Czechoslovak Mathematical Journal

Jaroslav Jezek; Tomas Kepka
Varieties of groupoids determined by short linear identities
Czechoslovak Mathematical Journal, Vol. 39 (1989), No. 4, 644-658

Persistent URL: http://dml.cz/dmlcz/102341

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102341
http://dml.cz

Czechoslovak Mathematical Journal, 39 (114) 1989, Praha

VARIETIES OF GROUPOIDS DETERMINED BY SHORT
LINEAR IDENTITIES

JarosLAV JEZEK and ToMmAS KEpkA, Praha

(Received July 16, 1987)
0. INTRODUCTION

In this paper we are going to study the varieties of groupoids that can be defined
by a set of linear identities of length <6. An identity a = b is said to be linear if
every variable oceurring in either a or b occurs exactly twice in a = b, once on each
side. The length of an identity a = b is the number of occurrences of variables in
a = b (so that in the case of a linear identity, the length is always na even number).

There are exactly sixteen nonequivalent linear groupoid identities of length =<6.
They are listed in Section 1; the corresponding varieties are denoted by V, ..., V5.
This implies that there are at most 2'® groupoid varieties determined by a set of
linear identities of length <6. We shall show in Section 2 that the exact number is 56.
The purpose of the present paper is to prove this result and, moreover, to investigate
some properties of the varieties V,, ..., Vys.

The first three members of this collection are the varieties of all groupoids, of
commutative groupoids and of semigroups. Various properties of these varieties
are well known. V; is the variety of left permutable groupoids investigated in [3]
and V, is the variety of left modular groupoids investigated in [4]. As each of the
varieties V4, ..., Vi is dual to one of the varieties V, ..., Vi,, we shall restrict our
attention to the varieties Vi, ..., Viq.

For most of the varieties ¥; we shall describe the corresponding free groupoids.
We shall be concerned with what can be said about left and right cancellation and
division groupoids in V;. Further, in each case we shall either describe the class
of simple groupoids belonging to V; or show that the class is very large. In most
cases the problem of describing simple groupoids in V; can be reduced to the analogous
question for one of the following four varieties: commutative semigroups, left unars,
right unars and commutative groupoids. For this reason it will be useful to collect
here some information about simple objects in these four varieties.

A commutative semigroup is simple iff it is either a cyclic group of prime order
or a two-clement semilattice or a two-element semigroup with zero multiplication.
A left unar (a groupoid satisfying xy = xz) is simple iff it is either a cycle of prime
order or a two-element semigroup with zero multiplication or a two-element semi-
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group of left zeros. Simple right unars can be described analogously. On the other
hand, every commutative groupoid can be imbedded into a simple commutative
groupoid and so the class of simple commutative groupoids is very large. All these
facts are well known and can be easily proved.

Two special relations pg and gg which can be defined on any groupoid G will
play a role in the sequel. They are defined as follows: (a, b) € p¢ iff ax = bx for all
x€G;(a,b)eqgiff xa = xbforallxeG.

For a groupoid G and an element a € G we define two mappings L, and R, of G
into itself by L,(x) = ax and R,(x) = xa.

Let us remark that varieties of quasigroups determined by short linear identities
were investigated in the papers [1] and [2]. Linear identities were called balanced
in these papers. In the present paper we choose to use the name “‘linear”, as the name
“‘balanced” is usually reserved for a more general notion: an identity a = b is said
to be balanced if every variable has the same number of occurrences in a as in b.

1. ONE LINEAR IDENTITY OF LENGTH < 6

1.1. Proposition. Every linear identity of length <6 is equivalent to one of the
following sixteen identities:

0 x =x, () x.yz=1zy.x,
(1) xy=yx, 9) x.yz=yz.x,
(2) x.yz=xy.z, (10) x.yz=12zx.y,
(3) x.yz=y.xz, (11) xy.z=xz.y,
4) x.yz=1z.yx, (12) xy.z=2zy.x,
(5) x.yz=x.zy, (13) xy.z=yx.z,
(6) x.yz=y.zx, (14) xy.z=1zx.y,
(7 x.yz=yx.z, (15) x.yz=xz.y.

