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0. INTRODUCTION

All graphs considered in this paper are connected finite graphs without loops
and multiple edges.

If the edge e € G joins the vertices x, y then denote by N4(e) or Ng(x, y) the sub-
graph of the graph G induced by the set of all vertices adjacent to at least one of the
vertices x, y (except the vertices x, y). Analogously, denote by N¢(x) the subgraph
of G induced by the set of all vertices adjacent to x.

A given graph H is called edge-realizable or shortly e-realizable(vertex-realizable
or v-realizable) if there exists a graph G in which the neighbourhood Ng(e) of every
edge e (Ng(x) of every vertex x) is isomorphic to H; in such a case G is called an
e-realization (a v-realization) of H. The set of all e-realizations (v-realizations) of H
is denoted by 2,(H) (2,(H)).

The notion of v-realizable graphs was introduced by A. A. Zykov [4] and many
authors have studied the properties of some families of these graphs. B. Zelinka [3]
introduced the notion of e-realizable graphs and showed some families of them.

In this article some generalizations of the results of [3] are given.

1. e-REALIZATIONS OF THE COMPLETE MULTIPARTITE GRAPHS

Theorem A (Zelinka [3]). The complete bipartite graph K, ,, is e-realizable.

A similar proposition for v-realizable graphs was suggested by B. Alspach and
observed also by J. Doyen, X. Hubaud and M. Reynaert (see [2]).

Theorem B ([2]). The complete multipartite graph K, ,, . .. is not v-realizable
unless ny = ny, = ... = n.
The next generalization of Theorem A is an analogue of Theorem B for e-realizable

graphs.
Theorem 1. The complete multipartite graph K is e-realizadle if and

only if

ByB2 e ik
n+1l=n+1l=n=..=n,.
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To prove this theorem, we will use the following

Lemma 1.1. Let G be isomorphic to Ky, s, .. . (k = 3). Then Ng(e) ~ Ng(f) for
each pair of edges e,f of Gif and only if ny = n, = ... = n,.

Proof of this lemma is simple and can be left to the reader.

Proof of Theorem 1. (<) If G ~ K, ... then Ng(e) = Ky—1n-1,n,...n0

(=) Let G be an e-realization of K, s, Then Ng(yy, y2) = Ky iy, m for
each pair of the adjacent vertices y;, y,. Denote the parts of Ng(yy, ¥2) by Py, P, ...
..., P, and the vertices of P; by xi,x5,...,x. for each i = 1,2,..., k. Without
losing generality we can suppose that

(1) ngsn=...=n.

Now explore the neighbourhood of the edge x}, x7. As G € (K., »,,...,») hence
Ng(x}, x3) = K, ny....m- Denote by Pi, Py, ..., Pj the parts of Ng(xi, x;). We can
see that Ng(x}, x7) contains the vertices y;, y, and the graph F ~ Ky, — 1, ~ 1 ns,....m
with the parts P, — xi, Py — sz-, P,, ..., P;. Since the vertices y,, y, are adjacent,
each part of N G(xg, x,z) can contain at most one of these vertices. It follows from
(1) that Py = P3, P, = P,. ..., P, = P,and each of the parts P, P} contains exactly
one of the vertices y;, y,. Without loss of generality we can suppose that P} =
=P, —x} +y, and P, =P, — xf. + y,. Therefore the vertex y; is adjacent
to x? and to all vertices of the parts Pj, Pj, ..., P;. Analogously, y, is adjacent to x}
and to all vertices of the parts P}, P3, P, ..., P;. Thus G contains a subgraph iso-
morphic to Kn1+1,n2+1,n3,...,nk = K'

As Ng(y1,72) = Ky s, mo the number of its vertices is |[Ng(yy, y,)| = ny +
+ 1y + ... + n, = n,. Since Ge R(K,, ... m)> the equality |Ng(f)| = no holds
for every edge f of G. On the other hand, |[Ng(f)| = no and hence G = K.

UnderLemma1.1G ~ K, , andthisyieldsn; + 1 =n,+1=n3=... =n,

2. e-REALIZATIONS OF THE CYCLES

M. Brown and R. Connelly proved the following

Theorem C ([1]). All cycles are vertex-realizable.

In his article [3] Zelinka has shown that the cycles C3,C,, Cq, Cg are e-realizable
and Cjs is not e-realizable.

The next theorem is a generalization of this result.

Theorem 2. The cycles C,, ., are not e-realizable, with the single exception of Cs.
To prove this theorem we need the following

Lemma 2.1, Let the graph H = K, — e be a subgraph of G. Then G is not an
e-realization of Cayyy for n > 1.

