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1. INTRODUCTION

The Rothe method (also called semidiscretization in time) is a frequently used
method to prove existence of solutions of time dependent differential equations by
constructing approximates (cf. the monographs by Kacur [1] and Rektorys [5]
with many references, moreover e.g. [3], [4]). To construct weak solutions to non-
linear equations in general there is necessary a global Lipschitz condition. This
restricts the increase of nonlinearity. The aim of the present paper is to replace the
global Lipschitz condition by a local one. Thus an arbitrary increase of nonlinearity
is possible. The way to this end provide estimates of the approximates u; in W, (G)
with p > 2 for equations with linear principle part. By means of an embedding
theorem thus we get an estimate for sup Iul for sufficiently small ¢t < T,

2. THE PROBLEM AND ASSUMPTIONS

Let G = R" be a bounded domain with boundary 0G,I =[0,T], Qr = G x I,
I' = 0G x I. We consider the problem

(1) Au + %‘f =f(x,t,u) in Qr,
t
2 u=0 on I,
(3) u(x,0) = Ug(x) xeG
where
N a N

@ au= =Y 2 (ayx 61) + 3 a2

ik=1 0x; 0x;) i=1 0x;

After subdivision of the time interval I by points t; = jh, j = 0, ..., n, the problem
(1)—(3) is replaced by a sequence of linear elliptic boundary value problems

1 .
(1) Aju; + ;(“j —ujy) =f; in G,
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(2) u; =0 on 0G,

J
(30) up =U,,
j=1,...,n. Here denotes f; =f(x, ti uj_,), and 4; stands for a differential
operator of the form (4) with coefficients a ; = au(x,t;) and a;; = a(x, 1)),
respectively. For abbreviation we write Au; = u; — u;_4. Starting from (3,) by
solution of the problems (1;),(2,), j = 1, ..., n, we obtain the approximates

t,—t t—

2 #(x.1) = uj—q(x) + /:j—l uix), teltj_1, 1]
and
(6) "(x, 1) = {”{‘;58) ;; (t(;-_l, t;]

of the solution of (1)—(3). By the help of investigations of convergence of #" and @"
for n tending to infinity we prove existence of such a solution.
First we formulate the assumptions:
(i) Let G = RN, N = 2, be a simply connected, bounded domain; 4G € C'.
(ii) Uy e W,(G), AoU, € L,(G) with p > N.
(iii) Let a;€ C(Qy), a; € L,(G) with ellipticity condition

) a8 S T aniid, < b VEe R,
and assume for a.a. xe G a::d 1every t,t' € I the Lipschitz conditions
) law(x, 1) = awlx, 0)| = Li|e = 7],
) lax, 1) — aix,1)] < Ljt—1].
(iv) Let f(+,0, Uy) € L,(G), moreover let the condition
(10) [f(x.t,u) — f(x, 0, w)| £ P(x) |t = 1| + Q(x) |u — |,

Pe L,(G), Qe L,(G), on @y x [—R, R] be satisfied for a sufficient large R.

Here, W,(G) denotes the well-known Sobolev space of L,-integrable functions with
first order derivatives. The minimal length of the interval [ —R, R] will be fixed
later and follows by (23). However, the bounded domain Q; x [—R, R] of (10)
allows an arbitrary increase of f with respect to u. Of course, this influences the
domain of existence of a solution u.

To derive the a priori estimates for some time we will use a suitable continuation
of the right-hand side f to Q7 x (— o0, ®), e.g.

f(x,t, —R) for u< —R,
FRx, tu) = S f(x, 1, u) for —R=u<R,
f(x,t,R) for R<u, (x,t)e Or -
f® satisfies condition (10) on Q@ x (— o0, o), which yields
(11) 175G tow) = 75Co ), Bl = o] + Llu — w],
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vt,t'el, Yu,u’ € L(G). ||-|, denotes the norm in L,G). Furthermore, we use
¢+, > for the duality between L,(G) and L(G), p™' + ¢~ ' =1, as well as the
notation

lulls,, = (fcéliuml” dx)'/?,

what, by the Friedrichs inequality, represents an equivalent norm in W,(G).