Moreover, the identity (11) is dual to (3), (12) is dual to (4), (13) is dual to (5), (14)
is dual to (6) and (15) is dual to (7); the remaining six identities are self-dual.

Proof. Clearly, x . yz = z.xy is equivalent to (6) and xy .z = yz.x is equi-
valent to (14).

For i = 0to 15 we denote by V; the variety determined by the equation (i).

V, is the variety of all groupoids, V] is the variety of commutative groupoids,V, is
the variety of semigroups, V; is the variety of left permutable groupoids and V, is
the variety of left modular groupoids.

1.2. Proposition. Let i,j€{0,...,15}. Then V, S V; iff either i =j or j=0

or else i =1 and je{S, 8,9, 13}. Consequently, the varieties V,, ..., Vis are
pairwise different.

Proof. The converse implication is evident. In order to prove the direct implica-
tion, we shall construct for every i € {0, ..., 15} a groupoid G; for which it is a matter
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of routine to verify that G; belongs to V; but not to ¥; for any j € {1, ..., 15} different
from i and different from 5, 8,9, 13 in the case i = 1.

Gy | 01 2 G, | 012 G,| 012
0] 012 0|l 021 0|l 01 2
1121 1210 1 11 2
2 120 2 2 {102 2 121 2
Gs| 012345
0| 012345
1 {20153 4
21120453
310123435
4 | 20153 4
51120453
G, 0 1, 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 2 4 1 3 10 12 14 11 13 5 7 9 6 8
1 4 1 3 0 2 14 11 13 10 12 9 6 8 5 7
2 30 2 4 1 13 10 12 14 11 8 5 7 9 6
3 2 4 1 3 0 12 14 11 13 10 7 9 6 8 5
4 1 3 0 2 411 13 10 12 14 6 8 5 7 9
5 5 7 9 6 8 0 2 4 1 3 10 12 14 11 13
6 9 6 8 5 7 4 1 3 0 2 14 11 13 10 12
7 8 5 7 9 6 3 0 2 4 1 13 10 12 14 11
8 7 9 6 8 5 2 4 1 3 0 12 14 11 13 10
9 6 8 5 7 9 1 3 0 2 4 11 13 10 12 14
10 10 12 14 11 13 5 7 9 6 8 0 2 4 1 3
11 14 11 13 10 12 9 6 8 5 7 4 1 3 0 2
12 13 10 12 14 11 8 5 7 9 6 3 0 2 4 1
13 12 14 11 13 10 7 9 6 8 5 2 4 1 3 0
14 11 13 10 12 14 6 8 5 7 9 1 3 0 2 4
Gs| 012345 Ge | 01 23456738
0] 021021 0| 000O0OO0OOO OO
1 210210 11004007000
2110210 2 21000500700
31354354 31060070000
4 | 5 435 4 3 41 0008000O0O0
51435435 5/1000000O0O0O0
6 | 0000O0OOO00
71 0000000O0O0O0
8 1 000O0O0O0OOO0O
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G,| 0123456 Ge | 01 23 4 56
0/ 0000000 0] 0000000
1 100000G60 1100006 00
210405000 210004000
310000000 310050000
410006000 410000000
5/0000000 510600000
6 | 000000O 6| 0000000
Go| 0123 45 Go| 0123 456
0000000 0/ 0000000
1000050 11 00000G60
21000400 2 /0005000
3/000000 310400000
41050000 410060000
5/000000 5/0000000

610000000

The groupoids G4, Gy,, Gy3, Gy4, G5 can be defined as the duals of G3, G4, Gs, G,

G, respectively.

Let us remark that instead of the groupoids G3, G, and G5 it would be also possible
to take the groupoids Gj, Gy, G5 with the underlying set {0, 1,...,8} and multi-
plication defined by xy = O for all x, y except for the following cases:

in Gy: 12=4, 13=5, 16=7, 23=6, 25=17,
inG,: 12=4, 16=7, 21=5, 23=6, 35=17,
inG;: 12=4, 1:5=7, 16=7, 23=5, 32=6,

The groupoid G} is of smaller cardinality than the quasigroup G,.

