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MAXIMAL ANTICHAINS IN A PARTIALLY ORDERED SET 

JÁN JAKUBÍK, KoŠice 

(Received February 5, 1990) 

1. INTRODUCTION 

All partially ordered sets dealt with in the present paper are assumed to be finite. 
Antichains in a partially ordered set are also called Sperner families in the 

literature. A thorough investigation ofcombinatorial questions concerning antichains 
was performed in [3] (including applications in the theory of Boolean functions, data 
bases, and in other fields). 

For a partially ordered set X we denote by A(X) the system of all antichains in X. 
Next, let MA(X) be the set of all В є A(X) having the property that for each C є A(X) 
with B c C the relation B = C is valid. The elements of MA{X) are said to be maxi­
mal antichains in X. 

Each nonempty subset of a partially ordered set is considered to be partially 
ordered by the inherited relation of partial order. 

Let Б ь В2 є A(X). We put Bx S #2 if for each b1 e Bx there exists b2 є B2 with 
bt ^ b2. Then A(X) turns out to be a partially ordered set. Hence MA(X) is a partially 
ordered set as well. 

In [1] it has been proved that MA(X) is a lattice and that for each lattice Lthere 
exists a partially ordered set Y such that L is isomorphic to MA(Y). 

The results on MA(X) were applied in [2] for studying cut-sets of the partially 
ordered set X. 

Let S and S' be the partially ordered set in Fig. 1 and Fig. 2, respectively. It is 
easy to verify that the lattice MA(S) is non-modular and that MA(S') is distributive. 

Fig. 2. 
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(These examples were given in [l] .) The partially ordered set S' possesses a subset St 

which is isomorphic to S9 but S1 fails to be a convex subset of S'. 
In [ l ] it is also pointed out that no internal characterization is known of those 

partially ordered sets X for which the lattice MA(X) is modular. 
In view of the above examples the natural question arises what are the relations 

between the following conditions for a partially ordered set X: 
(a) MA(X) is non-modular. 
(ß) There exists a convex subsystem S± of X such that St is isomorphic to S. 

Fig. 3. 

Let S2 be the partially ordered set in Fig. 3. Then S2 satisfies the condition (ß). 
It can be easily verified that the lattice MA(S2) is distributive. (This example is due 
to M. Ploščica.) Hence the implication (ß) => (a) is not valid in general. 

In the present paper it will be proved that the implication (a) => (ß) always holds. 
A convex subset of X which is isomorphic to the partially ordered set in Fig. 1 

will be said to be a serpentine subset ofX. 
Let <g(X) be the set of all chains in X. We put l{X) = max {card Y: Ye <&(X)}. 

Next, let &(X) be the system of all subsets Xx of X which have the following pro­
perties: (i) there exist A and B in MA(X) with A ^ B such that Xt = {x єХ: thěre 
are aeA and beB with a g x g b}; (ii) l(X^ ^ 2. The elements of Sf(X) will 
be called short subsets of X. 

It will be shown that the following conditions are equivalent: 
(Уі) The lattice MA{X) is modular. 
(y2) For each short subset Xx ofX, the lattice MA(Xt) is modular. 
Let у e X and P я X. We shall write y < x P if (a) there exists p e P with y < p, 

and (b) whenever pt eP and the elements pt, y are comparable, then y is covered 
byP i . 

Let us denote by Jf{X) the set ofall triples (P1? P 2 , P3) ofmutually disjoint subsets 
of X such that 

(i) P2 Ф 0 Ф P 3 and each element of P 2 is covered by each element of P 3 ; 
(ii) both the sets Px u P 2 and Px u P 3 belong to MA(X). 
A serpentine subset S ofX will be said to be regular ifthere exist (JBl5 B2, A2) and 

(B[, B'2i A2) in Ji(X) with Bx Ф B[ and # ! u B2 = p ; u P 2 such that (under the 
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notation as in Fig. 1) we have 
(i) a1 E.A'2, a2 < ! Bu a2 < t B'u a3 e A2, 

(ii) bx€Bi9 b2eB'u b3eB'u 

(iii) a2 is incomparable with all elements of A2 u A'2. 
In a dual way we define the notion of a dually regular serpentine subset in X. 
It will be proved that the lattice MA(X) fails to be modular if and only if X 

possesses either a regular serpentine subset or a dually regular serpentine subset. 

