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1. INTRODUCTION

All partially ordered sets dealt with in the present paper are assumed to be finite.

Antichains in a partially ordered set are also called Sperner families in the
literature. A thorough investigation of combinatorial questions concerning antichains
was performed in [3] (including applications in the theory of Boolean functions, data
bases, and in other fields).

For a partially ordered set X we denote by A(X) the system of all antichains in X.
Next, let MA(X) be the set of all B € A(X) having the property that for each C € A(X)
with B = C the relation B = C is valid. The elements of MA(X) are said to be maxi-
mal antichains in X.

Each nonempty subset of a partially ordered set is considered to be partially
ordered by the inherited relation of partial order.

Let By, B, € A(X). We put B, < B, if for each b, € B, there exists b, € B, with
by £ b,. Then A(X) turns out to be a partially ordered set. Hence M A(X)is a partially
ordered set as well.

In [1] it has been proved that MA(X) is a lattice and that for each lattice L there
exists a partially ordered set Y such that L is isomorphic to MA(Y).

The results on MA(X) were applied in [2] for studying cut-sets of the partially
ordered set X.

Let S and S’ be the partially ordered set in Fig. 1 and Fig. 2, respectively. It is
easy to verify that the lattice MA(S) is non-modular and that MA(S’) is distributive.

b b, b,
Cl1 2 3
Fig. 1. Fig. 2.
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(These examples were given in [1].) The partially ordered set " possesses a subset S
which is isomorphic to S, but S, fails to be a convex subset of S'.

In [1] it is also pointed out that no internal characterization is known of those
partially ordered sets X for which the lattice MA(X) is modular.

In view of the above examples the natural question arises what are the relations
between the following conditions for a partially ordered set X:

() MA(X) is non-modular.

(B) There exists a convex subsystem S; of X such that S; is isomorphic to S.

Fig. 3.

Let S, be the partially ordered set in Fig. 3. Then S, satisfies the condition ().
It can be easily verified that the latiice MA(S,) is distributive. (This example is due
to M. Plos¢ica.) Hence the implication (f) = («) is not valid in gencral.

In the present paper it will be proved that the implication («) = () always holds.

A convex subset of X which is isomorphic to the partially ordered set in Fig. 1
will be said to be a serpentine subset of X.

Let %(X) be the set of all chains in X. We put [(X) = max {card Y: Ye ¢(X)}.
Next, let #(X) be the system of all subsets X; of X which have the following pro-
perties: (i) there exist A and B in MA(X) with 4 < B such that X; = {x € X: there
are ae A and be B with a < x < b}; (ii) /(X,) < 2. The elements of F(X) will
be called short subsets of X.

It will be shown that the following conditions are equivalent:

(y1) The lattice MA(X) is modular.

(72) For each short subset X of X, the lattice MA(X ) is modular.

Let ye X and P < X. We shall write y <, P if (a) there exists p e P with y < p,
and (b) whenever p, € P and the elements p;, y are comparable, then y is covered
by p,.

Let us denote by A4(X) the set of all triples (Py, P,, P3) of mutually disjoint subsets
of X such that

(i) P, % 0 * P; and each element of P, is covered by each clement of Ps;

(ii) both the sets P; U P, and P, U P, belong to MA(X).

A serpentine subset S of X will be said to be regular if there exist (Bl, B,, A,) and
(B%, By, 43) in A (X) with B, + B} and B, U B, = B} U B, such that (under the
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notation as in Fig. 1) we have
(i) a' € 43, a® <y By, a®* <{ B}, a®€ A,,
(i) b' € B, b* e B}, b’ e B},
(iii) a® is incomparable with all elements of 4, U Aj.
In a dual way we define the notion of a dually regular serpentine subset in X.
It will be proved that the lattice MA(X) fails to be modular if and only if X
possesses either a regular serpentine subset or a dually regular serpentine subset.

2. THE COVERING RELATION

Let X be a partially ordered set. If x;, x, € X and x; si covered by x,, then we
write x; < X,. The same notation will be used for the covering relation in MA(X).

In this section we shall investigate pairs (4, B) of elements of MA(X) such that
A< B.

Let A, € A(X), Be MA(X), Ay < B. Let us denote by /(4,, B) the set of all
A; € A(X) such that 4, = 4; < B.

2.1. Lemma. Let C € o/(A,, B). Assume that for each C, € (A, B) with C = C,
the relation C = Cy is valid. Then C e MA(X).

Proof. By way of contradiction, suppose that C does not belong to MA(X).
Then there exists x € X such that x ¢ C and x is incomparable with each element
of C. Put C; = Cu {x}. Hence C = C, € A(X). Thus C, ¢ &(A,, B). Therefore
for each element b € B the relation x £ b holds.

