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SOME OBSERVATIONS ON LOCAL UNIFORM
BOUNDEDNESS PRINCIPLES

J. D. StEIN Jr., Long Beach
(Received January 23, 1990)

The Uniform Boundedness Principle for continuous linear maps from Banach
spaces into normed spaces is one of the first major consequences of the Baire Category
Theorem. One way to do this is to first prove Osgood’s Theorem, sometimes known
as the local uniform boundedness principle, which states that a pointwise-bounded
family of continuous maps of a complete metric space into a metric space must be
uniformly bounded on some open subset.

Uniform boundedness principles play an important role in automatic continuity.
A basic variation introduced by Ptdk ([6]) and extended by others ([3], [7]) enables
one to derive interesting results for systems theory.

This paper investigates several different aspects of local uniform boundedness
principles. In the first section, we prove versions of the Gliding Hump Theorem from
automatic continuity ([2]) for complete metric spaces, locally compact HausdorfT,
and sequentially compact spaces; including versions based on variations of the
Mittag-Leffler Inverse Limit Theorem. The conclusions of the theorems are weaker
when the spaces are sequentially compact. In the second section, we show that the
the weaker conclusions for sequentially compact spaces reflect the fact that Baire
spaces can be characterized by the equivalence between the Baire Category Theorem
and a specific version of the local uniform boundedness principle, and thus optimally
strong uniform boundedness principles for sequentially compact spaces are unat-
tainable.

SECTION 1. NON-LINEAR GLIDING HUMP THEOREMS

The Gliding Hump Theorem has appeared in many different versions (see [2]
and [5]). It is an important result from automatic continuity which numbers among
its consequences stronger and more useful versions of the Principle of Uniform
Boundedness ([3]. [7]). These versions have been shown to be valuable in proving
results dealing with the automatic continuity of certain types of operators important
in systems theory ([1]).
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Although it has recently been shown that the Gliding Hump Theorem is equivalent
to versions of a uniform bcundedness theorem which trace back to a result of Ptak
([6]), the proof of the Gliding Hump Theorem given in ([2]) uses Ptak’s idea in
a very elegant fashion, and has led to speculation that the more elegant proof might
lead to more powerful results.

Theorem 1. Let {E,: n = 1,2,...} be a sequence of complete metric spaces, and
let E, be a topological space. Let Y be a topological space covered by a sequence
{Y,:n=1,2,...} of closed subsets. For n 2 1, let R,: E, - E,_; be continuous
and onto. Let {T,: a € A} be a collection of maps from E, into Y. Suppose further
that

[1] for each a € A, there is an integer n such that T, R, ... R, is continuous;

[2] for each x € E,, there is an integer n such that T,x € Y, for all a € A.

Then there are integers M and N, and a non-empty open subset U of Ey, such
that TR, ... Ryx € Yy for all ae A and xe U.

Proof. Assume the theorem is false, and let n; = 1. Choose x; € E, and a; € 4
such that T, R x; ¢ Y;. Let W, be an open subset of Y such that T, Ryx; € W,,
Wi n Yy = 0. Let V; be a neighborhood of x; such that diam V; < 1. Choose an
open set Uy, such that x; e Uy, =« U;; = V,.

By [1], we can choose an integer n, > n, such that the map T, R, ... R,, is con-
tinuous. (R, ... R,,)™" x, is a nonempty subset of (R, ... R,,)™* (Uy), since each R;
is onto. If xe(R, ... R,,)”" x4, R, ... R,,x = x,, and so we have T, R, ... R, x =
= T,,Ryx, € W,. Since T,R, ... R,, is continuous, (T, Ry ... R,,)”" (W) is open,
and we can therefore choose an open set V, in E,, with diam V, < 1/2,and V, <
< (T,R; ... R (W) o (Ry... R, (Uy,).

Since the theorem has been assumed false, choose a, € A and x, € V, such that
T,R,...R,,x,¢Y,. Choose an open set W, = Y such that T,,R;... R, x, e W,
and W, nY, = 0.

