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ON THE PROBLEM OF INVARIANCE UNDER HOLOMORPHIC
FUNCTIONS FOR A SET OF CONTINUITY POINTS
OF THE SPECTRUM FUNCTION

LAURA BURLANDO, Genova

INTRODUCTION

In a paper to appear ([B2]) I have introduced a subset Zo(X) of the set X(X) of
all the continuity points of the spectrum function in the algebra of linear and con-
tinuous operators on a complex Banach space X. In the case of a separable Hilbert
space, the set Z(X) has been recently characterized by Conway and Morrel ([CM])
and it can be proved that Xo(X) coincides with 2(X). It is not known yet if this fact
is true in any Banach space, but the authors of [AFHV], who give another necessary
and sufficient condition for membership in 2(X), in the case of a separable Hilbert
space (see [AFHV], Th. 14.15), suspect that such a condition (which, in any Banach
space X, is equivalent to membership in Zo(X), see [B2], 1.15 and 3.1) characterizes
2(X) for any Banach space X (see [AFHV], page 313). The set Zo(X) is therefore
related to Z(X) in a very interesting way.

In [B2] I have also studied algebraic and topological properties of Zo(X), without
treating the problem of invariance under holomorphic functions, that is instead the
subject of this paper, in which a systematic study of the conditions that characterize
such a property is made.")

In Section 1 I give two preliminary topological results, in a much more general
ambit than what is needed for the successive proofs.

In Section 2 I give equivalent conditions (Theorem 2.5) and sufficient ones (Corol-
laries 2.6, 2.7 and 2.8) for membership of f(4) (where A € Zy(X), X is a complex
nonzero Banach space and f is a complex-valued function, holomorphic on a neigh-
borhood of the spectrum of A) in Zo(X). Some of the preliminary results in this
section before Theorem 2.5 are slight extensions of analogous results in [BHOP].

In the last part of Section 2 I give equivalent conditions (Theorem 2.9) for member-
ship of f(A4) in Zo(X) for any A € Zo(X) whose spectrum is contained in the domain

1y As far I know, the problem of invariance of 2(X) under holomorphic functions has not
been studied yet.
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of f, where f is a complex-valued holomorphic function and X is a complex infinite-
dimensional Hilbert space (in Corollary 2.10 the particular case of f being a power
is treated).

Acknowledgement. My special thanks to Professor Cecconi, who was so kind to
discuss with me about the results of this paper.

0.

If X is a Banach space, for any x € X and for any ¢ > 0 let By(x, &) denote the set
of all points of X whose distance from x is smaller than e&. We shall denote with X*
the space of linear and continuous functionals on X, with LX) the space of linear
and continuous operators on X, with Iy the identity operator on X and with L,(X)
the ideal of compact operators on X.

By a projection on X we shall mean an operator P e L(X) such that P> = P.
Obviously, Iy — P is a projection too, Im P = Ker (Ix — P) (the symbol Im will
be used to denote the range of a function), so that Im Pisclosed,and X = Im P @
® Ker P (where the symbol @ means algebraic direct sum).

If A is a linear and continuous operator on a complex nonzero Banach space X,
let A* denote the adjoint of A (if X is a Hilbert space, we shall denote the Hilbert
adjoint of 4 with A¥) and let o(A4) denote the spectrum of A. We recall that o(A)
is a compact nonempty subset of the complex plane, so that, if ¢(4) denotes C\ 6(4),
it results that o(A) is open and nonempty. We also recall that the resolvent function:
Jeg(A)—(Alx —A)"' e L(X) is analytic in ¢(A4). Let 0,(4) denote the essential
spectrum of A, that is the spectrum of the class of A4 in the quotient algebra
L{X)/LeX).

If f is a complex-valued function, holomorphic in an open neighborhood 4 of
o(A), the operator f(A4) € L(X) is defined in the following way:

S(4) = (1@ri)) Jaop f(2) (AIx — 4)71 d2,

where D is an open bounded set such that 6(4) = D, D <= 4, D has a finite number
of components, ¢ D is composed of a finite number of simple closed rectifiable curves,
no two of which intersect and + D signifies the positively oriented boundary of D
(the above integral is well defined, and it does not depend on the particular choice
of D, see [TL], page 310). We recall that (f(A4)) = f(o(A4)) and 0,(f(A4)) = f(c(4))
(see [GL]. Theorem 1 and Section 2, and [CPY], (3.2.8)).

We recall that a spectral set of A is a subset « of its spectrum that is both open and
closed in the relative topology of (A). Let ¢,-¢(A4) denote the set of all points A€ C
such that AIy — A is a semi-Fredholm operator (see [K], page 230). It is immediate
to verify that g(A4) = ¢,-{(4) and ind (AIy — A) = 0 for any A€ g(4) (where, for
any semi-Fredholm operator Te LX), ind T denotes the semi-Fredholm index of T;
see [K], IV, (5.1) and 5.13). Then, if we put ¢;- f(4) = {4 € 0,—f(A):ind (AUx — A) *
+ 0}, it follows immediately that ¢~ x(4) = o(4) (and, consequently, also
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clof p(A4) = a(A)). For any ne€ Z U {— o0, + 00}, we set gi_p(4) = {4 € 0,—s(A):
ind (AIx — A) = n}. If g(A) denotes the set of all points A€ C such that Aly — 4
is a Fredholm operator (see [K], page 230), it follows that og(4) = U 05— r(A).

nez
Moreover, by [CPY], (3.2.8), ¢x(4) = C\ o (A4). By [K], 1V, 5.17, ¢f_(4) is open
for any ne Z U {— oo, +o}. Consequently, also g(4), ¢,-(A), 0= /(A) are open
subsets of C, and the semi-Fredholm index is constant on any component of g, ¢(A).
If Vis a component of o,—(A), let i,(V) denote ind (Ux — A4) as Ae V. We set
o, H(A) = C~o,_5(4).Obviously,o,_((A4) = 5(4) = 0,_(4) U 0,H(4) U ¢, H4).
Since QS_F(A) is open, it follows that dg,— ;(4) < O'S-F(A). Moreover, since obviously
dor(A), 0= i(A), 00i_(A) (where ne Z U {— 0, +0}) and 9V (where Vis a com-
ponent of o,-¢(A)) are contained in dg,—{(A), they are also contained in o,_(A).

