Czechoslovak Mathematical Journal

Alois Svec
On the affine normal

Czechoslovak Mathematical Journal, Vol. 40 (1990), No. 2, 332-342

Persistent URL: http://dml.cz/dmlcz/102385

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102385
http://dml.cz

Czechoslovak Mathematical Journal, 40 (115) 1990, Praha

ON THE AFFINE NORMAL

ALoIs §VEC, Brno

(Received April 7, 1989)

In what follows, I am going to define (in the analytic as well as the geometric
way) the affine normal of a hypersurface in the affine space. The construction may
be compared with the papers [1] and [2] and the literature cited therein.

1. In this preliminary section, we put together several lemmas needed in the
sequel; the proofs are elementary (using the local coordinates).
Let MY be an N-dimensional differentiable manifold with local coordinates

(&) = (&%, ..., &Y). On M™, be given an affine connection V by means of the functions
I'%;. The torsion and curvature tensors of V are given by
(1'1) T,’; = r’;f - F’;'i’ R{kl = 61F{k - akr{l + F;ert - F’illrik

resp. For a function f: MY — R and a tangent field X on M, we write 0,/ : = f[0¢&’
and Dyf = V4f := X/.

Lemma 1.1. Be given (M", V). Let f: MY — R be a function, o a section of
T*(M"), Q a symmetric section of T*MY)® T*(MY), S;: T{M")— T(M")
a field of endomorphisms. Then

(1'2) [Vx= VY]f = DT(X,Y)fa
(1.3) [Vx. Vy] ©(Z) = Vixy)0(Z) + o(R(X, Y) Z),
(1.4) [Vx. Vy] Q2. T) =
= VT(X‘Y)Q(Z, T) + Q(R(X, Y)Z, T) + Q(R(X, Y)T,Z),
(1.5) DxDyf = VxDyf + Dy,yf,
(1.6) VyDsaof = DvysonS + VsaoDyS + Drey soonf -

Lemma 1.2. Be given (M", V) and an affine connection V* on M¥; let o(X, Y) :=
:= (V* — V) (X, Y) be the difference tensor. Let @ be a section of T*(M") and Q
a section of T*(M™) ® T*(M™). Then

(1.7) Vio(Y) = Vyo(Y) — w(e(Y, X)),
(1.8) VEQ(Y, Z) = VxQ(Y, Z) — (o(Y, X). Z) — (Y, o(Z. X)).

Let h(X, Y) be a symmetric bilinear form on M"; suppose h to be regular. Then
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there exists the inverse symmetric bilinear form # as a section of T(M™) ® T(M™)
in local coordinates, it is defined by

(1.9) Rth;, = o

Let G be a (p + 2)-linear form on M"; define the p-linear form

(110)  Trge,x, G(X 10 X))

by means of the local coordinates as

hl’s
Ikyookicsrkisronkj—1sky+1okprz *

The following is trivial.

Lemma 1.3. We have
(1.11) Traoen (X, Y) = N, Trzpn (X, Z) (Y, T) = h(X, Y).
If h* = o™ 'h, then h* = ah.

2. Let A¥*! be the affine space, V¥ *! its vector space, M" a differentiable ma-
nifold and m: MY — AV*! an immersion. The normalization A~ of m is the choice
of a mapping n: MY > V¥*! such that n(¢) is transversal to m(M") at the point
m(&) for each & e M.