Since x, €V, = (R,...R,,) " (Uyy); we sce that R, ... R, ,x, € Uy;. Choose an
open set Uy, such that diam U, < 1/2,U,, < U;, < U;;,and R, ... R,,x, € Uy,.
Choose an open neighborhood U,, of x, such that diam U,, < 1/2, U,, = ¥V, n
Nn(R;...R,,)""(Uy,). Then R,...R,, maps U,, into U,,. Note that T, R, ...
R, Uy, — WL

At the completion of step p of the induction, assume we have chosen integers

1=n, <...<ng,ay...,a,€ A;opensubsets Wy, ..., W, of Ysuch that W, n Y, =
=0 for 1 < k < p, and open subsets Uy, of E, , for j < k < p, as well as points
xy €E,,...,x,€E, , such that the following properties all hold

(1) diam U < 1k for j<k=p

(2) UpcUypcUjy for j<k=p

(3) R,+1---R,(Uy)cU; for i<k=j=p

(4) T, R, ...R,:Uy— Wy for 1 <k=p

65



is continuous for 1 <k <p

N+ 1

Q) T,R,...R
(6) T.R,...R,x,eW, for 1<k=p
) U, is a neighborhood of x, for 1 <k =< p.

We show that we can proceed with the induction. Begin by choosing an integer
n,.; > n, such that T, R,...R, , is continuous. If x€(Ry,+1-.- Ry, )" X,
and such an x must exist by the assumption that the R; are onto, then if j < p, we
have R, 41 Ry, x =Ry 11 . R Ry 41 - .R,,pﬂx =Ry 41 - RyXp€Ry g ...

R,(U,,) < U;, by (3). Also, T, R, ... R =T,R,...R, R,,‘,+1 ...R,  x=

ﬂp+1 Bp+1

=T,R; ... R, x,€ W, by (6). We can conclude that Q,,+1 =(T,,Ry..-R,,,,)"".
p
(W) n 41 - Ry - ip) 1s both open and non-empty.
» _anJ R,,., 1U”,'bh d
j=

Therefore, choose an open subset V,.; of Q,.; defined above such that
diam V,,, < 1/(p + 1). Since the theorem has been assumed false, choose x,,; €
€ V,+1 and ap4+1 € A such that T, HRl <R, Xp+1 ¢ Ypi1. Now choose an open
subset W,.; of Y such that T, o Ry, Xp41 € Wpiy, and such that W,y N
NnY,. =0

Since X,4+1 € Vp41, Ry... R,,, X,41 €Uy, Choose a neighborhood Uy .44 in
E, =E, such that R,... R, , X,y is a member of U 4 < Uy p+1 © Uy,
and with diam U, ,,; < 1/(p + 1). Again, since X,+1 € Vi1, Rys1 .- Ry \ Xpi1 €

Np +1
€Uy, But Ry ... R, R4y Ry, Xpe 1 =Ry .. R, X101 €U pry, 50 Rypyq o
R, . x,:1€U;,n(Ry...R,,)"" (Uy ,4y). Choose a neighborhood U, . in E,,
with diam U, p41 <1/(p + 1), Royysy - Ry, X001 €Us ity Uy iy © Uppuy ©
c Uy, and Ry ... R, (U, ,4q) © Uy ,4y. Continuing, since X, 41 € Vg, Royiy ...
<Ry, Xp+1 € Usp. As before, since we also have Ry, 41 ... RyyRyy g oo Ry Xp4q =
=R,,+1..- Ry, X,y 1, and this latter element belongs to U, ,.;, we can continue
this process of backtracking to construct U; ,., for 1 < j < p which satisfy pro-

perties (1)—(3). We must still construct U,y 4.

p+1

The backtracking process outlined above finishes with the element R, ., ...
R, X4 €U, 4. Since x,.;€V,4,, choose a neighborhood U,y ey of
Xpe1 With Upsy pi1 © Vpurs Rywq oo Ry 2Upiy pey = Uy pyy, and also such

that diam U,+; ,4+; < 1/(p + 1). It will be seen that properties (1)—(7) above still
hold, and the induction is complete.

