X)).

However, w(M(X), U,(X)) = w(M(X), C,(X)) on M, (X), M(X) = M(X) and
M (X) is metrizable (see [ 13, part II, Theorem 13]). Hence the class of all probability
measures in M,(X) is compact, which implies that X, d is compact [13, part II,
Theorem 9].
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