The fundamental equations of a normalized hypersurface are

(2.1) om=m;, om;=Tim + hyn, on=—Sm; + tn;

1y 2

it is easy to see that I'{; induce a linear connection V on M™. Using this, (2.1) may be
rewritten in the form

(22) VyDym = h(X,Y)n, Dyn = —Dgxym + t(X)n.
Lemma 2.1. The integrability conditions of (2.2) are

(23) (X, Y) = h(Y.X),

(2.4) Vh(X,Y) + (X, Y)1(Z) = Vyh(X, Z) + h(X, Z)«(Y),

(2.5) R(X,Y)Z = h(Z,.X) S(Y) — h(Z, Y) S(X),

(2.6) Vyt(Y) — h(X, S(Y)) = Vyr(X) — h(Y, S(X)),

(2.7) ViS(Y) + o(Y) S(X) = VyS(X) + 1(X) S(Y).
Proof. Using (1.2) for f = m, we get

(2.8) 0=[Vy,Vy]m={h(X,Y) - h(Y,X)} n, ’

i.e., (2.3). From (2.2) and (1.3) for o(X) = Dym, we get

(2.9) Drx.vyzi = [Vx, Vy] Dzm =

= Vyh(Z,Y)n + h(Z, Y){—Dgxym + t(X) n} —
— Vyh(Z.X)n — h(Z, X) { = Dgyym + 1(Y)n},
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ie.,
(2.10) (Draxnz + Duznsax = Duzxsm) m =
={Vxh(Z,Y) + h(Z, Y)«(X) — Vyh(Z, X) — WZ,X)(Y)} n,
and we have (2.4) and (2.5). From (1.2) and (1.6), we obtain
(2.11) 0=[VyVy]n=
= —VyDgxym + Vxi(Y) n + o(Y) { —~Dgxym + o(X) n} +
+ VxDsyym — Vyr(X) n — o(X) { =Dgyym + oY) n} =
= = Dyyserym — VsyDxm + Vxt(Y)n = Degysonm +
+ Dyysaom + VsxDym — Vyt(X) n + Dyxysonyt 5 ‘
according to (2.2,), Vgy)Dym = h(X, S(Y)) n. Comparing the corresponding terms
as in (2.10), we get (2.6) + (2.7). QED.
Proposition 2.1. The forms ,
(212)  Fy(X, Y, Z) = V,h(X, ¥) + h(X, ¥)<(2),
(2.13) FX,Y,Z, T) = ViFy(X, Y, Z) + F4(X, Y, Z)«(T) +
+ h(X, Y)h(Z, S(T)) + h(Y, Z) h(X, S(T)) + h(Z, X) h(Y, S(T)) .
(2.14)  Fy(X,Y,Z, T.U) = VoF,(X. Y, Z, T) + Fy(X, Y. Z, T) (U) +
+ h(X,Y)F4(Z, T, S(U)) + h(X, Z) F5(Y, T, S(U)) +
+ h(X, T) F(Y, Z, S(U)) + h(Y, Z) Fy(X, T, S(U)) +
+ h(Y, T) F5(X. Z, S(U)) + h(Z, T) Fy(X, Y, S(U)) +
+ h(X, S(U)) F5(Y, Z, T) + h(Y, S(U)) F5(X, Z, T) +
+ h(Z,S(U)) Fy(X, Y, T) + h(T, S(U)) F5(X, Y, Z)
are symmetric.

Proof. The form (2.12) is symmetric because of (2.3) and (2.4). The form F, is
symmetric in X, Y, Z by definition. Using (1.4), (2.5) and (2.6), we get

(2.15) FuX,Y,Z,T) — F4y(X, Y, T, Z) =
= [Vy, V2] W(X, Y) + Vih(X, Y) «(Z) — V,h(X, Y) o T) +
+ WX, Y){ViH(Z) — V,i(T)} +
+ Vzh(X, Y)o(T) — Voh(X, Y)(Z) +
+ h(X, Y) {«(2) «(T) - «(T)<(2)} +
+ h(X, Y){h(Z, S(T)) — KT, S(Z))} + h(Y, Z) h(X, S(T)) —
— WY, T) h(X, S(Z)) + h(Z. X) h(Y, S(T)) ~ (T, X) h(Y, S(z)) =
= h(R(T, 2) X, Y) + (X, R(T, Z) Y) + h(Y, Z) h(X, S(T)) —
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WY, T) (X, S(Z)) + h(Z, X) h(Y, S(T)) — h(T, X) h(Y, S(Z)) =
h(h(X, T) S(Z) — h(X, Z) S(T), Y) + h(X, h(Y, T) S(2) —
h(Y, Z) S(T)) + h(Y, Z) h(X, S(T)) — h(Y, T) h(X, S(Z)) +
+ h(Z, X) h(Y, S(T)) — h(T, X) h(Y, S(2)) = 0.
The proof for F5 goes along the same lines, it is just a little bit longer. QED.