The restriction on the diameters of the closed sets U ; insures that there is a unique

element z, € F\ U, If k<p, ,,kH ...R, z,€ ﬂ+ R, +1--. R, (U,;). Property
(2) shows thaj.t f;uls is a subset of ('] Ry +1 --- Ié,.p'(, U, j-1)» and by property (3)
this is contained in {] Urj-1 —J{Zz;ITherefOTQ k<p=R,,i..Rz,=z.

Let z, = Rlzl;j:}z;nl since z; = R, .- Rn,,Zp’ we have zo = R, ... R, z,. Since
z,eU,, if p>1 we have T, _ .z, = Ta,,Ri--- Ry 2, € Wp-1, by property (4).
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But W,_,; and Y,_, are disjoint, and so T, _,z, ¢ Y, for p > 1, and this contradicts
hypothesis [2]. =

The surjectivity of the maps {R pJ=12, } can be replaced by a somewhat
artificial-appearing combination of conditions on the maps {R;:j = 1,2,...} and
{T,: a € A}. Given an open subset U of E and an open subset W of Y, suppose that
xeU and T,R;...R;xe W. Then, for infinitely many k, (Rj4q...R,)"" (U)n
A (TR ... R,)™" (W) is non-empty. The existence of an element in this set was
necessary to assure that the induction could continue, whereas the requirement that
there exist infinitely many k such that this condition is satisfied is made to ensure
that one can find a k so large that the second set in the intersection above will be
open.

The above condition is satisfied if all the {R;:j = 1,2, ...} are onto. If k > j
and ze(Rj4q...R)™"'x, then T,R,...Rz =T,\R,...RRj4;...Rz = T,R, ...
...Rx, and so z€(Rjyy ... R)™(U)n (TR, ... Ry) ™1 (W).

From the standpoint of systems theory, interest is focused not so much on the
fact that an operator is continuous, but that it is bounded, as a signal processor which
acts as a bounded operator exhibits amplitude-dependent response to input signals.
Recent scientific developments have heightened the interest in non-linear phenomena,
and uniform boundedness principles for nonlinear operators might well have useful
applications.

It is possible to prove a Gliding Hump Theorem similar to the one above for
sequentially compact spaces. However, this theorem differs notably from Theorem 1
in one very important respect; the range space Y is required to be a metric space.
This obviously prompts the question: is this restriction necessary? In Section 2
we shall show that this restriction, or some other similar restriction, is indeed neces-
sary.

Theorem 2. Let {E,:n = 1,2, } be sequentially compact spaces, and let E,
be a topological space. Let Y be a metric space. For n = 1, let R,:E, = E,_,
be continuous and onto. Let {Ta: a eA} be a collection of maps from E, into Y.
Let y, € Y. Suppose further that

[I] for each a € A, there is an integer n such that T,R, ... R, is continuous

[2] for each x € Ey, sup {d(T,x, y,): a € A} < oo.

Then there is an integer N and a non-empty open subset U of Ey such that
sup {d(T,R; ... Ryx, yo): a€ A, xe U} < o0.

Proof. Not unsurprisingly, the proof is similar to the proof of Theorem 1, but is
mercifully shorter. Assume the result is false. Let n; = 1, and choose x; € E,,,a, € A4
such that d(T, Ryxy, yo) > 2.