Let y(A4) denote the set of all points A € 6(4) such that {1} is a component of ¢(4);
obviously, cl y(4) = a(A).

If X is a complex nonzero Banach space, we put 2o(X) = {4 € L(X): o(4) =
= cl(e;2 {(4) U Y(4))} (see [B2], 3.1). Let X(X) denote the set of all continuity
points of the spectrum function ¢: L(X) — K¢ (where K is the set of all compact
nonempty subsets of C, endowed with the Hausdorff metric). I recall that ZO(X) c
< X(X) (see [B2], 1.15). If X is a separable Hilbert space, also the opposite inclusion
holds, so that Z4(X) = 2(X) (see [B2], 1.15).

If we put 7(X) = {4 e L(X): o(A) = cly(A)} (see [B1], 2.1 and 2.4), it follows
obviously that 7(X) = Zy(X). If X is finite-dimensional, it is immediate to remark
that L(X) = ©(X) = Zo(X) = X(X); the problem of invariance of Z4(X) under
holomorphic functions is therefore trivial in this case.

We recall that, for any complex nonzero Banach space X, t(X) is closed with
respect to holomorphic functions (see [B1], 2.13), so that, in particular, it is closed
with respect to translations and powers. The behaviour of Zo(X) under holomorphic
functions is more complex, as this paper shows.

1

Definition 1.1. If X is a complex nonzero Banach space, 4 € L(X) and f is
a complex-valued function, holomorphic on an open neighbourhood 4 of o(4),
let Z,(A4) denote the set of all points A € 6(4) such that f'(1) = 0.

We remark that, as o(4) is compact, only a finite number of components of 4
have nonempty intersection with o(A). Therefore, as f is holomorphic and any set
which has no accumulation points in 4 intersects o(A) at most in a finite number of
points, it follows that f(Z(A)) is finite and, for any 1 ¢ f(4,(A4)), f~'({2}) n o(4)
is finite, too (see [R], 10.18).

Definition 1.2. Let X and Y be topological spaces; for any f: X — Ylet I, denote
the set of all points x € X such that there exists a neighbourhood U, of x such that
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f(U,) is a neighborhood of f(x) and f,: U, — f(U,) (where f,(y) = f(y) for any
y€U,) is a homeomorphism.

We remark that, if 4 is a linear and continuous operator on a complex nonzero
Banach space and f is a complex-valued function, holomorphic on an open neigh-
borhood of a(A), it results that o(A)\Z(A4) = I, (see [R], 10.34), so that o(A)\
N Z f(A).

Lemma 1.3. If X is a topological space, F is a compact subset of X, with empty
interior, Y is a Hausdorff space and f: X — Y is a continuous function such that
fAFNI;) =0, then f°(F) = 0.

Proof. Suppose that X is a topological space, F is a compact subset of X, Y is
a Hausdorff space and f: X — Y is a continuous function such that f*(F\1I,) = 0
and f°(F) + 0. We prove that, in this case, F° % 0.

As f°(F)[# 0, there exists an open nonempty subset G of Y such that G < f(F);
as fo(F\1I;) = 0, there exists y € G\ f(F 1), so that f~'({y}) n F < I,. Therefore,
for any x € f7'({y}) N F, there exists an open neighborhood U, of x such that f(U,)
is open and f,: U, — f(U,) (Where f,(z) = f(z) for any z € U,) is a homeomorphism.
Since Y is a Hausdorff space and f is continuous, f~*({y}) is closed, so that, as F
is compact, f~'({y})n F is compact, too. Consequently, there exist a positive

integer n and x,, ..., x,€f~'({y}) 0 F such that f~*({y}) n F = U Uy,. Since for
ji=1

any x € f "!({y}) n F there exists j € {1, ..., n} such that x € U, (so that, as f, (x) =
= f(x) = y = f.(x;) and f,, is a homeomorphism, x = x;) it follows that f ~*({y}) N
NF ={x,...,x,}. Forany j = 1,...,n we define U; = Ux, and f; = f,,. Since F

is compact and U; is open forany j=1,...,n, F\( U U) is compact so that,
as f is continuous, f(F\( U UJ)) is compact, too. As y ¢f(F\(U U;)) (because
{0 F={xy,.. x} IS U Uj) and Y is a Hausdorff space 1t follows that
there exists an open nelghborhood U of y, contamed in Gn ( n f(UJ)) such that
Un f(FN( UlUJ)) = 0. Therefore f ~(U)n F = UlUJ
= =

We construct now, by induction on k, a finite family {W,},—, .., of open nonempty
subsets of U in the following way: we set W, = U. Foranyk =1,...,n — 1,let W,

k
be an open nonempty subset of U. Then, if fi}!{(W,) 0 (U f; ' (W) = 0, we define
j=1

J
Wis1 = W if, instead, there exists j(k) € {1, ..., k} such that fi;';(W,) 0 f0(We) =+
+ 0, we define Wyy; = f(fii (W) N fim(We))- Tt is easy to verify, by induction
on k, that, forany k = 1, ..., n and for any j, he {1, ..., k}, if f7 (W) 0 fi (W) +
+ 0 it follows that f;'(W,) = f, (W,); then, if we define W = W,, it follows that, -
forany j, ke {L,....n}, f;'(W)n fi '(W) = 0 or f7 (W) = £ {(W).
Since W is an open nonempty subset of U, U < f(F), f(F) is compact and Y is
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a HausdorfT space, there exists a compact set V, with nonempty interior, such that
V < W; obviously, as Yis Hausdorff, V is closed, so thatf‘l(V) is closed, too.

For any j = 1,...,n we define V; = f;'(V) and I; = {ke {1,...,n}: f7'(W) n
nf; (W) =0}; for any ke {1, ..., n} NI, it results obviously that f; (W) =f; (W).
As Fnf~Y(U)y = U U;and W< U, it follows that

Fa(m' (U AW = (FEaf W) a ()N (U A ) =
=Fnf'(V)n ((ze“,y,n;\,f"‘l(w»\( U 7ctw) =

= Fa s~ (1) a0 NN CU S 00) = Faf =) nfi (%) =
=Fnfj'(V)=FnV,.

Consequently, as F is compact, f~'(V) is closed and f;l(W) is open for any kel
F n V; is compact, so that, as f is continuous and Y is a Hausdorff space, f(F n V;)
is closed.