If x is incomparable with each element of B then x € B (since B € M A(x)), which
is a contradiction. Thus there is b; € B with b; < x. We distinguish the following
cases:

(i) There exists ¢ € C with b; < c. Since there is b, € B with ¢ < b,, we obtain
b, < b,, which is impossible.

(ii) The clement b, is incomparable with all elements of C. Then b, € C and thus
b, < x cannot hold.

(iii) There exists ¢ € C with ¢ < b,. Hence ¢ < x, which is a contradiction.

The proof is complete.

Now let A4, € A(X), B, e MA(X), B, e MA(X), B; £ A, < B,. We denote by
(Ao, By, B,) the set of all 4, € A(X) such that 4, S 4, and B; < 4, < B,.

The proof of the following lemma is analogous to that of 2.1; it will be omitted.

2.2. Lemma. Let C e &/(Ay, By, B,). Assume that for each C, e 2/(A,, By, B,)
with C < C, the relation C = C, is valid. Then C € MA(X).

2.3. Lemma. (Cf. [2].) Let A, Be MA(X), A < B, b B. Then there exists ae€ A
such that a < b.

2.4. Lemma. Let A,Be MA(X), A <B. Let be B\ A and let a be as in 2.3.
Then a < b.
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Proof. By way of contradiction, assume that the relation a < b does not hold.
Hence there is ao € X with a < ao < b. Put 4y = {a,}. There exists Ce &/(4,, 4, B)
such that, whenever C; € &/(A4,, 4, B) and C < C,, then C = C,. Thus in view
of 2.2, C belongs to MA(X). Since a, ¢ A and a, ¢ B we obtain that C + A and
C #+ B. Hence A < C < B, which is a contradiction.

2.5. Lemma. Let us apply the same assumptions and notation as in 2.4. Let
a, € A\NB, then a; < b.

Proof. In view of 2.4, it suffices to verify that a, < b. Since a,; ¢ B, we have
ay *+ b. Suppose that a, > b; there exists b, € B with a; < b,, and then b < b,,
which is a contradiction. Next, suppose that a, is incomparable with b. Put 4, =
= {ay, b}. Applying the same argument as in the proof of 2.4 we infer that A4 fails
to be covered by B, which is a contradiction. Hence a, < b.

2.6. Lemma. Let the same assumptions as in 2.4 be valid and let us apply the
same notation. Let b, € B\ A. Then b; > a.

Proof. According to 2.4 it suffices to show that b, > a. The relation b, < a
is obviously impossible. If b, is incomparable with a, then we put A, = {a, b,}
and proceed as in the proof of 2.4.

2.7. Lemma. Let A, Be MA(X), A # B. Then the following conditions are
equivalent:

(i) 4 < B;

(iiy @ < b for each a € ANB and each be B\ A.

Proof. The implication (ii) = (i) is obvious. From 2.4, 2.5 and 2.6 we infer that
(i) = (ii) holds.

2.8. Corollary. Let A, Be MA(X), A + B. Then A is covered by B if and only if
(4 n B, AN B, B\ A) belongs to the set /(X).

3. SHORT SUBSETS OF X

Again, let X be a partially ordered set. In this section we shall deal with elements
A, A" and Bin MA(X) such that X # A, A < Band 4’ < B. Let such elements 4, A’
and B be fixed.

Let X, be the set of all elements x, of X having the property that there exists
b e B with x; < b. Then we have

3.1. Lemma. MA(X,) is a principal ideal of the lattice MA(X) with the greatest
element B.

Next, since 4 and A’ are subsets of X, we obtain

3.2. Lemma. Assume that A A A’ fails to be covered by A in MA(X). Then the
lattice MA(X,) is non-modular.
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Denote B; = B\ A4, B, = B\B,, B = B\ A', B, = B\ Bj. In view of 2.7, the
relation 4 % A’ yields that B, #+ Bj.
Put A, = ANBand 4, = A'\B.

3.3. Lemma. A, n A, = Qand A, £ 0 + A4).

Proof.In view of B, + B} we have either B, \ B{# Q0 or B \ B; #+ 0. Inthe first case
there exists b, € B, \ B}. Assume that a € 4, n A}. Since a € A4,, it is incomparable
with b;. On the other hand, b, belongs to B}, and a € A3; thus a < by, which is
a contradiction. The case B} \ B; # 0 is analogous.

If we had A, = 0,then 4 < Band thus 4 = B, which is a contradiction. Therefore
A, #+ 0. Similarly we obtain 45 + 0.