2. THE COVERING RELATION 

Let X be a partially ordered set. If x l 5 x2 e I and x± si covered by x2, then we 
write xt < x2. The same notation will be used for the covering relation in MA(X). 

In this section we shall investigate pairs (A, B) of elements of MA(X) such that 
A<B. 

Let A0 є A(X), В є MA(X), A0 ^ B. Let us denote by s/(A0, B) the set of all 
A±eA(X) such that A0 Ç Ai й B. 

2.1. Lemma. Let C e jtf(A0, B). Assume thatfor each C1 є £Č(A0, B) with С £ Cx 

the relation C = Сл is valid. Then CeMA(X). 
Proof. By way of contradiction, suppose that C does not belong to MA{X). 

Then there exists x є X such that x ф C and x is incomparable with each element 
of C. Put Cx = C u {x}. Hence C c d є Л(Х). Thus Q §§ ^ ( Л 0 , В). Therefore 
for each element b e B the relation x ^ b holds. 

If x is incomparable with each element of B then x e B (since В є MA(x)), which 
is a contradiction. Thus there js bt є B with c^ < x. We distinguish the following 
cases: 

(i) There exists c e C with b1 < c. Since there is b2 є B with c ^ Ь2> w e obtain 
bx < b2, which is impossible. 

(ii) The element bx is incomparable with all elements of C. Then b1 є C and thus 
bx < x cannot hold. 

(iii) There exists c є C with c ^ bt. Hence c < x, which is a contradiction. 
The proof is complete. 
Now let A0 e A(X), Вг є MA(X), B2 є MA(X), B1 g A0 ^ B2. We denote by 

se{A^ Bu B2) the set of all Al e A{X) such that A0 ç Лх and B t ^ Лі ^ Б 2 . 
The proof of the following lemma is analogous to that of 2.1; it will be omitted. 

2.2. Lemma. Let Ces/(A0,B1,B2). Assume thatfor each C1ej^(A0,B1,B2) 
with C s d the relation C = Ct is valid. Then CeMA(X). 

2.3. Lemma. (Cf. [2].) Let A, В є MA(X), A ^ B, b є £. T&en there exists a є Л 
such that a ^ b. 

2.4. Lemma. Leř Л , В є М Л ( Х ) , Л < B. Let beB\A and let a be as in 2.3. 
Then a < b. 
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Proof. By way of contradiction, assume that the relation a < b does not hold. 
Hence there is a0 eX with a < a0 < b. Put A0 = {a0}.There exists Ces/(A0, A, B) 
such that, whenever Ct esč(A0,A,B) and C £ C1? then C = Ct. Thus in view 
of 2.2, C belongs to MA(X). Since a0 ф A and a0 ф B we obtain that С Ф A and 
С Ф B. Hence A < C < B, which is a contradiction. 

2.5. Lemma. Let us apply the same assumptions and notation as in 2.4. Let 
ax eA\B, then ax ^ b. 

Proof. In view of 2.4, it suffices to verify that at < b. Since ax фВ, we have 
at Ф b. Suppose that at > b; there exists bt eB with ax < bt, and then b < bu 

which is a contradiction. Next, suppose that aY is incomparable with b. Put A0 = 
= {au b]. Applying the same argument as in the proof of 2.4 we infer that A fails 
to be covered by B, which is a contradiction. Hence at < b. 

2.6. Lemma. Let the same assumptions as in 2.4 be valid and let us apply the 
same notation. Let bl eB\A. Then bt > a. 

Proof. According to 2.4 it suffices to show that bt > a. The relation b1 ^ a 
is obviously impossible. If bt is incomparable with a, then we put A0 = {a, b J 
and proceed as in the proof of 2.4. 

2.7. Lemma. Let A, В є MA(X), A Ф B. Then the following conditions are 
equivalent: 

(i) A < B; 
(ii) a -<^ b for each a є A \ B and each b є B \ A. 
Proof. The implication (ii) => (i) is obvious. From 2.4, 2.5 and 2.6 we infer that 

(i) => (ii) holds. 

2.8. Cordllary. Let A, В є MA(X), A ф B. Then A is covered by B if and only if 
(A n B, A \ B, B \ A) belongs to the set Ji{X). 

