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TRANSITIVITY OF PRINCIPAL TOLERANCES
IS NOT A MALCEV PROPERTY

Joser NIEDERLE, Brno

(Received November 7, 1988)

Polynomial conditions for a variety of algebras to have transitive principal
tolerances (alias to be principal tolerance trivial) were given in several papers, cf.
[1], [3] and [4]. However, none of them are Mal’cev ones.

Theorem. Transitivity of principal tolerances is not a Mal’cev property.

Proof. Let ¥” be the variety of all algebras (A4, A, v, u) of the type (2,2, 1)
that satisfy the distributive lattice identities. Put 4 = {0, a, 1}, Ofa=+14%0,
and define the operations A and Vv as in the three-element distributive lattice with
the least element 0 and the greatest element 1. Further,letu = (0 » 1,4 — a,1 — 0).
In this way, we have obtained an algebra in ¥". It is obvious that the principal
tolerance T(0, a) = {0, a}? U {a, 1}? is not transitive. Hence ¥~ has not transitive
principal tolerances even though it satisfies all the identities holding in the variety
of all distributive lattices, which has transitive principal tolerances (see [2]). Q.E.D.

Example 1. The variety of all distributive lattices has transitive principal tolerances
(cf. [2]).

Example 2. The variety of all monounary algebras {4, f) that satisfy f(f(x)) = x
has not transitive principal tolerances even though all its free algebras have (cf. [3]).

For the comparison’s sake, we include a list of polynomial conditions for the transi-
tivity of principal tolerances that are based on the author’s result [3], Thm. 1.

Proposition. Let ¥~ be a variety of algebras. The following conditions are equi-

valent:

(E) for any ne N, any (n + 2)-ary polynomials f1, g, f, and any n-ary poly-
nomials s, t, u, v such that
J1(s(x), (%), x) = g(u(x), v(x), x)
fo(U(x), 5(x), x) = g(v(x), u(x), x)
are ¥ -identities there exist (n + 2)—ary polynomials g4, f, 9 such that
F1(i(x), s(x), x) = g4(u(x), v(x), x)
f(s(x), 1(x), x) = g,(v(x), u(x), x)
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S0, (). %) = g2(u(x), o), )
1os(%), 1(%), x) = g5(0(x), u(x), x)
are ¥ -identities;
(F) foranyneN,any(n + 2)-ary polynomialsfl,fz and any n-ary polynomials
s, t there exist (n + 2)-ary polynomials gy, f> 92 such that
Si(1€x), s(x), x) = g1(f(s(x), 1(x), x), o(1(x): 5(%): %), x)
T(s(x). t(x), x) = g.(f5(t(x), s(x), x), f1(s(x), (), ¥), x)
J(1(x), s(x). x) = ga(f1(s(x), 1(x), x), fa(1(%). 5(x)> %), x)
Fo(s(x), 1(x), x) = g(f5(t(x), s(x), x). f1(s(x), ), x), x)
are ¥ -identities; ;
(Gy4) for any ne N and any (n + 4)-ary polynomials fy, f, there exist (n + 4)-ary
polynomials g,, f, g, such that
f](za y.,w.y, Z) = 91(f1(y, zZ,w,y, Z),fz(z9 YW, ), Z), w,y, Z)
T, 2w, 3. 2) = 9:(foz, y, w, y, 2), £1(y> 2 W, ¥, 2), W, p, 2)
f(Z, y.w, y, Z) = gZ(fl(y, zZ,w, )y, Z)afZ(Z, D) w, y’ Z)’ w, Y, Z)
fl(ys W, ), Z) = gZ(fz(Z, y,w,y, Z),fl(y, zZ,w, )y, Z)) w,y, Z)
are ¥ -identities;
(G) for any ne N and any (n + 2)-ary polynomials f1, f> there exist (n + 4)-ary
polynomials g4, f, g, such that
fi(z v w) = g:(f:1(0, 2, w), oz, y, w), w, ¥, 2)
f(y’ z, w, yv Z) = gl(fZ(z’ y: w),fl(y’ z, W), w, YV, Z)
f(Z> Yy, w, )y, Z) = gl(fl(ya Z, W), fZ(Z’ Y, W), w, ¥, Z)
fZ(.v’ z, W) = g2(f2(z’ Vs w)afl(y7 z, W), w, ), Z)
are ¥ -identities.
Sketch of proof. (E) = (F): Set the first projection for g.
(F) = (G,): Set the sequence w, y, z for x, the (n + 1)-st projection for s and the
{n + 2)-nd projection for .
(G4) = (G,): The (n + 2)-ary polynomials fy,f, may be assumed to be
(n + 4)-ary.
(G,) = (E): Put w = x, assume (G,) yields g1, f', g5- Set s(x) for y and #(x) for z.
Take
9:(p. 4. x) = 9,(9(p. 4, x), 9(a, p. %), x, 5(x), (x))
S, 0.%) =S (p 4. %, (3, 1)
92(p. 4, x) = g5(9( p. x), 9(p, 4. x), x, 5(x), (x))

and we are done.
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Remark. Conditions (E), (F), and (G,) were formulated in [3], [4], and [1]
respectively, and proved to be equivalent to the transitivity of principal tolerances,
condition (Gy) is new.

Boldface x stands for x, ..., x,, boldface w for w, ..., w,.
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