3.4. Lemma. Let a, € A, and a3 € Ay. Then a, and a} are incomparable.

Proof. In view of 3.3 we have a, % a;. By way of contradiction assume that,
e.g., a, < aj. There exists b € B, with a; < b. Then a, < b and thus b € B,. Hence
according to 2.7 we have a, < b, which is a contradiction.

Let us denote by Ythe set of all elements y of X, such that the following conditions
are satisfied:

(i) y is incomparable with all elements of the set (B; n Bj) U (4, L 4});

(i) f beBand y < b, then y < b.
If ye Yand if A is as in (ii), then (i) yields that b € B, U B. From this we infer
(by applying the same argument as in the proof of 3.4) that either Y = @ or Ye A(X,).
Hence C € A(X,) according to (i), where C = YU (B; n Bj) U (4, N A4)).

3.5. Lemma. C e MA(X,).

Proof. We have already observed that C € A(Xl). By way of contradiction, assume
that C does not belong to MA(X,). Hence there exists x, € X, \ C such that x; is
incomparable with each element of C. Since x, € X, there is b € B with x; < b.

Since x; is incomparable with all elements of B; N Bj, the element b must belong
to B, U B;. If x; = b, then x, is comparable with some element of 4, or with some
element of A3, which is a contradiction. Thus x, < b. Hence there exists y e X,
such that x; < y < b. This implies that y satisfies both the conditions (i) and (ii).
Therefore y e Y < C and so x, is incomparable with y, which is a contradiction.

3.6. Lemma. C = A A A" in MA(X,).

Proof. Denote I(4) = {x, € X, : {x,} < A} and let I(B) be defined analogously.
Let C, be the system of all maximal elements of the partially ordered set I(A) A I( B)
In [2] it has been proved that the relation

C,=AnA
is valid in MA(X,). Thus we have to verify that C = C,. Since both C and C, are
maximal chains in X, it suffices to show that C = C,.

Let y € Y. We have already observed above that there is b € B, U Bj such that
y < b. If y is incomparable with all elements of By, then it is incomparable with all
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elements of 4, which is a contradiction (since it is clear that y cannot belong to A).
Hence there is b; € B, such that y < b;. Analogously there is b; € B} with y < bj.
Thus y e I(A) n I(B). Next, if t € X, such that y < 1, then either ¢ I(A) or t ¢ I(B).
Therefore y € C,.

It is obvious that each element of the set By N B} is maximal in I(4) N I(B).

Let a, € A,. There exists b, € B, with a, < b,. Since B, < B} < A’ we obtain
that a, eI(A) nI(A’). Let tel(4)nI(4’) and t = a,. Then teI(A); but a, is
a maximal element in /(A4) and hence ¢ = a,. Thusa, € C; and so 4, = C;. Similarly,
A, < C,, which completes the proof.

The following assertion which was shown to be valid in the above proof will be
applied in the next section.

3.6.1. Lemma. Let y € Y. Then there are elements b, € B, and b} € B} such that
y < b;and y < bi.

3.7. Lemma. C = A A A’ in MA(X).
Proof. This is a consequence of 3.6 and 3.1.

Let X, be the set of all elements x; € X, such that there is ¢ € C with x; = c.
Then we have

3.8. Lemma. MA(X,) is a principal filter of MA(X,) with the least element c.
From 3.8 and 3.2 we infer

3.9. Lemma. Assume that A A A’ fails to be covered by A in MA(X). Then the
lattice MA(X,) is non-modular.
Also, the construction of C yields

3.10. Lemma. Let P be a chain in X,. Then card P < 2.

3.11. Theorem. Let X be a partially ordered set. Then the following conditions
are equivalent:

(i) MA(X) is a modular lattice.

(ii) For each short subsystem Z of X, the lattice MA(Z) is modular.

Proof. The implication (i) = (ii) is obvious. Next, (ii) = (i) is a consequence of
3.9, 3.10 and of the corresponding dual results.

4. FURTHER RESULTS ON 4, 4° AND B

Let A, A" and B be as in the previous section. Also, the other notation introduced
above will be applied here.

Most of the results of the present section have an auxiliary character; they will
be used in Section 5 below.

Let us consider the following condition:

(c) Both A and A’ cover A A A’ in the lattice MA(X).
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It is obvious that (c) is equivalent to the condition which we obtain from (c) if X
is replaced by X.

4.1. Lemma. Let Y = (. Then the condition (c) holds.
Proof. We have

C=YU(B,nBj)u(4,u 4%)
and C = A A A (cf. 3.6).

The relation Y = § yields that C = (B; n B}) U (4, U A43). Hence by 2.7 we
infer that C < A and C < 4.