Since V.= U < f(F) and f "'(U)n F = U Uj, it follows that
i=1

V=Vaf(E) = f(F V) = [(U(F (V) = USF A Y).
Jj= Jji=1
Consequently, as V has nonempty interior, f(F n V) is closed for any j = 1,...,n
and a finite union of closed sets with empty interior has empty interior, there exists
pe{l,...,n} such that f*(FnV,) + 0. As f(FnV,) = f(F nV,), f, is a homeo-
morphism and U, is open, it follows that F n° V, + 0; therefore F° * 0.

Lemma 1.4. Let X be a connected topological space and let K be a proper,
infinite and compact subset of X; then, if D(K) denotes the set of all accumulation
points of K, it follows that 0K n D(K) = 0.

Proof. We prove that if K is an infinite compact subset of a connected space X,
such that 0K n D(K) = 0, it follows that K = X.

Since D(K) n 0K = 0, any accumulation point of K has a neighborhood which
has empty intersection with X \ K, so that D(K) = K°; therefore K = K U D(K) =
= K, so that K < K and, consequently, as 0K is closed, D(0K) = D(K) n 0K = 0.

Since 0K < K and K is compact, 0K is compact, too, so that, as any infinite
compact set has at least one accumulation point and D(0K) = 0, 0K is finite. Con-
sequently, as K = K°u 0K and K is infinite, K° = 0.

Since 0K n D(K) = 0. for any x € 0K there exists an open neighborhood U,
of x such that U,n K = {x}. Therefore K\(UU,) =K~(U(U,nK))=

xelK xedK

= K\(U {x}) = KN0K = K°, so that, as K is closed and U, is open for any

xecK
xedK, K° is closed. Consequently, as K° & 0 and X is connected, K° = X; it
follows immediately that K = X.
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2.

Definition 2.1. Let 4 be an open nonempty subset of C and let f: 4 — C be a holo-
morphic function. We shall denote the union of all components of 4 on which f
is not constant with Q(4).

We point out that f is an open map on ,(4) (see [R], 10.32). We remark that,
for any AeC,f ' ({A}) 0 Q(4) is discrete (see [R], 10.18). Hence f~'({A})n
N K N Qy4) is finite for any 1€ C and for any compact set K < 4. Let X be
a complex nonzero Banach space and let 4 € L(X) be such that ¢(4) < 4. It follows
that f ~'({4}) n a(4) N Q/(4) is finite for any A € C. We also remark that, since any
component of 4 is open and closed in 4, the intersection of any component of 4
with o(A) is a spectral set of A. Consequently, since o(A) intersects only a finite
number of components of 4, a(4) N Q(4) is a spectral set of A.

The following theorem is an casy consequence of the results of [ GL]. Part i) has
already been impliedly proved by the authors of [BHOP] in the particular case of
a separable Hilbert space (see [BHOP], 3.4 and 1.(1)). However, the proof of
[BHOP], 3.4 cannot be used in the general case, as it is based upon the properties
of the left and right essential spectra, whereas the characterization of o,_ F(A) as the
intersection of the left and right essential spectra may not hold in the algebra of
linear and continuous operators on a Banach space which is not a Hilbert one (see,
for example, [B2], 1.1). Henceforth, we shall agree that the sum of an empty set of
numbers is equal to zero.

Theorem 2.2. Let X be a complex nonzero Banach space, let Ae L(X) and let f
be a complex-valued function, holomorphic on an open neighborhood A of o(A).
It follows that:

) 00 e(1(A)) = flo-H(A) O (Fle 2 0 F(eHA)):
ii) for any 2 € Csuch that f ~*({A}) < ¢s-(A) (and hence, in particular, for any
A€ os-i(f(A)), f7'({A}) n a(A) is finite and f~'({A}) 0 D(a(A)) = Q/(4);
iii) ind (AIy — f(4)) = f-l(()z) Q(A)mf(u) ind (uly — A) for any i€ o, p(f(A))
(where m (1) denotes the (})rder of was a zero of f — f(u) for any pe Q/4)).
Proof. First of all, we prove i). We recall that Theorem 1 of [GL] can be applied
also to the semigroups ®~ = {Te L(X): T is semi-Fredholm and ind T < + o0}
and #* = {Te L(X): Tis semi-Fredholm and ind T > — o} (see [GL], Theorem 1
and Section 2). Therefore o, (f(4)) L 0s3(f(4)) = f(o,-x(A4) U 0 %(4)) and
o f{f(4)) U 0, Hf(A)) = fo,-{4) U 0;5(A)). Tt follows that o, x(f(A)) =
2 o) © 2HIA) 0 (00 TA) © 0 5UA)) = (Flo-r(A))
O S HAN) O (or-AA) o So 3 A)) = Flon- ) © (e o e 5HAY).
We have thus proved i).
Now we prove ii). Let 1€ C. Suppose that f~!({4}) N o(A) is infinite: we prove
that consequently f~'({4}) ¢ o,—(4). As a(A) is compact, it has nonempty inter-
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section with only a finite number of components of 4. Hence 4 has a compcnent
4, such that 4,0 f~'({A}) n o(A) is infinite. We put 6, = o(4) N 4y. As we
remarked above, o, is a spectral set of 4, and so it is compact. Consequently, as 4, N
N f7Y{4}) n o(A) is infinite and contained in oo, f ~'({A}) N 4, is not discrete,
so that (see [R], 10.18), as 4, is connected, f is constant on 4,. Therefore 4, =
< f7Y({A}). Since o, is infinite, from Lemma 1.4 it follows that dog N D(c,) * 0;
since 0o, = do(A) N 4, and D(o,) = D(6(A)) N 4, there exists pe D(a(A4)) N
N do(A) N 4,. From [K], IV, 5.6 and 5.31 it follows that do(A) N @,— {A) consists
of isolated points, so that D(¢(4)) N do(A) N g,_{A) = 0. Therefore, obviously,
1 ¢ s-5(A4). Since 4y = f7'({A}), we have thus proved that f~'({1}) ¢ o, #(A).
Hence, for any A € C such that f~'({1}) = o,-¢(A4), f~'({2}) n o(A) is finite. More-
over, for any pef '({4}) n D(s(A)), the intersection of any neighbourhood of p
with o(4) is infinite. It follows easily that f ~({2}) n D(a(A4)) = Q(4).

Finally, we prove iii). Let 1 € g, {(f(4)).