Replacing the right-hand sides f; by f} we look for weak solutions of (1), (2;),
(30)- In the weak formulation we write A+, +) for the bilinear form on W,(G) x
x W, (G) generated by the operator A; (cf. [6]).

Lemma 1. Let assumptions (i)—(iv) be fulfilled. Then for h < h, there exist
unique weak solutions u; e W,(G) of (1,),(2,),j = 1, ..., n, satisfying the relations

(12)) Ajuj,v) + % {Auj, vy = (ff, vy Yve W(G).

Proof. Because of (iv) and (11) u;_, € L(G) implies fe L(G) < (W,}(G))*.
Thus the assertion of the lemma is a consequence of [6], Corollary 7.4. m

Now we derive the a priori estimates for u;.

3. A PRIORI ESTIMATES FOR THE APPROXIMATES

The fundamental tool to establish a priori estimates are the relations (12;) with
test functions of the form v = |u;|?~2 u;.

Lemma 2. Let ue W,(G), p > 2. Then v = |u|?"?u belongs to W;(G), 1[p +
+ 1/q = 1, and it holds

(13)

in the weak sense.

aixi (Julr=2u) = (p = 1) [u "2 uy,

Proof. Obviously, we have v € L,(G) because of

(14) [l uly = Juls™ -
Moreover, |u|"‘2 u,, € L(G). We now introduce the “cut-off”” functions

ut(x) = {u(x) for wu>0 {u(x) for u <0

0 else ’ 0 else .
According to [2], p. 84, we have u* € W,(G), u~ € W)(G). Then for every ¢ e
€ W,(G) we get
§a[|u=2 upy, + (p = 1) Julr "2 u 0] dx =
= [ Jer s o @re]a-
G

0x;

i

. 644



[ ey en s Zwyro]as-

=f (u+)"“1(pda,-—J‘ (—u") ledo, =0 Vo e W) (G).
G oG
This yields (13) and the assertion of the lemma. m

For the following estimations we use the Young’s inequality

p q

(15) abéa"i«+6“”—)—, pl+qg =1,

and the generalization

(16) H a; éipi"a?", Toil=1.

The proof of (16) may be performed by induction with (15).
Lemma 3. For j = 0,...,n and u € W,(G) the estimate

(17) Ajw, [l u) 2 Ky | Ju| "2 w1, = Koul

holds true with constants kq, k, independent of j and n.

Proof. Owing to (13) and (iii) we have

N N
A W2 0) = Jo S, el ) Jo Sl w0 2
k=1 i=1
N N
2(p—-1)Je Iul”‘z Y, @i jlxlhy, dX — max sup ess Iai! Y Ucuxilul”_z u dxl =
ik=1 i Qor i=1

2 (= 1)a fo 2 P ud,dx — 3 [(ufo ™ ) (o] ) .

Since (|u|®~272 u),, = 1plu|"~?"2 u,, and | |[u|*"?"?u|, = |u|s* we can con-
tinue
4p — 4

A [u]P =2 u) 2 P’

e ulf -
=2 LK e o 0] 2

2 a2 e = 2 3 el 0 el 2
2 U=y omnmpy, N

Here Young’s inequality (15) for p = g = 2 has been used. For fixed & < (4p—4)a
this provides us the assertion (17). m
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For the proof of Lemma 5 we still need an auxiliary estimate. We derive
N
iAv(W, |ulp—2 u)l = HG zlaik.vwxz(l’ - 1) |u|"‘2 U, dx| "
N
+|f6 Y aiwefuf 2 udx| <
i=1

<=
p

N
2 max sup |auy| e 3 [Wedl |([4] 272 u)g] [u|®272 dx +
ik G k=1

N
+ max sup ess |a,-’v] fe Y |wx‘i Iul"—1 dx .
i G =1

Applying (16) to the first item with p; = p, p, = 2, ps = 2p/(p — 2)(p7 " + pz ' +
+ p5' =1) and to the second item with p; = p, p, = g = p|(p — 1) we obtain