3. SHORT SUBSETS OF X 

Again, let X be a partially ordered set. In this section we shall deal with elements 
A, A' and B in MA(X) such that X Ф A\ A < B and A' < B. Let such elements A, A' 
and B be fixed. 

Let Xt be the set of all elements xt of X having the property that there exists 
b є B with Xi ^ b. Then we have 

3.1. Lemma. MA(X^ is a principal ideal of the lattice MA(X) with the greatest 
element B. 

Next, since A and A' are subsets of Xu we obtain 

3.2. Lemma. Assume that A л A'fails to be covered by A in MA(X). Then the 
lattice MA(Xi) is non-modular. 
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Denote Bt = B\A, B2 = B\B±, B[ = B\A', Bř
2 = B\B[. In view of2.7, the 

relation A Ф A! yields that B1 Ф B[. 
Put A2 = A \ B and Ä2 = A' \ B. 

3.3. Lemma. A2 n Л2 = 0 and A2 Ф 0 Ф A'2. 
Proof . Inview оїВх Ф Biwehaveei ther^! \ Б І Ф 0огБІ \ВХ Ф 0.1nthefirstcase 

there exists bx e B1 \ B[. Assume that a є A2 n ^42- Since a e A2, it is incomparable 
with bx. On the other hand, bt belongs to B'2 and a eA'2\ thus a <^ bu which is 
a contradiction. The case БІ \ B1 Ф 0 is analogous. 

Ifwe had A2 = 0, then A c Б and thus Л = Б, which is a contradiction. Therefore 
A2 Ф 0. Similarly we obtain A'2 Ф 0. 

3.4. Lemma. Let a2 є ^42
 and a'2 є A2. Then a2 and a'2 are incomparable. 

Proof. In view of 3.3 we have a2 Ф a'2. By way of contradiction assume that, 
e.g., a2 < a'2. There exists b є B'2 with a2 < b. Then a2 < b and thus b e B2. Hence 
according to 2.7 we have a2 < b, which is a contradiction. 

Let us denote by 7the set ofall elements y oîXx such that the following conditions 
are satisfied: 

(i) y is incomparable with all elements of the set (Bx n B[) u (A2 u A2); 
(ii) if b є B and y ^ b, then y •< b. 

If 3; є Y and if v4 is as in (ii), then (i) yields that b e B2 u B'2. From this we infer 
(by applying the same argument as in the proof of 3.4) that either Y = 0 or 7 є A(Xt). 
Hence C є A(Xt) according to (i), where C = 7 u (B1 n B[) u (A2 n A'2). 

3.5. Lemma. CeMA(Xt). 
Proof. We have already observed that C є A(X^. By way ofcontradiction, assume 

that C does not belong to MA(X^. Hence there exists xt є Xt \ C such that xt is 
incomparable with each element of C. Since x1 є X1? there is b є Б with xx ^ Ь. 

Since ^! is incomparable with all elements of Bx n B[, the element b must belong 
to B2 u Б 2 . If хх = Ь, then ^! is comparable with some element of A2 or with some 
element of A'2, which is a contradiction. Thus xx < b. Hence there exists yeX^ 
such that x1 S У ~< b. This implies that y satisfies both the conditions (i) and (ii). 
Therefore у є Y ç C and so x t is incomparable with y, which is a contradiction. 

3.6. Lemma. C = A л A' in MA(X^. 
Proof. Denote I(A) = {xi e I j : { x J ^ Л} and let I(B) be defined analogously. 

Let Cx be the system of all maximal elements of the partially ordered set l(A) n I(B). 
In [2] it has been proved that the relation 

Ci = A л Ä 

is valid in МА[Хг). Thus we have to verify that C = C r . Since both C and C\ are 
maximal chains in X2 it suffices to show that C £• Cx. 