2. SEVERAL LINEAR IDENTITIES OF LENGTH < 6

Put
V15 = V3h V4n VanG,
Vig=ViuunVinViznVy,,

Vis=Van Vi,
Vie=Van Vi,
Voo = Van Vi,
Va1 = VanVia,
Vaa =Vann Vyy,
Vs =VanVyy,

43 =8;
43 =38;
43 =38,
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Vas =VanVis,
Vas=VannVia,
Ve = Vs Vig,

Var =Vsn Vi,
Vg =Vsn Vs,
Vae=Vsn Vi,

Vaio = Ve Vyy,

Vas =Vsn Via,

=Ven Vs,

=Ven Vi,

Via =Van Vo Vsn Vgn Vi,
Vais=VanVanVsnVenVyy,
Vaie=VanVanVsnVgnVia,
Var=Van Vo VsaVen Vig,
Vis=VanViinVi,nVisn Vi,

=S
w (]
Il

Vio=VannViinVianVian Vi,
Vaio=VsnViinVi,nVizn Vi,
Vair=VenViinVianVisn Vi,
Vo =V3n0VonVsnVenViinVi,nVisnVy,,
Vas=VonVan Vo0 Vs,
Via=VanVegnVipn Vyy,
VsnVonVin Vs,
Vie=VonVanVgn Vyy,

Vir =V Vo Von Vi,

Vas = Vo VignVizn Vis,
Vo =Voan VsnViyn Vs,

Vso =VsnVanVipn Vi,
Vsi=VsaVenVonVys,

Vsia =VonVen Vo Vign Vig,
Vss=Ven Vo Ven Vign Vys,
Vsa=V,0...0 Vs,
Vss=Vin...nV;s.

5
It

~ Forie{l6,...,55} denote by S, the set of the numbers j e {1, ..., 15} such that V;
occurs in the intersection defining the variety V;. For example, S;¢ = {3,4,5, 6}
and S5 = {3,9, 12, 15}.

Forie{l,...,15} put S; = {i}. Finally, put S, = 0.
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2.1. Propesition. If i,je{3,...,6} and i % j then V,nV; =V If i,je
e{ll,...,14} and i + j then V,n V; = Vy,.

Proof. It is sufficient to prove the first assertion, as the latter is dual. The identities
(i) and (j) can be written as x.yz = p(x). p(y) p(z) and x . yz = ¢(x). q(y) 4(z)
where p, g are two permutations of X, y, z generating the symmetric group on {x, y, z}.
It is easy to see that for any equational theory E the set of the permutations r of
{x, y, z} for which the identity x.yz = r(x).r{y)r(z) belongs to E is a group.
So, if E contains both (i) and (j) then it contains all of the identities (3), (4), (5), (6).

2.2. Proposition. The varieties Vs, ..., Vs, Viy,-..; Via, Vies --., V4o are pairwise
different and this collection of varieties is closed under intersection. If i,je
€{3,...,6,11,...,14,16,...,42} then V, S V; iff S; = S,.

Proof. By 2.1, the collection is closed under intersection. It is enough to prove
that V; = V; implies S; < S;. From 2.1 it follows easily that if this were not true
then we would have either V;snV; SV, for some ie{ll,...,14} or Vi;nV, SV,
for some i€ {3,...,6}. Since the latter possibility is dual, we shall consider the
first only. For every ie{11,...,14} we shall find a groupoid K;such that K;e Vign V;
and K; ¢ V,:

Ky | 0123456 Ki,| 0123456
0] 000O0OO0OTO 0O 0] 00000O0O0TO
1 0045000 110040000
210000000 210000000
310000000 310050000
4 10006 000 410006000
51006 0000 5106 00000
6 | 000O0O0O0O 6 | 000O0O0GO0O
Ki;| 0123456 Kol 01 23 456 7
0|l 00O0O0OO0OTOO O 0] 000O0OO0O0OTOO
1 0040000 1 00400000
210500000 2100060000
310000000 3105000000
4 10006 000 4 100070000
510006000 5100700000
6 | 000 0O0O0O 6 | 07000000

7100000000

2.3. Proposition. Let i € {43, ...,53} and let j, k be two different numbers from S;
such that the set {j, k} is not contained in {3,...,6} U {11,...,14}. Then V, =
=V;nV,.