) Iwli, +

(18)  |A,(w, |u]P~? u)| < (max sup |ay,|” + max sup ess |a; ,
ik G i G

+ e [u T2 ult 2 + kae) [ul -
k4(e) depends besides on & only on p and N.
For estimation of the solutions u; of the elliptic problems there will be used the
following
Lemma 4. Suppose u € W;(G), p > N, is a solution of

Aj(u,v) = (F,v) Vve W}(G).
Then the estimates

(19) lulli,, = Ki|F[,.
(20) lulc = Ka|F|,
hold true.

Proof. Inequality (19) is proved in [6], Theorem 6.3. Moreover, Sobolev’s
embedding theorem (cf. e.g. [2], p. 77, [6], p. 225) implies W,(G) = C(G) and
the estimate ||u ¢y < K|ul|;,,- Due to (19) this yields (20). m

The following estimate for Au; = u; — u;_, is an essential base for the proof of
convergence of the approximation scheme.

Lemma 5. There exists a constant M,(t) independent of h and j, such that for
h<hy<t<T
(21) |Au||, < M,(t)h Vj:jh < t.

Proof. First we will estimate Au,. For this purpose we have to choose v =
= |Au,|P~* Au, in the relation (12;) and obtain after subtraction of 4,(U,, v) and
owing to (14)

Ay(Auy, |Auy |72 Auy) + % (Auy, |Auy P72 Auy)y =
= {ft, ]Au1|p—2 Augy — AI(UOa ]Au1|p_2 A“x) =
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< 5], A5+ [4o(Uo, [Auy| > Auy)| +
+ |4,(Uo, |Au,y |72 Auy) — Ao(Uo, | Au, P2 Auy)|.

In virtue of (17), the Lipschitz couditions (8), (9), and (11), together with (18) we
obtain

el [ 8 = s + w3

< (7%, 0. Uo)lp + )] Au 57" +
+ AU, [ Auy 2~ + (B + 1) B7| U |17, +
+ e |Auy |22 Auy |35 + ka(e) [|Aulp .
Hence, for ¢ = k, we have
lAu]2 < (1F5C, 0, Ug)l, + Lt + [ 4oUoll,) hlAus 5" +
+ e hP* + coh|Auyf,
which yields by means of (16) with p; = p, p, = 4 = pl(p — 1)
-1
Ll 5 (175, 0, U, + 1ot + [AaTalyy b+ B = [l +
+ ¢ th? + c;ho||Auyllf .
For fixed h, where pc,hy < 1 we have thus proved

(22) \\Aulnp = (1 - Pczho)_llp (“fR(" 0, UO)np + I3t + “AOUOHP) h= K3(t) h,
that is the assertion for j = 1.

To estimate now Au; for j = 2,...,n take the difference (12;)—(12;-,) and set
v =|Au;|P~* Auy,

Aju, | Ayl Auy) — A5y (uj |Au;|P% Auy) +
+ Ay y(u, [Au|P72 Aug) — A;y(uo g |Aug|P7? Auy) +

+ % (Auj — Aujy, |Auy|P~2 Auyy = CAFR, |Augl? ™ Auyy .
Similarly as above from (17), (18), (8), (9), and (14) we conclude
1 1 _
b A ®=27 A2 = dellAulp + - Awslp - Ayl A5 =

< |, Nawlp ™ + (8 + 1) i fu o +
o] |Au,| 072 A3 + ks(e) [Aul
where for & = k; due to (11) and (16) follows

s = o - P sl <
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1 -1
S w4 (P2 ks ) A +
+ (I8 + 15) h?||uy5 , -
In virtue of Lemma 4 and (11) ||u;|,,, can be estimated by

Il = N80, + 115, =

1 it
= b [Au], + [£5(-5 0, Uo)|, + Isho + Z4S;||A”s”p-

Taking into account the inequality (a; + ... + a,,)’ < m?"'(a} + ... + ab) derived
from the Holder inequality in spaces [,, I, we continue in the estimation with