Let у є У. We have already observed above that there is b є Б 2 u Б 2 such that 
y < b. If j> is incomparable with all elements of Б ь then it is incomparable with all 
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elements of A, which is a contradiction (since it is clear that y cannot belong to A). 
Hence there is bi є Bi such that y < bx. Analogously there is b[ є B't with y < b[. 
Thus yel(A) n /(£). Next, if t e X2 such that y 4 t, then either їфі(А) or t$I(B). 
Therefore у є Clv 

It is obvious that each element of the set Bt n B[ is maximal in l(A) n /(#). 
Let a2eA2. There exists b2eB2 with a2 á ^2- Since B2 £ # i £ Л' we obtain 

that a2el(A)nl(A'). Let r e / ( i ) n / ( i ' ) and t^a2. Then *єі (Л); but a2 is 
a maximal element in l(A) and hence ř = a2. Thus a2 є Cx and so Л2 £ Cí. Similarly, 
A2 c C l 5 which completes the proof. 

The following assertion which was shown to be valid in the above proof will be 
applied in the next section. 

3.6.1. Lemma. Let y e Y. Then there are elements bx e Bx and b[ e B[ such that 
y < bx and y <̂ b[. 

3.7. Lemma. C = A л A' in MA(X). 
Proof. This is a consequence of 3.6 and 3.1. 
Let X2 be the set of all elements x t e ^ such that there is c e C with xt ^ c. 

Then we have 

3.8. Lemma. MA(X2) is a principal filter of MA(XX) with the least element c. 

From 3.8 and 3.2 we infer 

3.9. Lemma. Assume that A л A'fails to be covered by A in MA(X). Then the 
lattice MA(X2) is non-modular. 

Also, the construction of C yields 

3.10. Lemma. Let P be a chain in X2. Then card P ^ 2. 

3.11. Theorem. Let X be a partially ordered set. Then thefollowing conditions 
are equivalent: 

(i) MA(X) is a modular lattice. 
(ii) For each short subsystem Z ofX, the lattice MA(Z) is modular. 
Proof. The implication (i) => (ii) is obvious. Next, (ii) => (i) is a consequence of 

3.9, 3.10 and ofthe corresponding dual results. 

4. FURTHER RESULTS ON A, A' AND B 

Let A, Ä and B be as in the previous section. Also, the other notation introduced 
above will be applied here. 

Most of the results of the present section have an auxiliary character; they will 
be used in Section 5 below. 

Let us consider the following condition: 
(c) Both A and A! cover A л A' in the lattice MA(Xi). 
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It is obvious that (c) is equivalent to the condition which we obtain from (c) if Xt 

is replaced by X. 

4.1. Lemma. Let Y = 0. Then the condition (c) holds. 
Proof. We have 

C = Yu (Bt n B[) u (A2 u A2) 

and C = A л A' (cf. 3.6). 
The relation Y = 0 yields that C = (Bx n 2?i) u (Л2 u Л2). Hence by 2.7 we 

infer that C < Л and C <̂ A'. 

4.2. Lemma. B2 Ф 0 Ф Br
2. 

Proof. By way of contradiction, assume that B2 = 0. Hence Bx = B and thus 
A = B, which is impossible. Therefore B2 Ф 0. Similarly, B'2 Ф 0. 

Put X3 = X2 \ ( # i n B[). Then X3 is a convex subset of X2 and X3 ф 0. For 
each D є МЛ(Х2) let p(D) = D n X3 . Next, for each Dí e MA(X3) put p'(D^ = 
= (^! n # i ) u Di. The following result is easy to verify. 

4.3. Lemma. For each D є MA(X2) and each Dl є MA(X3) we have p(D) є MA(X3) 
and p'(Di) є MA(X2). Next, p is an isomorphism of MA(X2) onto МЛ(13) , and p' 
is an isomorphism ofMA(X3) onto MA(X2) which is inverse to p. 

The above lemma shows that, when investigating the lattice-theoretic properties 
of MA(X2)9 it suffices to assume that the relation 

Bx n B[ = 0 

is valid. In the present section this relation will be always supposed to hold. 

4.4. Lemma. Bt Ф 0 Ф B[. 
Proof. In view ofthe symetry it suffices to verify that Bx ф 0. By way ofcontradk> 

tion, assume that Bt = 0. Then B[ ф 0. Next, B2 = B and thus A2 = A. 
According to 4.2 and 3.3 we have B'2 Ф 0 and A'2 Ф 0, thus there are а'г єА'2 

and b2 є B'2 with a2 < b'2. If a e A, then a < b2 , hence the elements a2 and a are 
either equal or incomparable. Lemma 3.3 yields that a Ф a'2\ therefore a2 is incom­
parable with each element of A. Hence A fails to be a maximal antichain in X2> 
which is a contradiction. 