Since ¢i_(A) is an open subset of ¢(4) for any ne(Z\{0})u {—co, + 0},
S {A}) no(A) = o {A) by i) and f ~'({4}) N 6°(A4) = Q,(4) by i), it follows that

I o ( U }Qﬁ—r(/i)) N Qd) = f71({}) no*(4) =

ne(Z\{0})u{—o0,+

= (' ({4 n (ne(l\(o\)uk{)_w’+m)QZ-F(A)) N Q(4))u
O (F((13) o) 0 6-r(A) o 2,(4)).
Therefore
m () ind (uly — A) =

uef ~1({A})na°(A)

= Y my(p)ind (ulx — A).
nef = ({2 u ot~ p(A4))nQ4(4)
ne(Z\{0})u{—o,+ 0}

By [GL], Theorem 1 (see [TL], IV, 3.1),
ind (/UX —f(A)) = Z n Z mf(‘u) =

neZU{=0, 0} nef T (2 ne(A)nel - p(4)n2s(4)

= > > my(p)ind (ulx — A) =

ne(Z\{0})u{—o0,+ o} pef ~1({2})no?_ x(4))nQs(4)

= 2 m(p) ind (uly — A) =
nef 1 ({2)n( u ol_ £ (A)nQ5(4)
ne(Z\{0})u{— oo, + o)

= > my(p)ind (ulx — A).
uef~1({Apna°(4)

Lemma 2.3. Let A be an open nonempty subset of C, let f: A — C be a holomorphic
function, let K be a compact nonempty subset of A and let V be an open subset
of 4, such that 0V = K and f(V) ¢ f(K). Then:

i) f(V)Nf(K) is open and f~'({A}) n V = Q(4) for any e C\f(K);
ii) for any Ae f(V o Q 4))Nf(K 0 Q/(4)), there exists a component of f(V)\
\f(K) which contains a punctured neighborhood of A.
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If, in addition, V is bounded, it follows that:

iii) any component of f(V)\ f(K) is also a component of C\f(K) and U < f(W)
for any component U of C\f(K) and for any component W of V such that
F(W)a U + 0;

iv) £ ({A}) n Vo Q[(4) is finite for any 2€ C, f7({A}) 0V is ﬁnite for any
Ae C\f(K) and the function N/(*),V): e C\f(K) - N4,V

= Y. mg(u)e N is constant on any component of C\f(K)
nef =iy

v) if zef(Vo Q4))Nf(K n Q[ (4)) and U, is the component of C~f(K)
which contains a punctured neighborhood of z, we have that N,(,l, V) =

= Y m(u) for any AeU..
pef ~1({z})nV nQ2(4)

Proof. First of all, we prove i). Since any component of 4 is the intersection of 4
with a closed subset of C and VU K is closed (as 0V < K) and contained in 4, the
intersection of VU K with any component of 4 is closed in C. Since the intersection
of any component of 4, which does not intersect K, with VU K is an open proper
subset of C, it follows that any component of 4 which intersects V intersects also K.
Consequently, since 4\ Q/(4) is the union of all components of 4 on which f is
constant, f(Vn (4\Qy(4)) = f(K). Hence f(V)\f(K) = f(Vn Q(4))~f(K), so
that, since f is an open map on Q(4) and K is compact, f(V) \ f(K) is open. Moreover
for any A€ C\f(K), / 7'({4}) n V = Q/(4).

Now we prove ii). Let A€ f(Vn Q(4))\f(K n Q/(4)). Since Q/(4) is closed in
the relative topology of 4, K n Q(4) is compact and o(V n Q,(4)) = K n Q,(4).
Moreover, since obviously ¥ n Q(4) =+ 0 and, as we proved above, any component
of A which intersects V intersects also K, we have K n Q,(A) + (. Hence
SV Q(4))Nf(K n Q(4)) is open, by i). Therefore, if U denotes the component
of f(V n Q(4))Nf(K n Q/(4)) which contains 1, it follows that U is open. Since K
is compact, it intersects only a finite number of components of 4. Consequently,
since A\ Qy(4) is the union of all components of A on which f is constant,
f(Kn(4N244))) is finite. If we set Uy = UN(f(Kn(4NQ[(4))u{2}), it
follows that U, is a connected punctured neighborhood of A. Moreover, U, <
& (F(V) K ~ 2,(4)) 0 (CF(K 0 (45 2,(4)) = F(V)N (K 0 2,(4)) 0
U f(K n (4N 2/(4)))) = f(V)\f(K). Hence there exists a component of (V) f(K)
which contains U,.

We have thus proved ii). Now we suppose V' to be bounded.

If we remark that f(V)\f(K) = f(V\K)\ f(K) and any component of V\K
is a bounded component of C\K, the first assertion of iii) is an easy consequence
of [BHOP], 3.1. However, we can give a very simple direct proof. Since Vis bounded
and 9V < K, it follows that VU K is compact. Consequently, f(V)\f(K) =

= (C\f(K))nf(VUK) is closed in the relative topology of C\f(K). Since

S(V)Nf(K) is open in C, it follows immediately that any component of f(V)\ f(K)
is also a component of C\ f(K).
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Since, by what we have just proved, any component off(W) \f(K) is also a com-
ponent of C\f(K) for any component W of ¥ such that f(W) & f(K) (we point out
that 0W < dV < K), the second assertion of iii) can be easily proved in the same
way of the first assertion of [BHOP], 3.5.

Since Vis bounded and 0V <= K, so that VU K is a compact subset of 4, f ~'({1}) n
AV Qg 4) is finite for any Ae C. If, moreover, e C\f(K), it follows that

F7'({2}) 0 Vis finite, as f~'({A}) N V = Q/(4) by i). Hence the first two assertions
of iv) are proved.

The third assertion of iv) is an easy consequence of the theory of topological
degree and of the Cauchy-Riemann conditions. However, it has already been proved,
in a more direct way, by the authors of [BHOP], in the particular case of V being
a hole of (T, contained in o(T) (where T'is a linear continuous operator on a sepa-
rable Hilbert space), K = ¢,(T) and f being a nonconstant complex-valued function,
holomorphic on a connected open neighborhood of o(T) (see [BHOP], 3.5). The
proof of [BHOP], 3.5 can be repeated in this case.