Let A be a tangent vector field on MY and a: MY — R, «(£) # 0 for each & € MY,
a function. Consider a new normalization 4 "* given by

(2.16) n* = D,m + an.

It induces a new linear connection V* on M", and we get

|

Lemma 2.2. Let
(2.17) ViDym = h*(X, Y)n*, Dyn* = —Dgyxym + t5(X) n*
be equations analogous to (2.2). Then
(2.18) (V¥ =V)(X,Y)= —a"'h(X,Y) 4,
(2.19) (X, Y) =a 'h(X,Y),

(2.20) ™(X) = 1(X) + " {h(4, X) + Dya},

(2.21) S*(X) = a S(X) — VxA + {1(X) + a7 'h(4, X) + « 'Dya} 4.
Proof. From (2.17,) + (2.29),

(2.22) (Vy — Vy) Dym = {ah*(X, Y) — h(X, Y)} n + h*(X, Y) D m .

From this, we get (2.19). Further, consider (1.7) with o(X) = Dym. We immediately
see that o(X, Y) = —a~'h(X, Y) 4, i.e., we have (2.18). Further, using (1.5), we get

(2.23) Dyn* = DyD,m + Dyan + aDyn =
= Dy, m + VD m + Dyan + a{ —Dgxym + 1(X) n} .
We have VyD, m = h(X, Y) n; inserting into (2.17,),
(2.24) Dy,am + h(X, Y)n + Dyan — D,syym + at(X)n =
= —Dguxym + T*(X) (Dm + an),
and (2.20) + (2.21) follow. QED.
Lemma 2.3. Let the form F3(X,Y,Z) be associated to the normalization 4*.
Then
(2.25) Fi(X,Y,Z) = a 'F5(X, Y, Z) +
+ o 2{h(X, Y) MZ, A) + h(Y, Z) h(X, A) + h(Z, X) h(Y, A)} .
Proof. Using (1.8) with o(X, Y) = —a ™ 'h(X, Y) A, we get
(2.26) F3(X, Y, Z) = Vzh*(X, Y) + h¥(X, Y) 1%(Z) =
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Vi@ 'h(X, Y)) + h¥(X, Y)t%(Z) =

—a 2 Dsah(X, Y) + « Y Vh(X, Y) + (e 'h(X,Z) 4, Y) +
+ (X, " h(Y, Z) A)} + a"*h(X, Y) h(Z, 4) +

+ o ?Dyoh(X, Y) + a”'h(X, Y)1(Z),

and (2.25) follows. QED.

It

Supposition 2.1. Let us restrict ourselves to hypersurfaces with h regular.
Using the notation (1.10) and Lemma 1.3, we get

(2.27) TrieF3(X, Y, Z) = Trgx ,F5(X, Y, Z) + (N + 2) a"'h(4, Z)
from (2.26).

Definition 2.1. The normalization /4" is called good if
(2.28) Ty Fa(X, Y, Z) =0 foreach Z.

Proposition 2.2. There exist good normalizations. If & and A'* are two good
normalizations, we have A = 0, i.e.,

(2.29) n* =on.
Proof follows immediately from (1.27). QED.

Lemma 2.4. Let A" and A/* be good normalizations. Then
(2.30) VE=V, h¥X,Y)=a'h(X,Y),
™(X) = °(X) + « Dy, S¥X) = aS(X),
and we have
(2.31) Fi(X,Y,Z) = 'Fy(X,Y,2), Fi(X,Y,Z, T)=a 'FyX,Y,Z,T).
Proof. See (2.18)—(2.21) with 4 = 0. QED.