Al = < a2 e + 20w +
+(p = 1+ kap + kap) [Auy|7 + 477 p(1] + 1) [[|Au |} +

j—1
+ WIS 0, Uo)} + B3hgh + (5 — 1) W Y, [[Auy[7] <

j—1
< eh” + ey Au; |7 + es|Au[f + Cetf'):%h;”A“sﬂz-
Hence, by summation for j = 2, ..., i follows .
[Aul; < [Auy|lp + es(i = 1) hh? + (cq + c5) h_Zl [ Aujl; +
i=
i j-1
Fel Y Y [Aufl s
j=2s=1 .
S Auy|f? + eath? + (cq + cs + c6t?) Y. |Au;|Z b
j=1
Recall the estimate (22) for Au, thus we have established the inequalities
lAu2 < (KS + cyt) h? + LY |Auj2h, i=1,...n.
j=1

Applying the discret form of Gronwall’s lemma (see [1], p. 29) we obtain for h <
< ho < 1/L the desired estimate

K5 + c3t Lt
Au.ll? < =3 3 h = (M t)’h?. m
” ut”n-— 1 — Lh, exp <1 _ [h0> (M,(1))

Owing to the embedding theorem u; belongs to C(G). Now Lemma 5 gives us
the possibility to estimate the maximum of |u;| since from Lemma 4 and (12;) we

obtain
1
Il = K (5 Jawl, + 1751, =
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S Ko(My(1) + 750, 0, Uo)[, + Ist + L|[Uo — u—s,) =
S Kp(M(t) + | fR(-, 0, Ug)||, + Ist + Ly My(t) 1) =: M(t) Vi; <t.
Assume now
(23) R > Ry = max {||Us|cie; Ka([| 4oV, + 2] £(+, 0, Uo)[ )} -
Because of lim M(t) = K,(|4oUs|, + 2] /%(+, 0,U,)|,) and f(x,0,U,) = f(x, 0, U,)
we can ﬁndtz: OT > 0 with M(T) = R. Consequently, we have proved

Theorem 1. Let assumptions (i)—(iv) be fulfilled with R > Ry, R, given by (23).
Then there exists a T > 0 independent of the subdivision such that for h < h,

lujllcey < R Vj:jh < T.

Remark. It is obvious from (23) that R, does not depend on any Lipschitz
constants. However, the time T as well as the maximal step length h, especially
depend on I, and thus in general on the choosen R.

In the following we always suppose R > R, and jh < T. For the approximates
(5) and (6) which are piecewise linear and piecewise constant interpolations with
respect to time, respectively, making use of the notation 7u(x,t) = u(x,t — h)
Lemma 5 yields the relations

(24) (-, 1) = (1), < Myt 1]
(25) H% (0| < M,

(26) (.0 = 7.0, < M,
(27) (-, 8) = (-, ), < My,

for t,t'el, I = [0, T], with M; = M,(T). Moreover, by the above considerations
the uniform boundedness

(28) |#'(x,1)] SR, |@"(x,f)] =R Viel, VxeG
and
(29) |@C Ol = Mo, [@(Co 1)1, = My VEE]

has been proved. In this new notation from (12;) we obtain an integral relation
defined for all tel

(307) A(@(-, 1), 0) + <%—; (- 1), v> = ("> Yoe W(G),

where f* = f(x, ¥, 7,i") and A" is the operator with coefficients being piecewise
constant with respect to ¢, i.e. t is replaced by "
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4. CONVERGENCE OF THE APPROXIMATES

The aim of this section is to investigate the behaviour of #", #" for n — oo, that
means if the step length h tends to zero.

Lemma 6. There exists a function u € C(I, L,(G)) such that
(31) i"—>u in C(I,L(G)) holdsfor n— o .