Suppose that n, < ... < n, dy,...,a,€ A, and elements x, €E,, ..., X, € E,,
have been chosen. Choose n,+; > n, such that T, R, ... R, ,, is continuous. We
assume that, for 1 < j < p, T,;R; ... R,,,, is continuous.
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Since each R; is onto, let u € (R, 1 ... R,,..)” ' x, Then, for 1 <j < p,

T.,Ry..R, ,u=T,R ...R, R, +y...R,, ,u=T,R ...R, x,.
Note that, if 1 <j < p, TR, ... R,,J“ is continuous, and so TR, ... R,,Ml is
continuous. Therefore, for 1 £ j < p, choose a neighborhood V., ; of u such
that for each xeV,,,; we have d(T,R,...R, , x, T,R;...R,x,) < 1/27"".

Rp+1

Np+1
p

Let U,yy = N Vpyy ;s note that ue U,y and U, is open. By assumption, we
i=1

can choose a,,;€4 and x,,, €U, such that d(Ta‘le v Ry Xpa1s Vo) >

>p+ 2

Now observe that, for any integer p,

d(T, Ry ... R, x,, y0) < d(T,, Ry ... Ry, Xpi15 Vo) +
+ d(T,,Ry ... R, X, T, Ry ... R, Xp01) S .o

k-1

S Y HT,Ry...R,x;, T, Ry ... R, , Xj1) +
Jj=p k=1
+ d(T, R, ... Ryxi, o) < 3 1/22%4 + d(T, Ry ... RyXy, yo) <
Jj=p

<1+ d(T,Ry...R, X4 Yo) -
Therefore, if k > p, then d(T, R, ... R,X;, yo) > p.

Since E, is sequentially compact, choose a sequence {k;:j =1,2,...} and
z, € E; such that R, ... R, x;, — z;. Let xo = Ryz,; then R, ... R,,ijkj - Rz, =
= x,o. For any integer p, since E,
sequence {k;: | = 1,2, ...} such that

By
k!

is sequentially compact, we can choose a sub-
Ry, . +1--- R""J,xkfx —z,41€E, .. .

Applying the continuous map R, ... R, ,, to both sides of the limit above, we obtain
R, ...R,, .z, = Xo. Additionally, T, R, ... R,,kjlxkj‘ - T, Ry ...R,,  Zps1 =

= T, xo. But d(T, R, ... R, X ,yo) > p if k; > p. Therefore d(T, xo, yo) > P
P p v 1 kj’ I Ji P

Np+1

for any integer p, a contradiction. M

Notice that, if E, = E; = ... = E, = ... and each R; is the identity map, then
both Theorems 1 and 2 yield Osgood’s Theorem.

Although one would like to prove Theorems 1 and 2 without assuming that the
maps {R;:j = 1,2,...} are onto, such a result is too strong to hold. In fact, one
cannot even prove Theorem 1 or Theorem 2 under the assumption that each of the
continuous maps- R, has closed range.

Suppose that such a result holds, and that {T,: a eA} is a pointwise-bounded
family of maps of a complete metric space X into a space Y such that each T, is con-
tinuous on a closed subset S,. We assert that {T,:a e A} is uniformly bounded on
a relatively open subset of a finite intersection of the {S,: a € 4}. If not, we can find
a sequence {T,,": n=1,2, } which is not uniformly bounded on any relatively
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open subset of a finite intersection of the {S,: a € A}. Let E, = X,and let E, = ) S,;k.
k=1

Let R, denote the injection map; obviously, this map has closed range. It is easy
to check that all the hypotheses of the conjectured version of Theorem 1 hold, using
the family {T, : n = 1,2, ...} yields a contradiction.

However, the following counterexample to the above result shows that the hypo-
thesized version of Theorem 1 cannot hold.

Let X = [0,1], and let {r,: n = 1,2,...} denote an ordering of the rationals
in X. For each integer n, let T, map X into the reals as follows:

Tx=0 if 0=<x<=1/n orxisirrational ,
Tx=0 if x=r, x>1/n, and k<n,
Tx=k if x=r, x>1/n, and k2n.