3. Because the formulas are going to be too complicated, I will express them in
the usual tensor slang. Let us restrict ourselves to a domain of MY with the local

coordinates (&) = (&', ..., &). For the tangent vector fields X = x' 9[0¢', ..., U =
= u' 9|0, write
(3.1) WX, Y)= hx'y/, FiyX,Y,Z)=axyz,

FX,Y,Z,T) = a;ux'y'z", Fs(X,Y,Z, T,U) = a;x'y'z"tu?;
we have
(3.2) ay = Vihy + hy,,

i = Viagp + agpt + (hijhkr + hph;, + hkihjr) St
Aijrap = Vg + AT, + (hijaklr + hyajyy + hy@y, + hpay, +

+ hjay, + hyag, + hyajg + hjag + hyag + hpagy) S, .
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Simple calculations yield

Lemma 3.1. We have

(3.3) Vi = R, — R"hau

(3.4) V(ia,) = hay; — BT H triayg; — (N + 2) bS]
Proposition 3.1. If A is a good normalization, we have

(3.5) SI= (N + 2)"t B (R aps = BB arg0,.0)

(3.6) 7, = —N"1B"V,h,,

and

(3.7) dr=0;

here, d is the exterior differential.
Proof. If 4" is good, we have h™a,; = 0, and (3.4) implies (3.5). Looking at the

right-hand side of (3.4), we see that
(3.8) hS} = ST
The integrability condition (2.6) being
(3.9) Vit; — hyS = Vi — h;,S%
(3.8) simplifies it to
(3.10) Vi, =V,
From d(7; d¢') = 9;7;d& A d¢', we see that dv = 0 if and only if d;r; = 9, this
being equivalent to (3.10). Finally, (3.6) follows from (3.2;). QED.
Lemma 3.2. If A is a good normalization, we have
(3.11) ViR RS B 0y p) = BT R R7 0,0,0,0 T +
B R (2R @y @yrgrps — 3HRTY Gy 0y Bggni) s
VAR B ay) = BB a0t —
— 20 R 8y gy + BT Qg

Writing
(3.12) TrS =S8;,

we have

(3.13) (N+2)V,TrS = (N + 2) Tr St; + A" ka0, —
— 25"Iil‘ss,ﬁppl(arsiar's’pp‘ + a"spa"s'p'i) +
+ 3’;rqh~r)q,ﬁss'ﬁpp’arspar’s’p'aqq'i :

Proof. We obtain (3.11) by a direct calculation as well as (3.13) using (3.5). QED.
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Lemma 3.3. If & and /™ are good normalizations, we have
(3.14)  TrS*=aTrs.
Proof follows from (2.30,). QED.

Supposition 3.1. We restrict ourselves to hypersurfaces with
(3.15) TrS +0

using a good normalization.

Definition 3.1. The good normalization A is called very good if
(3.16) TrS=N.

Proposition 3.2. There is exactly one very good normalization N of a given
hypersurface.

Proof is trivial.

Let us remark the following two facts. If 4 is a very good normalization, we may
calculate 7 from (3.13), the left-hand side being equal to zero. The form h(X, Y)

induces then a pseudoriemannian metric on M¥; it is simple to calculate its associated
connection as

(3.17) { Jlk} = T + 3(h"ay, — dju — &iz; + h"hye,)
5% being the Kronecker deltas.