Proof. By construction we have "€ L, (I, W,(G)) with weak derivatives i €
€ L,(1, L(G)), consequently formula (13) can be applied also on differentiation
with respect to t. We regard two different subdivisions of I into m and n subintervals,
respectively. Then we have

L T AL GG
- <% (@ — i), | — w2 (@ — a")> +

+ <a’" — @, (p—1)|am— a2 i(ﬁ’” - a")> =

ot
=o(Lm - - e - @),

Integration over ¢t < T and estimation with (25) yields

(32) l#@(: 1) = @(, 105 <

J:’ [P <%(ﬁ"‘ — ), [am — @ - a..)> +

+ 2pM, || |a" — @P2 (@ — @) — | - @R (@ - a")uq:\ dt.

IIA

To estimate the last term in the integral we take up an auxiliary consideration. Due
to (13) it holds for u, v € L(G)

A el -

L% [Jsu + (1 = s)v]7~2 (su + (1 — s)v)ds
= [fo(p = 1) |su + (1 = s)o] "2 (u = v) ds, =
< (0 = D (| + )72 fu = o] o= piep-1) £
< (p — 1) [IG (lul + ‘UDp(p-Z)/(p—l) Iu — vlp/(p-l) dx](p—l)/p R

Then Hblder’s inequality with p’ = (p — 1)/(p — 2), ¢’ = p — | implies

W= u = Jol=2 olly < (0 = 1) (Jull, + ol =2 lu = o]l -

q=
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Using this relation we continue in estimation of (32) by

a7+, to) — (-, o)} =

to a
< pJ‘ [<___ (am _ ﬁ"), Iﬁm _ anlp—l(ﬂm _ ﬁ")> +
ot
# 2p = )My (|a = ]+ fan = @ (= )+ @ - ) o,

We form now the difference of integral relations (31")—(31") inserting the test
function o+, 1) = lﬁ"' - ﬁ"l"‘z(ﬁ"' —i")e W;(G), replace thus the first item in
our estimate and obtain with (26)
(33 Ja(.to) — @ (. to)|f =

< pIO [<fm _fn’ I _ qu-—Z(am _ —n)> _

— Ar(@" -, [am — a|P (" - ))] dt +

+pe ’(Z” — A" @, |im — @ “’ 2(

+ 2p(p — 1) M7 [§ (2|am — |, + M (P + h,,))" 2 (hy + h,)dt.
For simplicity let us denote the integrands in the right-hand side of (33) by Sy, S,
and S, respectively. Due to (26) we have

(34) lam = @, = My(hy + hy) + " — @],

and by construction (see (6))
(35 li" — | < h,, + h,.

Therefore, S, can be estimated with the aid of (11), (14), (15), (17), and (27) by
06 85 (Wl - 7]+ Ll — ol [ - @l
= ki |am — @[22 @ — @), + k@ - @y <
< ¢i(hm + h)P = k|| [im — @O 22 @ — @)}, + )@ — @2
The integrand S, is estimated by application of (18) under consideration of (iii),
(29), (34), and (35):
(37 S, =E+B|m-vp
+ g [ — w|PmP2 (@ — @), + ka(e) lum — @"p <
< [(15 + 1B) M5 + ki(e) 227 ' ME] (hy, + h,)P +
+ | |am — @ |PmPR (@ — @), + ks(e) 227t @ — a@|p.

Here, as well as in the following estimate, we have used the inequality (a + b)” <
< 277 Y(a? + b?). In a similar way we estimate S; and obtain by the aid of (16)

with p; = p/(p — 2), p, = p/2
(38) 5, = = Dozo-1gn _ e 4 )zv My + 1)+ 2 (e + 1)
14 )4

s
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Inserting (36)—(38) into (33) this yields an integral inequality of the form
|+, t0) = @ (-, to) [} = Kato(h + )" +
+ Ksto(hw + h,)"? + K {3 |a7(-, 1) — @(-, 1)[; dt
V1, € I. Therefore, from Gronwall’s lemma (cf. [1], p. 28) we conclude
(39) la(-,t) = @(. )]} = " [Kalh + h,)? + Ks(hy + a)"*]

Vtel. Since the space C(I, L,(G)) is complete the relation (39) immediately implies
the assertion of the lemma. M

Remark. Passing to the limit m — o in relation (39) we obtain the error estimate

(40) lu(, 1) = @ (-, )], < KitPeRetn)/? .
An immediate consequence of Lemma 6 is, owing to (26) and (27),
(41) "= u, " —>u in Ly(I,L(G)) as n— .