Let S, = [0,1/n]; T, | S, = 0, and so is continuous. {S,:n = 1,2,...} is closed
under finite intersections. If x is irrational, T,x = O for all n, and if x is rational,
T,x = 0 for all but finitely many n, and so {T,: n = 1,2, ...} is pointwise-bounded.
Given any N and any open subset U of Sy, choose p such that U\ [0, 1/p] contains
infinitely many rationals; if r, is such a rational and k > p, then T;r, = k, and
consequently {T:n =1,2, } cannot be uniformly bcunded on Sy. This suggests
that linearity of the maps and spaces, or some analogous condition, is not just
sufficient to prove the Gliding Hump Theorem, but might be necessary as well.

Another interesting situation arises when the ranges of the maps R, are dense.
We give a short proof of the Mittag-Leffler Inverse Limit Theorem for sequences
of complete metric spaces or locally compact Hausdorff spaces; the theorem for
complete metric spaces appears in Esterle ([4], Theorem 2.14). We then give an
application of this theorem to local uniform boundedness.

Theorem 3. (Mittag-Leffler Inverse Limit Theorem) Let {E,:n =0,1,...} be
a sequence of (a) complete metric spaces, or (b) locally compact Hausdorff spaces,
and let R, : E, — E,_ be a continuous map with dense range. Then there exists
a dense subset X, of E, such that, for each x € X, there is a sequence of points
{xp:n=1,2,..., x,€E,}, such that R,(x,) = x,_y for n = 1,2, ....

Proof. (a) We give a proof which uses the same basic idea as the one given in
([4]), but incorporates ideas used in Theorems 1 and 2; it is included so that the paper
may be self-contained.

Let V be an open subset of E,. Since Ry has dense range, choose {U,,: k = 0, 1}
such that Uy, < E,, Uyy; < V, and also diam U,, < 1 for k = 0,1, and R,(U,,) =
< Uy;.

Assume that, after p steps, we have constructed nested open subsets {U”h: n <
<k £ p} in E, such that U,,,, = U, for n <k < p, diam U, < 1/k, and
R(Uy) = U,_yaslongasn < k < p. Since the range of R+ 1 is dense in E,,, choose
an element u,,;€E,.; such that u, = R, u,.,€U,, Then u, ; = Ryu,e€
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€U,_1,p» .- g = Ryu; € Uy,. Backtracking through this chain of elements, we
can find neighborhoods U, ,,; of u, for 0 < k < p + 1 such that diam U, ,,; <
<1/(p + 1), Upps1 € Uy, for 1 £k =< p, and RyUy p41) © Upoy puyq for 1 =
<k=p+1.
o0 =] o]
Let z, =N Uy Then R,z,e NR,(Uy) € NU,_14 =2,-4 if p=1. Since
k=p k=p k=p
zy € V, the theorem is proved.

(b) Let U be an open subset of E,. Choose an open subset V;, of E, such that V,
is compact and ¥V, = U. Choose a point x, € V, n Ry(E;), and a point x, € E,
such that R;x; = xo. Choose an open neighborhood U, of x; such that R,(U,)
is a subset of V,. Now choose an open neighborhood V; of x; with compact closure
such that ¥; < U,. Continus inductively to obtain a sequence {¥V,: n = 0, 1, ...} of
non-empty compact sets such that ¥V, <« U, V, < E,, and R(V,) = V,_, for n =
=0,1,....

Order the family of sequences {K,:n =0,1,...} of nonempty compact sets
having the properties stated in the preceding paragraph by {K,,: n=12.}<
<{J,n=1,2,. }ifand only if K, > J, for all n (equality of the sequences occurs
precisely when equality holds for all n). The preceding paragraph shows that this
collection is non-empty.

Let A be a set indexing a linearly-ordered subset of this family; for each a € 4,
the sequence of compact sets is given by {K,,: n = 0,1,...}. For each n, let F, =
= () K, The sequence {F,: n = 0, 1,...} is clearly an upper bound for thelinearly-

acA

ordered subset. If xe F, for n > 0, then x € K,, for each a € A4; consequently
R,xeK,,—, for each ae A4, and so R,x € F,_,. The finite intersection property
shows that each F, is non-empty; in a Hausdorff space the intersection of compact
sets is compact. Therefore, {F,,: n=1,2, } is a member of the family, and we
can apply Zorn’s Lemma to obtain a maximal sequence {M,,: n=0,1, } of
non-empty compact sets.