Proof. The result needs just a tedious checking.
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2.4. Proposition. V; N V; = Vss for any ie{2,...,15}\{5,8,9, 13}.
Proof. It is easy.

2.5. Proposition. The collection Vy, ..., Vss is closed under intersection.
Proof. It can be verified easily by using the previous results.

2.6. Theorem. There are exactly 56 groupoid varieties determined by a set of
linear identities of length <6, and namely the varieties V,, ..., Vss. If i,j€
€{0,...,55} thenV, = V; iff either S; = S;or elsei = 1 and j€{5,8,9, 13,28, 51}.

Proof. By 2.5, there are no other groupoid varieties determined by a set of linear
identities of length <6 than Vj, ..., V5. It remains to prove the second assertion,
in which only the direct implication is not evident. Using the previous results we
easily see that everything will be proved if for every ie{42,...,53} we construct
a groupoid L; belonging to V; but not to V; for any je {1,...,15} \ S,.

L | 01 23 45 Lis| 01 23456738
0000000 0] 0000O0OOGOTO OO0
1 0 44400 1 0047002800
21044400 21050600080
31044400 31000000000
41055500 41 0008000O0O0
5100000 0 51000800000

6 |/ 00000O0O0TO0O
Lyl 01 2345678 71 000000O0GO0O
0] 000O0O0O0OGOO0O 8 0000O0OOOOOUW
» 000680000 sl01l23456

0|l 000O0OGOTOO
31057000000

1 0004060
4 1 00000O0O0GO0O

210005600
51008 000000

3 000O0O0OTO OO
6 | 0000O0O0GO0OGO 0O

410060000
7108 0000000
8 1 0000O0O0O0OTOO 510600000

6 | 000O0O0O0O
Li| 01 23 456 7 8 Lig| 01 23 456 78
0] 0000O0OO0OGOTO OO 0] 000O0OOOGOTO OO
1 004000800 11000400080
2/ 0506 00000 21050700000
31007008000 31060008000
41 000800O0O0O0 4 1008 000O0O0O0
51 000000O0O0TO0O0 5 0000O0OUOUO OO
6 | 000O0O0O0O0O0O 6 | 008 000O0TO0O
7108 000O0O0O0O0 71 0000000O0O0O0
8/ 0000O0O0O0O0O 8 | 0000O0OOTO0O
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Ly,| 0123456 Ly, | 01 23 4567

0/ 0000O00O0TO0O 0] 00000000

1/ 0000G6 60 1100400070

2, 0004000 2/ 00060700

310050000 3105007000

410600000 4100070000

510600000 50100700000

6 | 0000000 6107000000
7100000000

Li;| 01 23456 7 8 910

0/ 0000000O0O0TO0GO OO

1004600001000

2050800010000

3107901000000 0

4100000000000

5100010 0000000

6 | 0010 00000000

7100000000000

8/ 00000000O0TO0O

9 | 010 00 0000000

10 | 0000000O0O0GO0O

The groupoids L4, Lyo, Lso can be defined as the duals of the groupoids Lys, L,3,
L,g, respectively.

Let us remark that (as follows from the from the above resulis) the varieties
Vo, ..., V15 can be determined by one linear identity, the varieties Vig, ..., Va3,
Vass ..., Vs3, Vss by two linear identities, the varieties Vig, ..., Va4, Vss by three
linear identities and the variety V,, by four linear identities.

3. THE VARIETY V;

Vs is the variety determined by x . yz = x . zy.

3.1. Proposition. Let a, b be two terms; we can express them uniquely in the
forma = (((xa;) a3) ...) a,, b = (((yby) by) ...) b,, where x, y are variables, n, m = 0
and ay, ...,a, by, ..., b, are terms. The identity a = b is satisfied in Vs iff x = y,
n = m, and the identity a; = b; is a consequence of the commutative law for any
ie{l,...,n}.