4. We are going to present a geometric description of the very good normalization.
Let us start with a normalized hypersurface m: MY — AN*! given by (2.1); let
& e M" be a fixed point in a coordinate neighborhood (&) = (&, ..., &V) of MY
Be given a curve y: (—¢, &) - MY such that y(0) = & by &' = f¥(1), and consider
the curve m o y: (—¢, £) > AV given by m(r) = m(f(1)); we have

dm(0) ,2m(0) | | 5d°m(0)
Write

i 200
(4.2) Fi:=d———f 0), Gizzdf(o),

dt dr?

and introduce the coordinates of y € AV at m(,) by
(4:3) y =m&) + yim(&) + y¥ 1 n(&) -
The curve m(r) (4.1) is then given by
(4.4) y = yi(t) = tF' + 1(G' + I',FF) + 0(r°),
YL = NI = 12, FTFS 4
+ 363{(0,hys + hygt, + hyT'%) FPFF® + 3h, F'G*} + O(1*).
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A general hyperquadric Q¥ < g¥+1 jg given by
(4.5) o0y, YN = Aty 4 ByyiyV+1 4 C(Y™1)? +
+ Dy + EYNT + F = 0.

We say that the curve m(t) (4.4) has a contact of order k (at least) with the hyper-
quadric Q (4.5) at m(&,) if

(4.6) Q(y'(1) YN (1) = o(*+).

Inserting (4.4) into (4.5) and looking at the terms at °, ¢*, t*, we easily prove
Lemma 4.1. Each of the hyperquadrics

(4.7) —1Eh;y'y + By'yVt + C(NY)2 + EyVt =0

has a contact of order 2 (at least) with any curve m oy at the point m(&).

The hyperquadrics (4.7) are the so-called osculating hyperquadrics of the hyper-
surface m: MY — AN*1 at the point m(&).

Comparing further the terms at ¢, we get

Lemma 4.2. Let F € Ty (M"), F = F' 8[0¢'. Each curve m o y with dy(d/dt[,—,) = F
has a contact of order 3 (at least) with the osculating quadric (4.7) if and only if
(4.8) SiuFFIF* =0 with [, = Eagy + By + Bjhy + By

Definition 4.1. The osculating hyperquadric is said to be a Darboux hyperquadric
if the cone (4.8) is apolar to the so-called asymptotic hypercone /;;F'F/ = 0.

Elementary analytic geometry implies the validity of the following

Proposition 4.1. The Darboux hyperquadrics form a pencil
(49) (N + 2) h;jyi,Vj + 2]’,;rsa”iyin+l _ 2(N + 2) yN+1 + ;_(),N+l)2 =0 ,
LeR,

and the (proper) centers of them are situated on a straight line |. We have | =
= {x =m + sn,se R} if and only if & is a good normalization.

This is the geometric description of the good affine normal straight line.

Be given a hypersurface m with a good normalization .4#". On each normal straight
line be chosen a point

(4.10) F=m+fn.

J: MY — R a function. The set of points F(¢), & € MY, is called a focal set if there is
a non-vanishing tangent vector field X on M" such that tan (DyF) = 0. For X =
= x' 0]ox’,

(4.11) DyF = Dx_ gxm + {Dxf + fo(X)} n,

i.e., (4.10) is a focal set if and only if there is a X # 0 such that

412) X -sS(X)=0.
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This means that we must have

(4.13) det |[Jy — fS| = det |6{ — fSi| = 0.

On the normal line m + tn, t € R, let us pass to the homogeneous coordinates ¢ =
= 1/ty: the point F (4.10) is then a focus if and only if

(4.14) @(fo. f1) = det | fod] — f1S]] = 0.

On each normal line there are, in general, N foci (some of them may coincide or be

the improper point of the normal line).

Definition 4.2. The central point of the normal line is the point apolar to m with
respect to the N-tuple of foci.

Let (5o. 5;) be the homogeneous coordinates of the central point; the homogeneous
coordinates of the point m are, of course, po = 1, y; = 0. In general, the point
apolar to the point (o, y;) satisfies

(415) So 0¢(#0> ﬂl) + Sy a(p(”O’ HI) — 0 .
o af

In our case, (4.15) becomes

(4.16) Nso — TrSs; = 0.