Finally, we prove v). Let zef(Vn QJ4))\f(K n Q/(4)). Then, by ii), there
exists a component U, of C~\ f(K) which contains a punctured neighborhood of z.
Moreover, U, U {z} is contained in a component of f(V n Q(4))\f(K n Qf(A)).
Hence, by iv), N4,V Q[(4)) = N(z,Vn Q4)) = Y m () for

nef ~1({z))nV nQ2s(4)
any AeU,. Since U, = C\f(K), and consequently f~'(U,) 0V = Q4(4) by i),
it follows that N4, V) = N1,V Q/4)) = > my(n) for any
leU,. nef ~1({z))nV nfs(4)

Let K be a nonempty compact subset of C, let ¥V be an open subset of C, with
dV < K, and let f be a complex-valued function, holomorphic on an open neigh-
borhood 4 of V'u K. Since f(V)\f(K) = f(V Q{4))Nf(K) and f(V)\f(K) is
open, it is easy to verify that f(V)\f(K) % 0if and only if f(Vn Q/(4))\
V(K 0 Q(4)) + 0.

Suppose V to be bounded. Then, by Lemma 2.3, iv), N{(*), V) is constant on U
for any nonempty set U which is contained in a component of C\ f(K). We shall
denote the value of N{((*), V) on U by N(U, V). Obviously, if U; and U, are non-
empty subsets of the same component of C\f(K), it follows that N (U,, V) =
= N/(U,, V). '

Let X be a complex nonzero Banach space, let A€ LC(X), let V be a component
of ¢¢(4), contained in o(A4) and let f be a complex-valued function, holomorphic
on an open neighborhood of o(4) and such that f(V) & f(o,(A4)). Then, since
dV < a,(A), if we put K = 6,(A) all the hypotheses of Lemma 2.3 (including the
boundedness of V) are satisfied. Hence, since any component of QF(A) which inter-
sects 0°(A) is contained in o(4) (see [K], IV, 5.6 and 5.31), the following result is
an immediate consequence of Theorem 2.2 and Lemma 2.3. It has already been
proved by the authors of [BHOP] in the particular case of X being a separable
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Hilbert space and 4 being connected (see [BHOP], 3.7). The proof of [BHOP],
3.7 can be repeated without changes in the general case.

Theorem 2.4. Let X be a complex nonzero Banach space, let Ae LX), let f be
a complex-valued function, holomorphic on an open neighborhood of 6(A) and let U
be a component of 0i(f(A)) = C~\f(c(A)). Then, if C(U) denotes the family of
all components V of ¢p(A) such that V = o(A4) and f(V) U = 0, it follows that
C(U) is finite and ip4(U) = Y NJU, V)i V).
vec(u)

Theorem 2.5. Let X be a complex nonzero Banach space, let A€ ZO(X) and let f
be a complex-valued function, holomorphic on an open neighborhood A of o(A).
Then the following conditions are equivalent:

i) f(4) e Zo(X);
ii) f(o;%(A)) N f(es"#(A)) has empty interior and, for any component U of
C~f(o(A)) such that U < f(o(A)), Y NAU,V)ilV)=*0;
VeC(U)

i) for any Aef(eip(A) N Q(4)), {— o, + 0} ¢ {ind (ulx — A): pef '({A})n
N oE i(A) N Q4)} and, if A¢f(00:"H(A) N Q/(4)),
m(p)ind (uly — A) * 0;
el = ({4 mez. p(A)nQ5(4)
iv) {2ef( () NF(ZAA)): /71({2}) 0 0o(A) = 02 p(A) and, if 2¢f(e;H(A)) N
N f(es5(A)), > ind (ulx — A) = 0} has empty interior;
pef = (AP no(A)
v) (fes3(4)) n fles (}A )NS(ZA(A) v do~ {(A) L cl(A)) has empty interior
and, for any component U of C\f(c(A)), contained in f(o(A)), there exists

A €U such that > my(p)ind (ulx — A) * 0.
uef ~1({a})na°(4)

Proof. First of all, we prove that f°(Z(4) u 0Q;t_F(A) U cly(4)) = 0. Since the
boundary of any open set has empty interior and ;- #(4) is an open subset of C,
0°05 ¢(A) = 0. Besides, since C is a locally connected space, it follows that ¢°(4) N
A cly(4) = 0, and so (cl Y(4))° = 0. Consequently, since both do;" (4) and cl y(A)
are closed and the union of a finite number of closed sets with empty interior has
empty interior, doF (4)u cly(4) has empty interior, too. Since (Jo;-f(4)u
v cly(A) NI, < a(A)N1; = Z(A) and f(Z(A)) at most consists of a finite number
of points, it follows that f°((dg;~ s(4) U cl Y(4))\1;) = 0. Hence, since obviouslyC
is a Hausdorff space and do2 HA)ucl Y(A) is compact, from Lemma 1.3 it follows
that f°(do;- r(4) U cl Y(A)) = 0. Consequently, since f(Z(A)) is finite, f(Z (A) U
U 00 f(A) U el Y(A)) = 0

Now we prove that i) implies ii). Suppose that there exists an open nonempty
subset G of the complex plane such that G = f(¢; 3(4)) N f(es3(4)). Since

f(ed= F(A)) N f(es=#A)) = a,_¢(f(A4)) by Theorem 2.2, it follows that ‘
G n o= ((f(A)) = 0. Morevoer, G = ¢°(f(4)), so that, since C is locally connected,
G 0 Y(f(A4)) = 0. Therefore o.= 5(f(A)) v Y(f (4)) is not dense in o(f(A4)), and con-
sequently f(A) ¢ Zo(X).
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Suppose now that there exists a component U of Cf(c(4)) = ex(f(4)), con-
tained in f(o(4)) = o(f(A4)), such that ) NLU, V)i (V)= 0. From Theorem
VeCLU)

2.4 it follows that i, (U) = 0. Therefore U <= a°(f(A4)) N 05— ¢(f(A4)), and con-
sequently U n (¥(f(4)) U o 1(f(A4))) = 0. Hence y(f(A4)) L o= (f(4)) is not dense
in 6(f(A)), so that f(A4) ¢ Zo(X).

We have thus proved thati)impliesii). We prove that ii)implies iii).