Proof. It can be easily proved that if a = b is a consequence of x» = yx then
xa = xb is a consequence of x . yz = x . zy. The direct implication can be proved
by induction on the length of a formal proof of a = b from x . yz = x. zy.

651



3.2. Proposition. Let F be a free commutative groupoid over a set X. Define
a groupoid G as follows: the underlying set of G is the set of finite sequences
(x, gy ey a,,) where xe X, n 2 0 and ay, ..., a,€ F; the multiplication is defined

by (x,ay,...,a,) (¥, by, ..., bp) = (x, a4, ..., a,, a,4 1) where a,; = (((yby) by) ...) .
.b,eF. Then G is a free Vs-groupoid over X.

Proof. It follows from 3.1.

3.3. Proposition. Free Vs-groupoids are right cancellative but not left cancellative.

Proof. The first assertion follows from 3.2. If x is a free generator of a free
Vs-groupoid then it is easy easy to see that x(x . xx) = x(xx . x) but x . xx % xx . x.

3.4. Proposition. Let G € V5. Then q¢ is a congruence of G and the factor G[qg
is commutative.

Proof. Clearly, g is an equivalence. Let (a, b)e g and ce G. Then ca = cb
and d.ac=d.ca=d.cb=4d.bc for all deG, so that (ca, cb)€ gz and
(ac, be) € gg. It is evident that G/qg is commutative.

3.5. Proposition. Every simple groupoid from Vs is either commutative or it is
a left unar.

Proof. It follows from 3.4.

3.6. Example. Let f, g be two surjective endomorphisms of an abelian group
(G, +) such that gf = g>. For a,be G put ab = f(a) + g(b). Then G becomes
a groupoid (under the new multiplication) belonging to Vs and G is a division
groupoid. If f & g then G is not commutative and G is not left cancellative. For
example, we can take a free abelian group (G, +) over the set {x,, x,, x5, ...} and
define f, g be(xl) = f(xz) =f(x3) = g(x;) = g(xz) = X1, g(x3) = X3 andf(xi) =
= g(x;) = x;_, for i = 4.

4. THE VARIETY VW

Ve is the variety determined by x. yz = y. zx.

4.1. Proposition. Let x, y, u, v be four different variables. An identity xy .uv =t
is satisfied in Vs iff t is one of the following nine terms: xy . uv, u(v . xy), v(xy . u),
u(x . yv), u(y.vx), x{(yv.u), yv.ux, y(vx.u), vx.uy. Consequently, Vs is not
contained in the variety of medial groupoids.

Proof. It is easy.

4.2, Proposition. Let G € V; be either left or right cancellative. Then G is a com~
mutative semigroup.

Proof. It follows from x.xy = x.yx and xy.uy = yx.uy that G is com-
mutative; but then G is a commutative semigroup.
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4.3. Proposition. Let G € V; be either a left division or a right division groupoid.
Then G is an abelian group.

Proof. It follows from R,, = L,L, that G is a division groupoid. In a division
groupoid the identity xy . ux = yx .ux implies xy . z = yx . z. This means that G
belongs to Vi3, i.e. to the variety dual to V5. By the dual of 3.4, p; is a congruence
of G and the factor G/p¢ is commutative. It follows that G/pg is an abelian group.
Let a, b € G. There exists an element ¢ € G with b = bc. For all x, y e G we have
(using 4.1)

xy.b=xy.bc=x(yc.b)=x(yc.bc) = x(y(cc.b)) =

= x(y(cc . be)) = x(y(b(c . cc))).
This implies (b, b(c . cc)) € pg, since G/pg is an abelian group. Consequently, ba =
= (b(c . cc)) a. Also, we get xy. b = x(y(b(c . cc))) = b(c . cc).xy for all x, ye G
and so ab = (b(c . cc)) a. This shows that ab = ba.

4.4. Proposition. Let G e V5 and a € G. Then aG is a left ideal of G; if G = GG
then aG is an ideal of G.
Proof. For b,c,de G we have ¢.ab = a.bce aG and ab . c¢d = a(bd . ¢) € aG.