4.2. Lemma. B, + 0 + B}.

Proof. By way of contradiction, assume that B, = 0. Hence B; = B and thus
A = B, which is impossible. Therefore B, + 0. Similarly, B; =+ 0.

Put X; = X, \(B1 ~ BY). Then X; is a convex subset of X, and X; + 0. For
each D e MA(X,) let p(D) = D n X;. Next, for each D, € MA(X,) put p'(D,) =
= (B; n B}) U D,. The following result is easy to verify.

4.3. Lemma. For each D € MA(X,) and each D, e MA(X ;) we have p(D) e MA(X5)
and p'(D;) e MA(X,). Next, p is an isomorphism of MA(X,) onto MA(X,), and p’
is an isomorphism of MA(X ) onto MA(X,) which is inverse to p.

The above lemma shows that, when investigating the lattice-theoretic properties
of MA(XZ), it suffices to assume that the relation

B,nB =19
is valid. In the present section this relation will be always supposed to hold.

4.4. Lemma. B, + 0 =+ Bj.

Proof. In view of the symetry it suffices to verify that B, + 0. By way of contradic-
tion, assume that B, = 0. Then B} + 0. Next, B, = B and thus 4, = A.

According to 4.2 and 3.3 we have B, #+ 0 and A5 + 0, thus there are a3 € A)
and bj € B, with a; < bj. If a € A, then a < b}, hence the elements a3, and a are
either equal or incomparable. Lemma 3.3 yields that a # a%; therefore a3 is incom-
parable with each element of 4. Hence A fails to be a maximal antichain in X,
which is a contradiction.

Now, 4.2 and 4.4 yield
4.5. Corollary. card B = 2.

4.6. Proposition. Let card B = 2. Then the condition (c) holds.

Proof. Let B = {by, b,}. In view of 4.2 and 4.4 we can assume that B, = {b,}
and B, = {b,}. Similarly, both B} and Bj are one-element sets. If B} = B,, then
A = A’, which is a contradiction. Hence B} = {b,} and B, = {b,}.

The set 4, consists of all elements of X, which are covered by b, and are incom-
parable with by; the set A5 has analogous properties (with b, and b, interchanged).
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Next, Yis the set of all elements of X, which are covered by both b, and b, (cf. 3.6.1).
By 3.6,
ANA =YuAd,u .

Now from 2.7 it follows that C'< 4 and C < B, which completes the proof.

By applying a dual argument we obtain the following result.

4.7. Lemma. Let A,, Aj. B, be elements of MA(X) such that A; % A}, B; < A4,
and B; < A|. Assume that card B = 2. Then both A, and A} are covered by
Ay v A} in MA(X).

Let C be as in Section 2; i.e.. C = A A A". Since 4 and A’ are incomparable,
there exist A, and 4] in MA(X,) such that C < 4, £ 4 and C < A} < A". Let
such 4, and A be fixed.

4.9. Lemma. card C = 2.

Proof. This can be obtained from 4.5 by applying duality (if we consider the
elements A4,, A} and C instead of A, A" and B).

4.9. Proposition. Let card C = 2. Then (c) holds.

Proof. Clearly YNn A, = Yn A, = 0. Hence according to 3.3 we have also
A, " A5 = 0. Thus 4.2 and 3.3 yield that card A, = card A5 = 1. Therefore Y = 0
and by 4.1, the condition (c) is valid.

5. NON-MODULARITY

Assumre that 4, A" and B are as above. We also suppose that the relation B, n B} =
= 0 is valid.

5.1. Lemma. Assume that y < b, for each y € Y and each b, € B|. Then C < A.

Proof. Let C, e MA(X), C < Cy < A. Let a, € A,. Hence a, € C and thus there
exists ¢; € C; with a, < ¢;. Next, there is a € A with ¢, < a. Hence a, £ a, which
implies that a, = a. Thercfore 4, < C,.

There exists ¢, € C; \ C. Thus we must have ¢, € B. Next, ¢, must be incomparable
with all elements of A4, and hence ¢, € B,. This implies that ¢, > y for each y e Y;
therefore YN C, = 0.

Assume that C; < A. Thus thcre exists a € AN C,. Hence a € B,. There exists
¢y e C, with ¢} < a. The clement ¢} cannot belong to YU A,, thus ¢} € A5. Then ¢}
is covered by each element of B;. In particular, ¢ is covered by ¢,, which is a contra-
diction. Therefore C < A.

Foreach y e Ylet Bl(y) be the set of all elements b; € B, such that y is not covered
by b,. Let Bi(») be defined analogously.

