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FRAME TOLERANCES ARE DIRECTLY DECOMPOSABLE

Joser NIEDERLE, Brno

(Received June 17, 1988)

A frame is a complete lattice satisfying the Join Infinite Distributive Identity
a A Viabi=Vial(a A b;). A lattice tolerance on a frame (or, generally, on
a lattice) is a reflexive symmetric relation on its support compatible with finite
meets and joins. A frame tolerance on a frame is a lattice tolerance compatible with
arbitrary joins (suprema). A lattice (frame) tolerance on the product of frames
L = [Tier &; is directly decomposable if there exist lattice (frame) tolerances T;
on &;such that T =[], T; = {[a, b] € & x &|V(ieI)[pfa), p(b)] € T;} where p;
are projections of £ onto £; (i € I).

We know that lattice tolerances on products of finite number of lattices are directly
decomposable while those on products of infinite number of nontrivial lattices are not
(cf. [1]). The same statement is obviously valid for lattice tolerances on frames. For
frame tolerances, we shall prove a stronger result.

Theorem. Frame tolerances on arbitrary products of frames are directly de-
composable.

Proof. Let T be a frame tolerance on the product of frames £ = [],; ;. Denote
by 0; the least and by 1; the greatest elements of £;, put B(T) = {[x, y]e &, x €]
| [ex), ey)] € T} where e,(x) is defined by pje/x)) = 0;if i * j, and p,(e,(x)) = x
(i,j €I). They are obviously frame tolerances. We shall prove T = [ [, B{(T). Let
[a, b] € T. Then [epi(a)), epib))] = [e1;) A a, ef1;) A b] €T, and so [pya),
pi(b)] € B(T) (i €I). Hence [a, b] € [[;c; BAT). Conversely, let [a, b] € [Tier BAT),
i.e. [pi(a), pb)] € B(T) (i e I). Then [ep{a)), epib))] € T(i € I), and consequently
[0, b] = Via [epi@)). epi(B)] € T. QE.D.

Frame tolerances on a frame form a complete lattice (cf. [2]).

Corollary. The lattice of all frame tolerances on the product of frames £ =
= [lier &: is isomorphic to the product of lattices of all frame tolerances on the
Sframes £, (iel).

Proof. In fact, the theorem assigns to any frame tolerance T on { an element

of the product of lattices of frame tolerances on £; (i eI). This assignment is ob-
viously an injective isotone mapping. It remains to prove its surjectivity. Let T; (i € I)
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be frame tolerances on £; respectively. Put T = [[;; T:.Then B(T) = {[x, y] e

e x & [efx), )] e T} = {[x. y]e & x & [pdex)), piedv) € T} =
={[x.y]e& x &|[x,y]eT} = T, QED.

Added in proof. Analogous statements may be a fortiori proved for frame
congruences. Both proofs work also for frame-compatible reflexive relations.
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