4.5. Proposition. Let G € Vi be simple. Then G is either an abelian group or
a left unar or a two-element semilattice.

Proof. We can assume that G = GG and that G contains at least two elements.
Putl = {xe G;xG = G} and K = {x € G; Card (xG) = 1}. By 4.4, G is the disjoint
union of I and K. If K is empty then G is a left division groupoid and so an abelian
group by 4.3. Let K be nonempty.

Let aeK and be G. For any x = x;x, € G we have ab.x = ab. x,x, =
= a(bx,.x,) = aa and ba . x = ba.x,x, = a(x,b . x,) = aa, so that abeK and
ba € K. We have proved that K is an ideal of G. Since G is simple, either K = G
or Card (K) = 1. If K = G then G is a left unar. Let K = {a} for an element a.

It is clear that a is a zero of G. If b, c €I then L,, L, are both surjective, so that
the mapping R,. = L,L. is also surjective; it follows that bc¢ K and so bcel. We
have proved that I is a subgroupoid of G; but then (I x I) U idg is a congruence
of G, Card (I) = 1 and G is a two-clement semilattice.

5. THE VARIETY V;,

V, is the variety determined by x . yz = yx. z.

5.1. Proposition. Let a = a,a,, b = byb, be two terms. The identity a = b is
satisfied in V, iff it is balanced {every variable has the same number of occurrences
in a as in b), the last variable in a, coincides with the last variable in b, and the
last variable in a, coincides with the last variable in b,.

Proof. It is easy to prove by induction on the length of a formal proof of a = b
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from x.yz = yx .z that the last variable in a; coincides with the last- variable
in b; (for i = 1,2); clearly, the identity a = b is balanced. Conversely, let a = b
be a balanced identity satisfying the above condition. We can easily prove by in-
duction on the length of ¢ that if ¢ is any term which is not a variable then there
exist a term u and a variable x such that the identity ¢t = ux is satisfied in V. Especial-
ly, there exist a variable x and two terms ¢, d such that the identities a = cx and b =
= dx are satisfied in V5. If either c or d is a variable then evidently ¢ = d and every-
thing is clear. Let ¢, d be not variables. There exist a variable y and two terms e, f
such that the identitites ¢ = ey and d = fy are satisfied in V,. Consequently, the
identities a = ey . x and b = fy . x are satisfied in V;. Clearly, every variable has the
same number of occurrences in e as in f. Now, in V; we have

(u.xy)v=(xu.y)vo=y0xu.v)=yu.x)=uy.xv=(x.uy)v=(ux.y)v.
The identities (u.xy) v = (ux.y)v and (u.xy)v = (xu.y)v imply a = b; this is
similar to the fact that the associative and commutative laws imply any balanced
identity.

5.2. Proposition. The variety V, is not contained in the variety of medial
groupoids.
Proof. If follows from 5.1.

5.3. Proposition. Let X be a nonempty set. Denote by (F, +,0) the free com-
mutative monoid over X. Define a groupoid G as follows: its underlying set is the
set of the triples (a, x, y) such that aeF, xe X U {0}, yeX and if a + 0 then
x # 0; the multiplication is defined by (a,x, y)(b,u,v) =(a + x + b + u, y,v).
Let us identify the elements y of X with the triples (0,0, y). Then G is a free V;-
groupoid over X. Consequently, free V,-groupoids are neither left nor right
cancellative.

Proof. It follows from 5.1.

5.4. Proposition. Let G € V; be a right division groupoid. Then G is an abelian
group.

Proof. We have x. yx = yx. x for all x, y € G, so that G is commutative; con-
sequently, G is associative.

5.5. Proposition. Let G €V, be right cancellative. Then G is a commutative
semigroup.
Proof. It follows from (xu . y) v = (ux . y) v that G is commutative.

5.6. Proposition. Let G € V;. Then pg is a congruence of G and the factor G[pg
is a semigroup; if G is a semigroup then G|pg is commutative.

Proof. Let (a,b)e ps and c€ G. Then ac = bcand ca.d =a.cd =b.cd =
= c¢b.d for all d e G, so that (ac, bc) € pg, (ca, cb) € pg and pg is a congruence.
It follows from (u . xy) v = (ux . y) v that G/pg is a semigroup. If G is a semigroup
and a, b e G then abc = bac for all ce G, (ab, ba) € pg, and G[p; is commutative.
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5.7. Proposition. Let G eV, be simple. Then G is either a right unar or an
abelian group or a two-element semilattice.