Suppose that there exists A, ef(gs #(4) 0 Q(4)) such that {—oo, +oo}

< {ind (ulx — A): pef '({}) N o, s(4) 0 Q(4)}. Letu1 ef ' ({o}) N 0K (A)
N Q/(4) and p, € £ ({Ao}) N 07%(A) N Q(4). Since o }(A) and ¢, H(A) are open,
there exist a neighborhood U, of u; and a neighborhood U, of p, such that U; <
< 0;%(A) and U, <= o, "3(A). Moreover, since y; and p, belong to Q/(4) and f is
an open map on Q,(4), it follows that there exists an open nelghborhood U of 1,
such that U < f(U,) n f(U,) < f(ef3(4)) n f(es#(4)). Hence f(0;3(A4)) n
N f(es—#(A4)) has nonempty interior.

Suppose now that there exists 1, € f(o r(4) N Q(4)) f(0o;~ x(4) N Q/(4)) such
that {—co, + o0} & {ind (uly — A): pef ({A;}) 0 Q(4) N .- (4)} and

my(u)ind (uly — A) = 0. Then {ind (uly — A): pe

RES =121} e _ ((4)n2s(4)

ef " {2}) 0 Q4) 0 o= (A)} = Z, fo= H(A) N f(00; (A)) + 0 and, by Lemma
2.3, there exists a component U, of f(o;~ r(A)) N f(de;~ x(A4)) (which is also a com-
ponent of C f(0¢;-r(A)) as o, ¢(A) is bounded) that contains a punctured neigh-
borhood of A;. We point out that U,, < f(o(A4)) = o(f(A4)). Let x denote the family
of all components V of o= (A4) such that f(V)nU,, +0. From Lemma 2.3 it follows
that, for any Vey, U, < f(V) (so that ¥V = Q/(4)) and, since 0V < do; f(A).

NJU,,V)= > mg(n). Morevoer, {A,} U U,, is contained in a component
pef ~1({AHnV
of C\ f(00;= r(A) N 2/(4)), so that y coincides with the family of all components V

of oF ¢(A4)n Q/(4) such that A, ef(V). Consequently, f~'({A;})n e:Zp(4)
N Q4) = f'({A)) 0 (U V)and {i(V): Ve y} = {ind (ulx — A):pef~'({2,})n
nosfA)n Q4)} =« Z (so that f71(U,,) n e, f(4) < U V < op(A)). Since Ae

€ Zy(X), so that o(A) = cl(e;p(A)) U cly(4), and U,:, < Cf(dei=p(4)), it
follows that f ~*(U,,) n 6(4) = cl Y(A4). Hence U,, \f(a(A4)) 2 U,, N f(cl ¥(A4)), so
that, since f°(cl¥(4)) = 0 by what we have proved above and dg;" ;(4) = 0,(4)
(which implies C\f(0(A4)) = C~f(do;= ¢(A))), there exists a component U of
C~f(o(A)) such that U = U, = f(a(A)).

Since U,, < f(V) and V < g4(4) for any Ve y, it follows that y < C(U) Since
a°(4) ncly(4) = 0 and 4 € Z,(X), it follows that 6°(4) N ¢{(A4) = ;= ¢(4). Con-
sequently, V = 0;—¢(4) for any Ve C(U), so that C(U) < .

We have thus proved that C(U) = .

In addition

Z Nf(U’ V) iA(V) = ‘ZXNI(UA‘, V) iA(V) =

VeC(U)
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=>( ¥ mu)i(V)=1Y Y. mlw)ind (uly — A) =

Vex pef ~1({1)nV Vex pef ~1({i)nV
= 2 my(w) ind (uly — A) =
uef~H{apHn U V)
Vex
= 3 mg(p)ind (ulx — 4) = 0.

pef T A A2 (4)nQs(4)

Hence condition ii) is not satisfied.

We have thus proved that ii) implies iii).

We prove that iii) implies iv). Suppose that condition iii) is satisfied. Then, since,
for any Ae CNf(Z/(A)),f '({#})na(4) = Q(4) and my(u) =1 for any pe
e ()~ o(4). (e f(a AN NS () 0 o(4) < 0 (d) and, it
2 ¢ f(055(A4)) A fos3(A)), Y, ind (uly — A) = 0} = {Lef(o HA) N

nef ~H({A)na(A)

N QAN f(905- (A) 0 Q(4)): Y © my(p)ind (uIy — A) =0 if

£ AR (A Qy(4)
— o0, + o0} & {ind (uly — A): pef 1 ({A}) N e H(A) 0 Q(4)}} = 0, so that also
condition iv) is satisfied.
We prove that iv) implies v). Since A € Xo(X), so that o’(A) = clo;” s(A) U el Y(A),
it follows that (f(e; %(A4)) N f(es” (A))) Nf(Z(A) U dok H(A) L cly(A)) <
< {deflolr(A):f~ ‘({/1}) N o(A) = o ¢(A)}. Therefore, if condition iv) is satisfied
it follows that (f(0;H(A)) N f(es3(4))) Nf(Z(A) U doi H(A) U ¢l Y(A)) has empty
interior.
Suppose now that there exists a component U of C\ f(o,(4)), contained in f(a(A)),
such that Y my(p)ind (uly — A) =0 for any AeU. We recall that
pef ~1({2})na°(4)
FA(Z(A) v doi- F(Z) u( cly(A)) = 0. Consequently, U\ f(Z(A4) v do;~ p(A4) U
ucly(A))is open and nonempty. Moreover, f = (U \ f(Z (A) U 8o r(A) L cliy(4))) N
na(A4) = 0E §(A), so that £~ (UNS(Z{A) U do s(A) U cl Y(A))) N o(4) =
= f T UNF(Z(A) U doF r(A) U clY(A))) N 6%(A) and UNf(Z(A) v doi p(A) L
U cl y(4)) Cf(gf_F(A)). Since mg(n) = 1 for any peo(4)\f(Z/(A)), it follows
that UNF(Z,(4) 0 202 A(4) U el W(A)) & (2 7(or ) \ZAA)): £~ (1)

o) @ o s(A)and T MEEHA O S5, 5 ind Guly — ) =
ne iAo
= 0}, which consequently has nonempty interior. Hence condition iv) is not satisfied.
We have thus proved that iv) implies v).
Finally, we prove that v) implies i). Suppose that condition v) is satisfied. Since
AeZy(X), it follows that o, p(A) < doS p(A) U cly(A). Consequently, since
£(00;= s(A) U el Y(A)) = 0, f(o,-¢(A)) = 0. Therefore, since

(o= #(4) 0 Qy(4)) is open ¢l (f(es= #(4) N Q(4))\f(0,_£(4))) =
= cl(f(es=#(4) N 2(4))) = cl (fe;- (4) N 2,(4))) = f(cl (i~ #(A)) N 2,(4)) .
Moreover, since 003 #(A) = a,-(A), (02 (AN f(0,-£(A)) = (X (4) A
N Q(4))f(0,-p(A)) (see Lemma 2.3).
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It follows that o(f(4)) = f(a(4)) = (f(cl (¥(A)) Nf(el= H(A4) 0 Q/(4))) v
© el((f(es" H(A) N f(o,-{(A))).