5.2. Lemma. Assume that (c) does not hold. Then there exists y €Y such that
either B,(y) * 0 or Bi(y) * 0.
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Proof. According to 4.1 we have Y # 0. If By(y) = Bi(y) = 0 for each yeY,
then from 5.1 we infer that (c) holds, which is a contradiction.

In 5.3 and 5.4 we suppose that the condition (c) does not hold. Hence in view
of 5.2 we can assume without loss of generality that B'l(yl) + 0 for some y, €Y.

5.3. Lemma. There exist distinct elements a' € Ay, a*€ Y, a®>e A,, b' € B} and
b3 € B} such that the relations
(%) a' < b' > a? < b*>a®<b?
are valid.

Proof. As we already mentioned above we assume that there is a® € Y such that
B'(a?) & 0; thus there is b* € Bi(a?). In view of 3.6.1 there are b' € B, and b” € B}
with a? < b! and a? < b2 Thus b? + b3. Next, the relation B, n B} = 0 yields
that b* & b' + b, ,

From 3.3 we infer that 4, & 0 + A,. Hence there are a' e A, and a®e A5.
Then the elements a', a2, a® are distinct. It is clear that a’ =+ b’ for each i,je
e{l1,2,3}.

Since B, n B} = 0, we have B, < B, and thus a' < b'. Similarly B} € B,
and hence a® < b?, a® < b>. Therefore the relations (*) hold.

If u and v are incomparable elements of X, then we write u | v.

5.4. Lemma. Let a' and b’ (i = 1.2, 3) be as in 5.3 and let S be the set consisting
of these elements. Then S is a regular serpentine set in X.

Proof. It is obvious that S is a convex subset of X. From b* e Bj(a?) we obtain
that a® | b*. Next, irom a' € A3 and b® € B} it follows that a' || b holds. Hence S
is a serpentine subset of X. Thus by 5.3 and 3.6.1, S is a regular serpentine. subset of X.

5.5. Corollary. Assume that the condition (c¢) does not hold. Then X possesses
a regular serpentine subset.

Let (¢’) be the condition dual to (c). From 5.5 we obtain by duality:

5.6. Corollary. Assume that the condition (c') does not hold. Then X . possesses
a dually regular serpentine subset.

5.7. Corollary. Assume that the lattice MA(X) is not modular. Then X possesses
either a regular serpentine subset or a dually regular serpentine subset.

5.8. Lemma. Let S be a regular serpentine subset of X. Under the notation as
in Section 1,let B= B, UB,, A = B, U A, and A’ = B u A}. Then the condition
() fails to be valid in MA(X).

Proof. Let us apply the notation from the definition of the regular serpentine
subset. We also the other notation concerning 4, A" and B which was introduced
above. According to 1.7, the relations 4 < B and A’ < B hold. We have to verify
that (c) fails to be valid in the lattice MA(X,). Similarly as in the above investigation
it suffices to assume that B; n By = 0.
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Let Y, be the set of all y € Ysuch that y is incomparable with all elements belonging

to Bj(a?). Denote
C, = A, U Y, U B{(d?).

Then Y; + 0 (since a* € Y,), and also Bj(a®) % 0 (since b> € Bj(a?)). Next, C; € A(X)
and C < C, < A'. Finally, each element of ¢; belongs either to C or to A’.

Suppose that C; ¢ MA(X,). Thus there exists z€ X, \ C, such that z is incom-
parable with all elements of C,, and there are z, € C, z, € A’ with z; £ z < z,.

First suppose that z, = z,. Then z € B. The case z € Bj(a?) is impossible, since
Bi(a®) < C,. Thus z € B \ B{(a?) and hence z > a* € C,, which is a contradiction.

Hence z, < z,. Thus z, < z,, z, € B} and z, € YU A4,. Next, either z = z, or
z = z,. We have already observed that z € B, hence z % z,. Thus z = z,. If z € 4,,
then z < b® e B} < A,, which is impossible, since b* e C,. Therefore z e Y\ Y,.
But in this case z is covered by some element belonging to Bi(a®) < C,, which is
a contradiction. Thus C, e MA(X). Now, since C + C; + A’, we obtain that
C < C; < A’'. Hence the condition (c) fails to be valid.

The following result can be proved by a dual investigation.

5.9. Lemma. Let S be a dually regular serpentine subset of X. Then (under the
notation analogous to those in 5.8) the condition (c') fails to be valid in MA(X).
Summarizing 5.7, 5.8 and 5.9 we conclude:

5.10. Theorem. Let X be a finite partially ordered set. Then the following con-
ditions are equivalent:

(i) The lattice MA(X) fails to be modular.

(if) X possesses either a regular serpentine subset or a dually regular ser pentine
subset.
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