Proof. It follows from 5.6.

5.8. Example. Let f be an endomorphism of an abelian group (G, +) such that
f #idg and f = f2 Put xy = f(x) + y for all x, ye G. Then Ge V; and G is an
associative left quasigroup. Moreover, G is not commutative.

6. THE VARIETY V

Vg is the variety determined by x. yz = zy . x.

6.1. Proposition. Let G € Vg be either left or right cancellative. Then G is com-
mutative.

Proof. We have ab . ba = ab . ab for all a, b € G; if G is left cancellative, we get
ab = ba.

6.2. Proposition. Free Vg-groupoids are neither left nor right cancellative.
Proof. It follows from 6.1.

6.3. Proposition. Let G € V be either a left division or a right division groupoid.
Then G is commutative.

Proof. It follows from L,L, = R,R, that G is a left division groupoid iff it is
a right division groupoid. So, it is sufficient to assume that G is a division groupoid.
Let a, be G. We can write a = ¢.dd = dd . ¢ for some ¢,de G and a = ae for
some e € G. We have

ab=ae.b=>b.ea=>b.e{c.dd)=Db((dd.c)e)=Db.ae=ba.

6.4. Lemma. Let G € V. Then both pg and qg are congruences of G; if G = GG
then pg = qg-

Proof. It is obvious that ps is an equivalence. If (a, b) € pg and ¢, d € G then
ac =bcandca.d =d.ac=d.bc = cb.d,sothat(ac, bc)e pgand (ca, cb) € pg.
Quite similarly, g is a congruence. Now let G = GG. If (a, b) € pg and ¢, d € G then
cd.a=a.dc=>b.dc=cd.b, so that (a,b)eqs and p S g¢. Similarly,
d¢ < Dg-

6.5. Lemma. Let G € Vg be such that G = GG. Define a binary relation r on G by
(a,b)er iff ax = xb for all x€ G. Then r U pg is a congruence of G.

Proof. If (a,b)er then b.xy = yx.b=a.yx =xy.a for all x,yeG, so
that (b,a)er. If (a,b)er and (b,c)er then a.xy =xy.b=b.yx =yx.c=
= c¢.xyforallx, y € G, so that (a, ¢) € pg. If (a, b) e r and (b, ¢) € pg then a . xy =
=xy.b=>b.yx=c.yx =xy.cforall x,yeG, so that (a, c)er. If (a, b) € pg
and (b, ¢) e r then (a, ¢) e r follows similarly. If (a, b)er and ce G then ca.x =
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=x.ac=x.ch and ac.x = cb.x = x.bc for all xeG, so that (ca,ch)er
and (ac, bc) e r. The rest follows from 6.4.

6.6 Proposition. Every simple groupoid from Vg is commutative.

Proof. Let G € V be simple. If G # GG then G is a semigroup with zero multi-
plication, so that G is commutative. Let G = GG. By 6.4 we have p; = idg; by 6.5,
r U idg is a congruence of G. Since (ab, ba) € r for all a, b € G, the factor G/(r L idg)
is commutative. It follows that if r U idg = idg then G is commutative. If r U idg =
= G x G then it is clear that G is commutative.

6.7. Example. Consider the groupoid K with the underlying set {0, 1, 2, 3} and
multiplication defined by xy = 0 for all x, y except for 1-2 = 3. This groupoid K
belongs to V. The relation r introduced in 6.5 consists of the pairs (0, 0), (0, 1), (0, 3),
(2,0), (2, 1), (2, 3) and is not symmetric. We have px * g, as px is the congruence
identifying 0, 2, 3, while g is the congruence identifying 0, 1, 3.

We leave as an,open problem to find a nice description of free Vg-groupoids.

, 7. THE VARIETY V,

V, is the variety determined by x. yz = yz . x.