The maximality of the sequence insures that R, maps M, onto M, _, for if some Ry
is not onto, let Q, = M, for n = N, and let Qy_; = Ry(Qn), ---» Qo = R4(Qy).
The continuity of each R, guarantees that each Q, is compact, and if My is not onto,
the sequence {Q,:n =0,1,...} contradicts the maximality of the sequence
My:n=0,1,..}.

If we can show that each M, is a singleton, the proof will be complete, so suppose
that My is not a singleton. Let u € My, and let Qy = {u} Let Qnir = Mys 0
N Ry (Qy); since Ry, ; maps My, onto My, Q. is a non-empty subset of My ;.
Since we are now effectively working with continuous maps from and to compact
Hausdorff spaces, Qy+; must also be compact. Having now defined Q, for n > N,
let Qpyy =M, 0 R,,]ll(Q,,); the same arguments show Q,.; iS a non-empty
compact subset of M,,;. If N = 0 we are finished; otherwise , define Qy-; =
= Ry(Qn), ..-» Qo = Ry(Q,). The sequence {Q,: n = 0, 1, ...} contradicts the maxi-
mality of {M,: n =0, 1,...}, completing the proof. m
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We now prove a uniform boundedness result using this theorem.

Theorem 4. Let {E,,: n=20,1, } be a sequence of either complete metric or
locally compact Hausdorff spaces, and assume that, for n =21, R,: E, > E,_,
is a continuous map with dense range. Let Y be a topological space, {Y,,: n=
= 1,2, ...} an increasing closed cover of Y. Let {T,: a € A} be a pointwise-bounded
family of maps of E, into Y. Assume that, for each a € A, there is an integer n
such that T,R, ... R, is continuous. Then

(a) there is a dense subset X, of E, and an open subset U, of E, such that
{T,: ae A} is uniformly bounded on X, U,.

(b) If each R, is onto, then X, can be chosen to be E,.

Proof. We prove both (a) and (b) simultaneously, choosing as the dense subset X,

the set guaranteed by the Mittag-Leffler Inverse Limit Theorem. Note that
X, = E, if each R, is onto. We start with the case where the sets are complete metric
spaces.
I Assume the theorem is false. Choose x; € X, and a, € 4 such that T, x, ¢ Y;;
choose an open W; < Y such that Wy n'Y; = 0 and T, x; € W,. Choose n, so
T, R, ... R,, is continuous. Choose a neighborhood Uy, of x, with diam Uy; < 1;
since x; € X, choose u; € E,, such that R, ... R, u; = x;. Then T, R, ... R, u; =
= T,,x; €W,. Since both R, ... R, and T, R, ... R, are continuous, choose a neigh-
borhood Uy, of of u, such that diam U;; < 1, R, ... R, (U;) = Uy,, and T, R, ...
...R,(Uy,) = W,. Let n, = 0.

After p steps, we have chosen integers n, < ... < n,, indices ay, ..., a, € 4, open
subsets Wy, ..., W, of Ysuch that W, n Y, = 0for 1 £ k < p, and a nested collection
of open subsets {U;: 0 £ j < k < p} such that Uy, < E,, diam Uy, < 1/k, and

(M) Uj < Upp < Ujp—y for j<k=p,
(2) Rru+1 s Rnk(Ukj) . Uij for i<k é.] é P,
(3) T,R,..R,:Uy—> W for 1<k=p,

4) T,R,...R,, iscontinuousfor 1 <k<p.