It can be proved that f(cly(A)) ~ el (0:2#(A4))) 0 Q(4)) = clY(f(A)) (since
el Qle—p(A)) \Q(4)) = f(Z,(A)), the proof is analogous to the proof of [B1],2.13).

We prove that fle #(4)) “Sf(o,_HA)) < 0= (f(A)). Let U be a component of
flofp(4)) \f(o,-¢(A)). Then U < f(a(A)) and, by Lemma 2.3, U is a component
of C\f(o,-1(4)) and f~'(U)nor(4) = Q(4). Tt follows that f(o;%(A4)) N
N f(e;%(A)) A U is open, and therefore, since (f(0;-%(4)) N f(os HA)) N f(Z(4) v
U 00" p(A) U cl Y(A)) and f(Z(A) L B (A) U cl Y(A)) have empty interior and
FZ(A) L doX H(A) U cly(A)) is closed, f(o)3(A)) N fe,3(A4) N U = 0.

Hence U is a component of CN(f(o,-(4)) U (f(e%(4)) N fles3(A)))) =
= 0,-(f(A)) (see Theorem 2.2).

If i 4(U)e {—co, + 0}, obviously U < o2 ((f(A)). If, instead, iy ,(U)e Z, it
follows that U is a component of ¢(f(4)) = C\f(o,(A4)). Since U = f(o(A)) and

condition v) is satisfied, there exists 2 € U such that > m(u)ind (uly —
Hef “H({A))na°(4)

— A) # 0. Hence, by Theorem 2.2, i 4(U) = ind (Alx — f(A4)) =
= > m{p)ind (uly — A) * 0, so that U = o (f(4)).

uef =1 (Z)na(4)

We have thus proved that f(o,= ¢(A|) \f(0,-H(4)) = ;= ¢(f(A4)). It follows imme-
diately that o(f(A4)) = clY(f(A)) U cl o= {(f(A)), and therefore f(A) e Zo(X).

The proof is now complete.

Corollary 2.6. Let X be a complex nonzero Banach space, let A € 2o(X) and let f
be a complex-valued function, holomorphic in a neighborhood of o(A) and one-
to-one on o(A)\ Z(A). Then f(A) e Zo(X).

Proof. Since f is one-to-one on o(4) \ Z{(A), f ~'({A}) n o(A4) consists of a single
point u, € o= p(A) for any A e f(0;~ r(A)) N f(Z,(A)), so that, for any A € f(0,~ s(4))
Nf(Z,(A)), {— 0, + o0} & {ind (ulxy — A):pef ' ({4})} = {0,ind (ulx — A)} and

ind (uly — A) = ind (u;Ix — 4) £ 0.

el = 1A na(4)
Therefore, in particular, condition iv) of Theorem 2.5 is satisfied, and so f(A) € Z4(X).

The following result is an immediate consequence of Corollary 2.6.

Corollary 2.7. Let X be a complex nonzero Banach space and let AeZo(X).
Then Alx + pA e Zo(X) for any A, pe C.

We have proved indeed that Zo(X) is closed with respect to polynomials of first
degree. Nevertheless, generally speaking, Zo(X) is not closed with respect to poly-
nomials, as we shall show afterwards.

Corollary 2.8. Let X be a complex nonzero Banach space, let p = 2 be an integer

p—1
and let AeXy(X) be such that o(A) 0 (U e*™/P6(4)) = {0}. Then AP e Zo(X).
k=1
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Proof. Let f, denote the function defined by f,(1) = A? for any 4 € C. Obviously f,
is holomorphic and, as p is positive, qu(A) = o(A4) n {0}. For any ¢ >0 and
for any ¢e[0,2n), f, '({ee'?}) = {!/?e!®/P* /P | = 0,...,p — 1}. For any
je€{0,...,p — 1} such that Q””e“w”“”/")eo(A) 1t follows that

(fp ({Qe‘¢}) {Qllpex(wpnn;/p)}) A O‘(A) — a(A) (U e2r.mlp {Ql/p I(‘/p*Zjn/p)}) -
< (o(A)N{0}) n (U e’km/pa(A)) = (. Therefore, for any AeC\{0}, f;'({A}) n

N a(A) consists at most of a single point. Since f,(a(4)\Z(A)) = f,(c(4)~
N ({0} na(A))) = f,0(A)\ {0}) = C~\ {0}, we have thus proved that f,, is one-to-one
on o(A)\ Z; (A). From Corollary 2.6 it follows that A? = f,(A) € Zo(X).

Theorem 2.9. Let X be a complex infinite- dimensional Hilbert space, let A be an
open nonempty subset of C nad let f: A — C be an holomorphu function. Then the
following conditions are equivalent:

i) f(A) € Zo(X) for any A e Zy(X) such that o(A) < 4;

ii) f is one-to-one on Q(4);

iii) f is one-to-one on (f')™" (C~\{0}).

Proof. First of all, we prove that i) implies ii). We set Q = Q,(4).

Suppose that f is not one-to-one on Q. Consequently, there exist 1, 1, € Q such
that A, # 4, and f(4,) = f(4,). Since 4, 4, € 2, from [R], 10.18 it follows that
there exists r > 0 such that Bg(Ay, ) n Be(4,, 1) = 0 and, for any j = 1,2,
cl B(A;,r) = Q and f(4) + f(4,) for any A e cl Be(4;, r)~{4;}.