They are two possibilities. In the case Tr S = 0, the central point is the improper
point of the normal line. In the case Tr S + 0, we may pass to the very good nor-
malization (see Definition 3.1), and then the central point is exactly the point m + n.
This gives the geometrical description of the Supposition 3.1 and of the very good
normalization.

We may define the Lie hyperquadric of our hypersurface as the Darboux hyper-
quadric with its center in the central point. This is in accord with the case of a hyper-
bolic surface in 4%; see [1], p. 223.

5. Let us, very briefly, describe the situation of a hypersurface of a space with the
affine connection (M"**, ¥). The proofs are similar to that of paragraph 2, and I
am not going to repeat them.

Let m: MY — M"*! be an immersion; our considerations being local, let us identify
MY with m(M™). Let us choose a normalization /" as a map n: MY — T(M"*")
such that n(¢) e T{M?™) is transversal to MY at the point & e M".

Let T'and R be the torsion and curvature of (MY**, /) resp. The forms

(5.1) T,: T(M") x TMY) > R, R, X*T(M") >R
be defined by
(5.2) TWX,Y)n =nor T(X,Y), Ry(X,Y)Zn =norR(X,Y)Z;

here, nor ¥ and tan V are the normal or tangential parts of Ve T{(M"*") at the point
& e MY resp.
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The fundamental equations of our hypersurface are
(5.3) om =m;, V;m =T\m +hsn, Vin=—Sm; +tn;

the functions I“',fj induce an affine connection V on M¥.

Lemma 5.1. The integrability conditions of (5.3) are

(5.4) T(X, Y) = tan T(X, Y),
(5.5) h(X,Y)— h(Y,X)=THX,Y),
(5.6) h(X,Z)S(Y) — h(X, Y)S(Z) + R(Y, Z) X = tan R(Y. Z) X,

Vyh(Z, X) + h(Z, X)2(Y) — Vxh(Z, Y) — W(Z, Y) (X) +
+ h(Z, T(X,Y) = R/X,Y)Z,
VxS(Y) — 1(X) S(Y) — VyS(X) + o(Y) S(X) + S(T(Y.X)) =
=tan R(X, Y)n,
Vxt(Y) + h(S(X), Y) — Vyo(X) — h(S(Y), X) + o(T(Y. X)) =
=R (Y, X)n.
Define
(5.7) Fy(X. Y. Z) = V;h(X,Y) + h(X, Y)1(Z).
Lemma 5.2. We have _
(58) Fy(X. Y, Z) — Fy(X,Z,Y) = R(Y,Z) X + h(X. T(Z.Y)).
Fy(X,Y,Z) — Fy(Y, X, Z) = T)(X, Y)1(2) + V. T{X.Y).
Lemma 5.3. Let A be a tangent vector field on MY, a: MY — R a nowhere vanishing
function, and
(5.9) n* = A+ an
a new normalization A"*. Then we have (5.3%) with
(5.10) WX, Y)=o""h(X,Y),
(5.11) ViX =VyX — a2 "h(Y, X) A,
™(X) = o(X) + o '{h(4, X) + Dxa} ,
S*X) = a S(X) — VxA + {t(X) + o "h(A, X) + a7 'Dyxj A;
(5.12) Fi(X,Y,Z) =2 'Fy(X, Y. Z) +
+ o 2 {h(X, Y) h(A, Z) + h(X, Z) (A, Y) + h(Y, Z) h(X. A)] .
Definition 5.1. The symmetrizations h and F, be defined by
(5.13) h(X,Y) = 3{h(X,Y) + h(Y,X)},
Fi(X,Y,Z2) = H{Fy(X, Y, Z) + ... + Fy(X.Z,Y)}.
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Suppesition 5.1. We suppose h to be regular.
Definition 5.2. The normalization 4" is called good if h and F are polar.

Proposition 5.1. There are good normalizations. If N and N* are good, there
is a function o: M — R such that n* = an.

To get a very good normalization, we may proceed as above. The form (2.13)
is not symmetric (in general), but we may pass to its symmetrization F,.
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