Finally we have to show that the limit function u from Lemma 6 is the solution
of the stated problem.

Theorem 2. Let assumptions (i)—(iv) be fulfilled. Then the following statements
are true:

a) There exists a T > 0 such that the problem (1)—(3) has a unique weak solution
u e L,(I, W)(G)) n C*!(I, L(G)) = L,(I, C(G)) n C>(I, L,(G)),
u € Lo(I, L(G)), defined in Q7 = G x [0, T].

b) The Rothe approximates @', u" established by solution of (1), (2;), (3¢), j =

=1,..., i, have the convergence properties

(42) #—u in C(I,L(G), u"—u in LI, Ly(G)),
(43) @, a"—*u in Lg(I, W)(G)),

(44) oi’|ot ~* dujdt in L,(I, L(G))

for n tending to infinity.
c) The error can be estimated by (40).

Proof. 1. First we prove the convergence properties b). The relation (42) is the
assertion of Lemma 6 and (41). Because of (29) #" and @" belong to L(I, W,(G))
with uniformly bounded norm. Hence, there exist subsequences {n,} and {n;} with

'k —=*g,., " —=*g, in Lw(j’ Wl’l(G))’

where this is valid also in the weaker topology of LI, L,(G)). Particularly, due to
(42) we have
" —=*u, u"—~*u in LI, L(G)),

hence g, = g, = u. Moreover, uniqueness of the limit for every subsequence implies
the correctness of (43) for the whole sequence.
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In similar way, by (25) there exists a subsequence {n,} with

o™

ot

Passing to the limit n = n, — o0 in the relation

T a 0~n
L [<a a—’t’> + <a—‘; v>] dt =0 VYoeCP(Qy)

we obtain g = du[0t and thus (44) for the hole sequence.

—*gq in L,(I, L(G)).

2. From properties (42)—(44) and completness of the used spaces follows u €
e L(I, W)(G)) n C(I, L(G)), u,€ L,(I, L, (G)). Since p > N is assumed we have
the continuous embedding L. (I, W,(G)) = L,(I, C(G)). If we pass to the limit
n — oo in (24) furthermore we get the Lipschitz condition

lu(-,t) — u(+, )], S M|t = ¢'| Vi,vel,
that means u € C*(1, L,(G)).

3. To prove that u solves (1)—(3) we choose an arbitrary test function
ve L,(I, W,(G)), insert v(-, t) into (30") and integrate over ¢ € I. Taking into account
the Lipschitz conditions from (iii) and (iv) and the properties (41)—(44) the limiting
process n — oo yields the integral relation

j T[A(u,v) + <27“ v>] di = (1<, ),y di Voe Ly(l, W)(G)),

0

that means u is a weak solution of (1). By construction of #" due to (42), (43) the
initial boundary condition is satisfied.

4. Uniqueness: In [1], Chapter 2.2, uniqueness of a solution w in L, (I, W;(G)) n
n C(I, L,(G)) is proved for the problem corresponding to (1)—(3) with the global
Lipschitz continuous right-hand side f®(x, t, w) instead of f(x, ¢, w) (cf. Theorem
2.2.4 and Example 2.2.17). Because of (28) and (42) for ¢ < T there is valid |u| < R,
thus we have u = w as a consequence of f(x, t,u) = f%(x, t,u) for t < T and the
above stated uniqueness. Since |U,| < R we get uniqueness of a solution of (1)—(3)
even in L (I, W;(G)) n C(I, L,(G)). m

Corollary. 1. Due to (28) and (42) we have sup |u(x, t)] < R.
27
2. Particularly, u belongs to W,(Qz).

3.If p> N + 1 then the embedding W,(0r7) = C(Qy) implies u € C(Q4).
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