3

Using property (2), choose x,.; € Uy, N X, and a,.; € 4 such that T, X, ¢
¢Y,,;, and such that x,,, is the image under R, ... R,, of a point in Uy,. ...,
which is the image under R, _, ... R, of a point in U, Let W,,, be open in Y
such that T,,, ,X,+1 € Wy41 and W,.; n Y, = 0. Now choose n,,; > n, such
that T, , Ry --- R, is continuous. Choose a neighborhood U, .1 of X, such
that diam Uo p+1 < 1/(p + 1) and Uy 41 < U,,,. Since x,,, ¢ is the image of a point
in Uy, choose an open subset U, ,.; of diameter <1/(p + 1), and such that
U ,+1 < Usp and Ry ... R, (Uy ,41) © Ug sy This can be continued back to
obtain Uy p+1- for 1 < k < p, with the appropriate properties. There exist points
z, €Uy pet1r o Zzp€U, ,+1 for which R;...R, z; = x,.4, and also such that
R, +1-- Ry ciZk+1 = zfor 1 £ k < p. Since x,,; € X, we can choose z,,; € E

Np+1
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such that R, .+, ... R, ,z,41 =z, Wenotethat T,,, Ry ...R, , z,4; =T, , X,4 €
€ W,+1. By the continuity of T, R, ... R, ., and R, ;... R, ., choose a neigh-
borhood Uiy 41 Of z,4; of diameter <If(p + 1) such that T, ,R,.
Ry, \(Ups1,p+1) © Wyiy, and which is mapped by R, ,;...R, . into U, ..
The denouement now follows as in Theorem 1.

The proof {or locally compact Hausdorff spaces combines the elements of the
above proof for complete metric spaces with the mcthod of proving the Mittag-
Leffler Inverse Limit Theorem for locally compact Hausdorff spaces. We simply
sketch the idea. Instead of being able to control the diameters of the closures of
certain open sets, as we could in a metric space, we instead require the open sets
to have comipact closures. We then obtain (using most of the notation from the proof
above for complete metric spaces) compact sets {K;: j = 1,2,...}, with K; ¢ E, ,
such that T, (K;) = W; and R, ... R,(K;) = K;. As in the proof of the Mittag-
Leffler Theorem for locally compact Hausdorff spaces, order all such sequences
{K;:j=1,2,...} of compact sets. Zorn’s Lemma can again be used to extract
a maximal element, which will be a sequence of singletons. The singleton in this
sequence belonging to E, will fail to be pointwise-bounded under {T: j = 1,2,.. }. ®

The Mittag-Lefler Inverse Limit Theorem can be used to prove the Baire Category
Theorem (by showing that the intersection of a countable family of dense open
subsets of a complete metric space or lecally compact Hausdorff space is dense),
so it cannot be cpnsidered surprising that the above theorem does not hold for
sequentially compact spaces.

To see a specific example, let Y = E, = E; = ... be the integers with the cofinite
topology, in which closed sets are either finite or the entire space. Define R,: E, —
— E,_; by R(k) =n if k <n, and R,(k) = k otherwise. Note that the inverse
image of any finite set is finite, so R, is continuous, and since the range of R, is
infinite, it is dense. For each integer n, define T,: E, - Y by T,(n) = n, T,(k) = 1
if k + n. Notethat Ry ... R4 (k) = n + 1ifl £k <n + 1,and R, ... R,4,(k) =
=kif k>n+1,so T,R,... R, is constant, hence continuous. However, any
dense subset of E, must be infinite, and any open subset of E, is cofinite. Therefore,
the intersection of a dense subset and an open subset of E, must be infinite. If we
letY, = {1,2,..., n} be the increasing closed cover of Y, we see that {T,:n = 1,2, ...}
is pointwise-bounded.But {T,: n = 1,2,...} is unbounded on any infinite subset
of E,, and so the previous theorem cannot hold for sequentially compact spaces.