Now, 4.2 and 4.4 yield 

4.5. Corollary, card B ^ 2. 

4.6. Proposition. Let card B = 2. Then the condition (c) holds. 
Proof. Let B = {b1? b2}. In view of 4.2 and 4.4 we can assume that Bt = {Ьх} 

and B2 = {b2}. Similarly, both B[ and B'2 are one-element sets. If B[ = £ l s then 
Л = >4', which is a contradiction. Hence БІ = {b2} and Б 2

 = {^i}-
The set A2 consists of all elements of X2 which are covered by b2 and are incom­

parable with bt; the set A2 has analogous properties (with bx and b2 interchanged). 
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Next, Yis the set ofall elements ofX2 which are covered by both bi and b2 (cf. 3.6.1). 
By 3.6, 

A л A' = 7 u A2 u A'2 . 

Now from 2.7 it follows that C < A and C < Б, which completes the proof. 

By applying a dual argument we obtain the following result. 

4.7. Lemma. Let Au A\, Bx be elements of MA(X) such that Al ф A'u Bt <AX 

and Bx -<sA[. Assume that c a r d 5 = 2. Then both Ax and A[ are covered by 
Ai v A\ in MA(X). 

Let C be as in Section 2; i.e., C — A л A'. Since A and A' are incomparable, 
there exist Ax and A[ in JVL4(X2) such that C < ^ g Л and C < ЛІ <; A'. Let 
such y4t and A\ be fixed. 

4.9. Lemma, card C ^ 2. 
Proof. This can be obtained from 4.5 by applying duality (if we consider the 

elements Au A[ and C instead of A, A' and B). 

4.9. Proposition. Let card C = 2. Then (c) holds. 
Proof. Clearly YnA2 = YnA2 = 0. Hence according to 3.3 we have also 

A2 n A2 = 0. Thus 4.2 and 3.3 yield that card A2 = card A2 = 1. Therefore Y = 0 
and by 4.1, the condition (c) is valid. 

5. NON-MODULARITY 

Assurr.e that A, A' and B are as above. We also suppose that the relation Bx n B\ = 
= 0 is valid. 

5.1. Lemma. Assume that y < bx for each у є Yand each bx e Bx. Then C < A. 
Proof. Let Cx є MA(X), C < Cx ^ A. Let я2

 є &i- Hence a2 є C and thus there 
exists cx є C t with a2 è cx. Next, there is а є A wilh Cj g a. Hence a2 = a> which 
implies that a2 = a. Therefore Л2 £ Cx. 

There exists c2 e Cj \ C. Thus we rr.ust have c2 є B. Next, c2 must be incomparable 
with all elements of A2 and hence c2 є Bx. This implies that c2 >- y for each у є Y; 
therefore Yn C, = 0. 

Assume that Q < A. Thus there exists а є Л х С ] . Hence aeBx. There exists 
c\ e Cx with c\ < a. The clement c'j cannot belong to Yu A2, thus c[ є A2. Then ci 
is covered by each element o f £ 2 . In particular,ci is covered by c2, which is a contra­
diction. Therefore C < A. 

For each >; є Y let # i ( j ) be the set of all elements bx є Bx such that y is not covered 
by bx. Let B[(y) be defined analogously. 

5.2. Lemma. Assume that (c) does not hold. Then there exists у є Y such that 
either Bx{y) * 0 or B\{y) Ф 0. 
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Proof. According to 4.1 we have У ф 0. If Bt(y) = B[(y) = 0 for each yeY, 
then from 5.1 we infer that (c) holds, which is a contradiction. 

In 5.3 and 5.4 we suppose that the condition (c) does not hold. Hence in view 
of 5.2 we can assume without loss ofgenerality that B[(y^ Ф 0 for some y\ e Y. 

5.3. Lemma. There exist distinct elements a1 eA2, a2 є Y, a3 єА2, bl eB[ and 
b3eB[ such that the relations 

(*) a1 < b1 >a2 < b2 >a3 <b3 

are valid. 
Proof. As we already mentioned above we assume that there is a2 є 7such that 

B[(a2) Ф 0; thus there is b3 e B[(a2). In view of 3.6.1 there are bl є Bx and b2 eB[ 
with a2 < bl and a2 < b2. Thus b2 ф b3. Next, the relation B r n B[ = '0 yields 
that b2 Ф b1 Ф b3. 