Proof. Let K, be the complete graph with vertices y1, Y2, ¥3, Yaand let e = y3, Va.
Suppose that H = K4 — e is a subgraph of G. Let N¢(1, ¥2) be isomorphic to Czu+1
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with the vertices xq, X1, X5, ..., X5,- Without loss of generality we can identify ys3
with x, and y, with x;. It is evident that x, is not adjacent to x; — in the opposite
case Ng(yy, x;) (or Ng(y,, x;)) for any i % 0, j contains the cycle C; induced by the
vertices y,, Xo, X; (¥15 X, x;). Thus 2 < j < 2n — 1.

Now suppose that there exists an edge x;, x;4 4 (i £0,j—1,j, 2n) such that x; is
adjacent to y, and x;4, is adjacent to y,. Then N G(xiﬂ, yz) contains the subgraph
K, 5 with the vertices y, x¢, x;, X;, which is a contradiction. Analogously, if x; is
adjacent to y, and x;, is adjacent to y, then Ng(x;+y, y,) contains K, ;3 with the
vertices y,, Xo, X;, X;. Thus all the vertices x, X,, ..., X;_; have to be adjacent to
exactly one vertex of the pair y,, y,. Without losing generality we can suppose that
it is the vertex y;.

Analogously, all the vertices x4, X;. 2, ..., X2, are adjacent to exactly one vertex y
of the pair yy, y».

Now just one of the following cases occurs:

(i) ¥ = y;. Then Ng(yy, X,) contains a subgraph K 5 with the vertices x;_;, X;, y,
and hence G ¢ Z(Ca+1)-

(ii) y = y,. Then Ng(y2, x;) contains the path X;, 1, Xj42, «+es X2m Xo» Y1 Xjg.
If G € R(Cpns1) then Ng(yy, x;) = Cpyyq With the vertices Xo, V1, X;_1, 23, Z4s -+
ceesZj Xji1s Xji2s oo Xope Suppose that z; = x, for any i€ {3,4,...,j}, re

e{1,2,...,j — 2}. As GeZ,(C,,.1) hence either x, is adjacent to x; (and
Ng(y1, ¥2) % Cansy), OF X, is adjacent to y, (and Ng(x,, y,) contains K; 3 — see
above). Thus z; # X,.

Hence NG(yl, xj) contains the cycle C,; with 2j vertices Xo, Xy, ..., X;_q,
Z3, 245+ Zj, Xj4 1, Vo, Which is a contradiction. Thus G ¢ R(Cansr)-

Now we are able to prove Theorem 2.

Proof of Theorem 2. Let e = y,, y, be any edge of G and let {x, xy, ..., X,}
be the vertex set of Ng(e) = C,,.;. If there exists a vertex x; which is adjacent to
both vertices y; and y, then the graph G contains the graph H from Lemma 2.1
with the vertex set {x;, X;4+1, V1, Y2}, and hence G ¢ Z,(C,,+,).

Thus each vertex x; is adjacent to exactly one vertex of the pair y;, y,. Since Cy, 43
contains an odd number of vertices, there exists a triangle induced by the vertices
Vi Xis Xi41 (0T y2, X5, X;4+1)- Without losing generality we can suppose that it is the
triangle y;, Xo, X;. Then x, is adjacent to y, (in the opposite case the vertices
Xo» Xy, X, ¥y induce the graph H) and x has to be also adjacent to y, (in the op-
posite case Ng(xy, X,) contains the subgraph K, ; with the vertices Y, ¥2, Xo, X3,
which is a contradiction). Hence the vertices X, X4r+ are adjacent to y; and the
vertices X4x+ 2, X4x+3 are adjacent to y,. If n is an even number then x,, is adjacent
to y, and G contains the subgraph H with the vertices X,,, Xo, ¥4, Y2, Which is
a contradiction. If n is an odd number then x,, is adjacent to y,. In this case x,,_,
is adjacent to y, and thus Ng(x,,, Xo) contains the subgraph K, ; with tiee vertices
Y15 Y25 X241, Xy, Which is also a contradiction. Therefore G ¢ #,(C,, ;) and hence
Ca+1 is not edge-realizable.
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On the other hand, e-realizability of the even cycles was proved by R. Nedela [5].
Theorem D (Nedela). The cycles C,, are e-realizable for each n = 2.
From this Theorem and our Theorem 2 we obtain the following

Corollary. A cycle C,, is e-realizable if and only if n is an even number or n = 3.
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