SECTION 2. CATEGORY THEOREMS AND LOCAL UNIFORM BOUNDEDNESS
k>

A Baire space is one which has the property that at least one member of a countable
closed cover of the space must contain a non-empty open subset; i.e., it is a space
in which the Baire Category Theorem can be proved. That this property results
in a local uniform boundedness principle (Osgood’s Theorem) is elementary. What
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is equally elementary, but perhaps not so well known, is that the correct phraseology
of the local uniform boundedness principle leads to an equivalence between it and
the Baire Category Theorem.

Theorem 5. The following conditions are equivalent.

(1) X is a Baire space.

(2) Let Y be a topological space and {Y,,: n=1,2, } be an increasing closed
cover of Y. Let A be a set, and for each integer n, A, is a subset of A. Let {T,: a e A}
be a collection of continuous maps of X into Y. Suppose that for each x € X, there
exist integers n = n(x) and k = k(x) such that a € A, = T,x € Y,. Then there exist
integers N and M, and a non-empty open subset U of X, such that xe U and
aeAy=TxeYy.

(3) Let Y be a topological space and {Y,:n = 1,2,...} be an increasing closed
cover of Y. Let A be a set, and let {T,: ae A} be a collection of continuous maps
of X into Y. Suppose that for each x € X, there exists an integer n = n(x) such that
ae A= TyxeY, Then there exists an integer N and a non-empty open subset U

of X, such that xeU and ae A = T,x € Yy. *
Proof. (1) = (2): Define X,, = N 7, '(Y,). By continuity, ecach X,, is closed,
acAy

and by assumption, {X,,: k,n = 1,2,...} forms a countable closed cover of X.
Since X is a Baire space, for some integers M and N, there exists a non-empty open
set U such that U < Xy, as desired.

(2)=(3) Let 4, = Aforn=1,2,....

(3) = (1) We begin by observing that if E and F are closed sets and E U F contains
a non-empty open subset U, then either E or F must contain a non-empty open
subset. If U < E, we are done. If not, the intersection of the complement of E and U
is a nonempty open subset of F.

Assume that X satisfies (3), and {X,,: n=1,2, } is a countable closed cover of X.
Let Y= X, and let Y, = U X;; {Y,,: n=1,2, } is an increasing countable closed
k=1

cover of Y. Let i: X — Y be the identity. The family {i} trivially satisfies the hypo-
theses of (3), and so there exists an integer N and a non-empty open set U such that
U = i(U) = Yy. The result now follows from a repeated application of the observa-
tion of the preceding paragraph. MW

In Theorem 5, condition (3) is simply the conclusion of Osgood’s Theorem
stated for a morc general type of boundedness than usual. Theorem 5 also shows
that Theorem 1 is cquivalent to the Baire Category Theorem in a complete metric
space.

To show that the conclusion of Theorem 2 cannot be ‘“‘beefed up” to the full
strength of the conclusion of Theorem 1, we need merely exhibit a sequentially
compact space which is not a Baire space. Let X be the integers with the cofinite
topology. Given a sequence from X, if the range of the sequence is finite, pick a sub-
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sequence whose range is a singleton (this subsequence converges to the singleton),
and if the range of the sequence is infinite, pick a subsequence in which no term recurs
(this subsequence converges to each point of X). Thus X is sequentially compact.
However, X is not a Baire space, since it is the countable union of singletons, and
each singleton is closed but not open.

In view of the fact that boundedness theorems are sometimes equivalent to category
theorems, one might try to abstract the basic idea of a category theorem. In a very
broad framework, a category theorem for a set X can be said to be a theorem in
which there are several different parameters: two collections of subsets of X, and
various types of coverings. A category theorem would then state that, if X is covered
in an acceptable way by subsets from the first collection, then some member of the
second collection is also covered (possibly in a different way) by those subsets. It is
possible to show that quite general theorems, of which Theorem 5 would be a special
case, can be proved in a very abstract setting, involving only generalizations of the
properties that the intersection of closed sets is closed and that, under a continuous
map, the inverse image of a closed set is closed. The value of such theorems to an
analyst is not clear.
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