From 3.3 we infer that A2 Ф 0 Ф A2. Hence there are a1 eA2 and a3eA2. 
Then the elements a\a2,a3 are distinct. It is clear that a1 ф bj for each i,je 
e { l , 2 , 3 } . 

Since Bx nB[ = 0, we have Bi Ç B2 and thus a1 < b1. Similarly B[ C ß 2 

and hence a3 <̂ b2, a3 < b3. Therefore the relations (*) hold. 
If u and v are incomparable elements of X, then we write u || v. 

5.4. Lemma. Let a1 and bl (i = 1, 2, 3) be as in 5.3 and let S be theset consisting 
of these elements. Then S is a regular serpentine set in X. 

Proof. It is obvious that S is a convex subset ofX. From b3 eB{(a2) we obtain 
that a2 || b3. Next, from a1 e A2 and b2 e B[ it follows that a1 \\ b2 holds. Hence S 
is a serpentine subset ofX. Thus by 5.3 and 3.6.1, S is a regular serpentine.subset ö f X 

5.5. Corollary. Assume that the condition (c) does not hold. Then X possesses 
a regular serpentine subset. 

Let (c') be the condition dual to (c). From 5.5 we obtain by duality: 

5.6. Corollary. Assume that the condition (c') does not hold. Then Xpossesses 
a dually regular serpentine subset. 

5.7. Corollary. Assume that the lattice MA(X) is not modular. Then X possesses 
either a regular serpentine subset or a dually regular serpentine subset. '> 

5.8. Lemma. Let S be a regular serpentine subset of X. Under the notation as 
in Section 1, let B = Bx u J?2, A = B{ u A2 and A' = B[ u A2. Then the^ondition 
(c)fails to be valid in MA(X). 

Proof. Let us apply the notation from the definition of the regular serpentine 
subset. We also the other notation concerning A, Ä and B which was introduced 
above. According to 1.7, the relations A 4 B and A' < B hold. We have to verify 
that (c) fails to be valid in the lattice MA(X2). Similarly as in the above investigation 
it suffices to assume that Bi n B[ = 0. 
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Let Yt be the set ofall у є Ysuch that у is incomparable with all elements belonging 
to B[(a2). Denote 

Ci = A'2 u Yt u B[(a2) . 

Then Yt ф 0 (since a2 є Ух), and also B[(a2) Ф 0 (since b3 є B[(a2)). Next, Cl e A(X) 
and C g C t ^ Л'. Finally, each element of cx belongs either to C or to Ä. 

Suppose that Ct фМА(Х2). Thus there exists zeX2\Ci such that z is incom­
parable with all elements of Ct, and there are z1 e C, z2 є Л' with zx S z ^ z2. 

First suppose that z t = z2. Then z є В І . The case z eBi(a 2 ) is impossible, since 
B[(a2) c d . Thus z є Бі \ Б І ( а 2 ) and hence z > а2 є Cí, which is a contradiction. 

Hence zi < z2. Thus z r <̂ z2, z2 eB[ and z t є Уи A2. Next, either z = zt or 
z = z2. We have already observed that z є Б^, hence z ф z2. Thus z = zv If z e Л2, 
then z < Ь3 є В І Я A2, which is impossible, since b3 e C1. Therefore z є Y\ Yt. 
But in this case z is covered by some element belonging to B[(a2) ç Cu which is 
a contradiction. Thus Ci є MA(X). Now, since С ф Cj ф ^4', we obtain that 
C < Ct < A'. Hence the condition (c) fails to be valid. 

The following result can be proved by a dual investigation. 

5.9. Lemma. Let S be a dually regular serpentine subset ofX. Then (under the 
notation analogous to those in 5.8) the condition (c') fails to be valid in MA(X). 

Summarizing 5.7, 5.8 and 5.9 we conclude: 

5.10. Theorem. Let X be afinite partially ordered set. Then thefollowing con­
ditions are equivalent: 

(i) The lattice MA(X)fails to be modular. 
(ii) X possesses either a regular serpentine subsetor a dually regular serpentine 

subset. 
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