7.1. Proposition. Let X be a nonempty set. Denote by (F, +) the free commutative
groupoid over the disjoint union X U (X x X). Put G = F\{x + y; x, y € X} and,
for a, b e G, define an element ab € G as follows: if a, b € X then ab = (a, b); in all
other cases put ab = a + b. Then G is a free Vy-groupoid over X. Consequently,
free V,-groupoids are cancellative.

Proof. It is easy.

7.2. Proposition. If G € V, then GG is a commutative groupoid. If G € Vj is a left
division groupoid (or a right division groupoid) then G is commutative. Every simple
groupoid from V, is commutative.

Proof. It is obvious.
8. THE VARIETY V;,

Vo is the variety determined by x . yz = zx . y.

8.1. Proposition. Every groupoid from Vi, is medial and satisfies the identity
Xy .uv = uv.xy. ‘

Proof. xy.uv = (v.xy)u =(yw.x)u =xu.yv and xy.uv = xu.yo =
=u(yv.x)=u(v.xy) =(xy.u)v=(y.ux)v = ux.vy = uv. xy.
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8.2. Proposition. Let G€ Viy. If G = GG then G is commutative. Consequently,
if G is either a left or a right division groupoid then G is an abelian group.

Proof. It follows from 8.1.

8.3. Proposition. Let Ge V,,. If G is either left or right cancellative then G is
a commutative semigroup.

Proof. A groupoid G e Vy, satisfies Xy . uu = xu.yu = yu.xu = yx.uu, so
that it is commutative if it is right cancellative.

8.4. Proposition. Free V,-groupoids with at least two free generators are neither
left nor right cancellative.

Proof. It follows from 8.3.

8.5. Proposition. Every one-generated groupoid from Vi, is a commutative
semigroup.

Proof. For a variable x put x' = x, x> = xx, x> = x. xx, x* = x(x . xx), etc.
It is easy to prove by induction on the length of a term ¢ that if ¢ contains a single
variable x then the identity ¢ = x", where n is the length of ¢, is satisfied in V.

8.6. Proposition. Every simple groupoid fram V,, is a commutative semigroup.
Proof. It follows from 8.1.

9. SURVEY OF SOME PROPERTIES

Vo Vi Voo Vs Va Vs Vo Vi Vs Vs Vi

FLIC + + + + - - - - - 4+ -
FRC + + + + - + - - - 4+ -
DQ - - 4+ - = - 4+ 4+ - - 4+
DHQ + + + + ? - 4+ + + + +
1D + 4+ - - - ? - - = = -
cQ + + - - + + + + -+
IS + + + + - 4+ 72 7 ? - -
FR + + + + - - - - = - =
SIM e e e e f P f f p p f
SBV c c c ? c [ ? ? c c ?
MIN c c d ? d c d d c c d

In this table V; are the varieties defined above and the abbreviations in the left
column stand for the following properties of varieties:
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FLC ... free groupoids in the variety are left cancellative;

FRC ... free groupoids are right cancellative;

DQ ... every divisible groupoid in the variety is a quasigroup;

DHQ ... every divisible groupoid is a homomorphic image of a quasigroup in the
variety;

ID ... every groupoid can be imbedded into a divisible groupoid in the variety;

CIQ ... every cancellative groupoid can be imbedded into a quasigroup in the
variety;

IS ... every groupoid can be imbedded into a groupoid G with G = GG;

FIQ ... free groupoids can be imbedded into quasigroups in the variety.

In the line starting with SIM we give an information for each V; about the class of
simple groupoids in V;; here e stands for “‘enough simple groupoids™ (every groupoid
from V; can be imbedded into a simple groupoid from V;), p stands for the fact
that V; contains a proper class of pairwise nonisomorphic simple groupoids but
there are not enough simple groupoids; and f stands for the fact that all simple
groupoids in V; are finite and there are infinitely many nonisomorphic simple
groupoids in V;. In the lines starting with SBV and MIN we give the number of sub-
varieties and minimal subvarieties of V;, respectively; here d stands for N, and ¢
stands for 2%°,

Many interesting properties of varieties, e.g. the properties of the amalgamation
type, of the word problem type, the Schreier property, etc. are not included. Certainly,
some of them are easy to check, while some can cause certain difficulties.
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