We define m; = m(4,) for any j = 1, 2. Since X is infinite-dimensional, it contains
two closed, separable and infinite-dimensional subspaces X; and X, such that
X, L X,. Hence, if we define X, = (X; @ X,)" and, for any j = 0,1, 2, P; denotes
the orthogonal projection of X onto X, it obviously follows that P~Pk =0ifk +j
and }: P; = Iy. Since U cl Bg(A;, r) = Q and Q is open, Q\( U cl Bc(lj, r)) * 0.

i=0
Since f'is not constant on any component of Q, there exists 44 € Q ~( U cl Bg(4;, 1))
such that f(4o) + f(%;) = f(4,). =t

For any j = 1,2 let S;e L(X;) be an unilateral shift. Then, for any j = 1,2,
it results that o(S;) = o(S$) = cl B4(0, 1) see [H], Sol. 67), o= /(S5) = B0, 1)
and ind (Aly, — S) = 1 for 1€ B0, 1) (see [K], IV, 5.24). Besides, for any
positive integer p, considering that, for any ¢ = 0 and for any 6 € [0, 2r), 0"l x, —

p—1
— (S5 = (=1~ [T (eVrei@/r+2kmiop, — §), from [CPY], (3.2.7) it follows
k=0
that Bg(0, 1) < X F((S(*))” and ind (Alx, — (S”)P)) = p for any Ae B((0,1).
Consequently, B¢(0, 1) < o ¢(S%) and ind (Ay, — S7) = —p for any A€ B0, 1).
(see [K], IV, 5.14). Let us consider the operator 4 € L(X) defined in the following
way: A = APy + (Aily, + rST?) Py + (A1, + r(S5)™) P,. It is not difficult to
verify that A™ = 1P, + (1,Iy, + #(S{)™) P, + (IIx, + rS3') P,. Since
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o(Adx, + rS7?) = cl B¢(4y, ) and o(4,1y, + r(SSPY™) = ¢l Be(4,, r) from [TL],
V, 5.4 it follows that o(A) = o(Zoly ) U (Ucl Be(4;, 7). Then Ucl Bi(dj, 1) =

< a(A) = {4} U ( U cl B¢(4;, r))- Since /l ¢ U cl Be(4;, 7). it follows that {1o} N
no(4) = y(4). !
Since Be(Ay, r) 0 o(Ayly, + 1(S5V)™) = Be(Ly, 1) el Be(2s, r) -0 =

= ¢l Be(Ay, 7) 0 Be(Ay, 1) = o(Ailx, + rST?) 0 Be(A,, 1) and g ¢ U Be(4;, r), from

[TL], v, 5.2 it follows that Ker (Aly — A) = Ker (1 — 4,)/r) IX, - S'"Z)
Ker (Ay — A™) = Ker (1 — 2)[r) Iy, — (S7)™) and Im (Aly — A) = X, @
@ Im (((2 = Ay)[r) Iy, — ST?) ® X, for any Ae Bg(4,,7) (so that, as (4 — ).1)/re
€ B(0,1) = ¢, #(ST?), Aeo,-r(4) and ind (AUy — A) = ind (A — Ay)fr) Ix, —
— S1?) = —m,) and Ker (Aly — 4) = Ker (A — 4,)[r) Ix, — (S57)™),
Ker (IIy — A™) = Ker (A — 4,)[r) Iy, — S3") and Im(Ay — 4A) =X, ® X, ®
@ Im (A = Ay)[r) Iy, — (S57)™) for any Ae Be(A,,7) (so that, as (1 — 4,)[re
€ B((0, 1) = o, {(S5”)"), A€ 0s-¢(A) and ind (Mlx — A) = ind (2 — A,)[r)Ix, —
—(85°)™) = m,).
We have thus proved that ;- ¢(4) > U Bc(/lj, r). Hence o(A) = (o(4) n {Ao}) L

V) ( U cl B(A;, 1)) < Y(A) L cl o g(A). Smce the opposite inclusion is trivial, it
follows obviously that 4 e Zo(X).

Since o(A4) = {4} U ((2) clB(4;,7)) = Q = 4, f is holomorphic in a neigh-
borhood of ¢(4). We projvzlthat f(4) ¢ Zo(X).

Sinzce A Ay €0 p(A), f(Ar) = F(A2), f(Ao) # f(2,) and f(2) # f(2,) for any
Ae(Uedl Be(2, 1)) N {4y, A} it follows that f~({f(2,)}) N o(4) = {11, ,} =
c Qj{ ;(A) < Q. Therefore

FOn) € f(o= r(4) 0 Q)N (00 H(4) 0 Q) ,

{ind (ulx — A): pef7'({f(24)}) n o p(4) N Q} = {my, —m,} D {- 00, + 0}
and
m(u)ind (uIy — A) = myind (4,1x — A4) +
el T 1S (ADD nes™ F(A)nQ
+ myind (A dx — A) = —mym, + mym; = 0.

Consequently, by Theorem 2.5, iii), f(A4) ¢ Zo(X).

We have thus proved that if f is not one-to-one on Q there exists 4 € Zo(X) such
that 6(A) = 4 and f(A) ¢ Zo(X). Hence i) implies ii). Since obviously (f')* (C\ {0})
is contained in the union of all components of 4 on which f is not constant, ii)
implies iii). Since (f')™* (C\{0}) N o(4) = a(A)\Z,(A) for any A e Xy(X) such
that 6(4) = 4, from Corollary 2.6 it follows immediately that iii) implies i).

The proof is therefore complete.
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Corollary 2.10. Let X be a complex infinite-dimensional Hilbert space and let A
be an open nonempty subset of C. Then for any integer p = 2, A" € Zo(X) for any

A€ Zyo(X) such that 0( ) Adiff 4 m(U ez"’“/”A) = 0.
Proof. If 4 n ( v e”"""’A) =0, it follows that o(4) N (U ez’”"“’a(A)) =0 for

k=1
any A€ Xy(X) such that ¢(4) = 4. From Corollary 2.8 it follows that A” € Zo(X)
for any A e Zy(X) such that o(4) = 4.

Conversely, if 40 ( U e”"‘""A) %0, as 4 is open there exists e (4\{0})n

k=1

1) ( U ez’””"”A). Consequently, there exist pe A\{0} and ke{l,...,p — 1} such

k=1
that A = e**™/?, so that 1 #+ p and A? = u?, and therefore the function f,: 4 - C
(where fp(z) = z? for any z € A) is not one-to-one. Since f, is not constant on any
component of 4, from Theorem 2.9, ii) it follows that there exists 4 € Z,(X) such that
A ¢ 5o(X).

Corollary 2.10 obviously proves, in particular, that X,(X), generally speaking,
is not closed with respect to powers.
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