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INTRODUCTION

In [17] A. Kolmogoroff introduced, using limits of nets of abstract Riemann-type
sums, two types of integrability corresponding to finite and countable partitions,
respectively. The case of finite partitions (the so called S-integral) in our setting was
investigated in the last Section 4 of part VI = [10]. In Theorem 1 below we establish
the pleasant fact that in the case of countable partitions, the resulting Kolmogoroff
integrability (and integral), which we call S*-integrability, of a 2" -measurable
function f: T — X on the set F = {te T, f(t) + 0} coincides with our integrability
of the function f. This S*-integrability of Kolmogoroff was already thoroughly
extended to a very general setting by M. Sion in [19]. At the end of Section 1 we
make some remarks to [19].

The first part of Section 2 is concerned with the Beppo Levi property of the
measure m, and is related to Section 8 in [3], while in the second part we prove
another result on integration by substitution, completing those from part ¥ = [9].

In Theorem 5 in Section 3 we solve affirmatively the problem of measurability
of the partial integral from part III = [7]. A simple consequence of Theorem .15
in [5], Theorem 4, is the key which together with the results from part I yields the
desired solution. Further in this section we prove a result on existence of products of
measures (Theorem 6), and improve the Tonelli type Theorem 8 of C. Swartz in
[21] (Theorems 8 and 9).

Our concept of indirect products of measures introduced by Definition 3 cor-
responds to the bourbakistic concept of “integration of measures” in Chapter V
in [2]. In Section 4 we extend the results of part III = [7] to the case of indirect
products of measures. In particular, we prove the General Fubini Theorem (Theorem
11).

We shall use the notation and concepts from the previous parts, which we treat
as chapters when referring to them.

Remark. According to Corollary of Lemma 2 below, in our integration theory
we may suppose that the semivariation  is only o-finite on P.
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1. INTEGRABILITY AND S*-INTEGRABILITY

Let E € (2). By a countable 2-partition of E we mean a countable family n(E) =
= (E;) of pairwise disjoint sets E; € Z with UE; = E. If n,(E) = (E;) and m,(E) =

= (F,) are two countable P-partitions of E, then we say that m,(E) is a refinement
of m,(E) if for each F; there is an E; such that F; = E;. In this case we write 7,(E) <
< m,(E). The set II(E) of all countable Z-partitions of E with this partial ordering
is a directed set. For more information, see [17].

The next concept of integrability for Y = scalars originates in A. Kolmogoroff’s
paper [17]. It was thoroughly extended to a very generalsetting by M. Sion [19]
who used summability of series (which in Banach spaces is equivalent to uncon-
ditional convergence, see the beginning of Chapter VI in [4]), see pp. 16—17 and
pp- 40—41 in [19].

Definition 1. Let f: T— X and let E € 6(#). We say that the function f is S*-
integrable on E with respect to a measure m: ? — L(X, Y) if there exists a ye Y
and for each ¢ > 0 a countable 2-partition n,(E) of E such that for any countable
#P-partition (E;) = n(E) = n(E) and any points t; € E; the series Y, m(E;) f(t;) is

i
unconditionally convergent in Y and |Y. m(E;) f(;) — y| < &. In this case we define
the S*-integral jS*fdm = y. i

The following simple facts are immediate.

If Neo(?) is an m-null set (M(N) = 0), then each function f: T— X is S*-
integrable on N and yS*fdm = 0.

If both f, g: T — X are S*-integrable on E € (%), and if a and b are scalars,
then af + bg is S*-integrable on E, and

£S*(af + bg)dm = a. zS*fdm + b. zS*gdm.
If f: T — X is S*-integrable on E € o(2), then
|eS*f dm| < |f]|s - M(E).

A Z-measurable function f: T — X is S*-integrable on F = {te T, f(t) + 0} €
€ o(2) if and only if f is S*-integrable on each set E € o(2).

The assertions of the following lemma are also immediate.

Lemma 1. 1) Let f: T — X be S*-integrable on E € o(%) and let (E;) be a countable
o(2P)-partition of E. Then f is S*-integrable on each E;, and

ES*f dm = ZElS*f dm ',
i

where the series converges unconditionally in Y.

2) Let feS(?”,X) = the closure of S(?~,X) in the norm || in the Banach
space of all bounded X-valued functions on T, let E € o(?) and m(E) < + 0.

435



Then f is S*-integrable on E, f . yj is integrable, and
The following useful lemma is a direct corollary of Theorem .15, see [5].

Lemma 2. Let f: T— X be a P-measurable function, let F = {te T, f(t) + 0},
and let there be sets Fy€ o(2?), k = 1,2, ... such that F,, 7 F and f . yp, is integrable
for each k = 1,2,.... Then the function f is integrable if and only if there is
a countably additive vector measurey: o(?) — Ysuch that YEn F,) = [pf . 5, dm
for each k =1,2,... and each Eeo(P). In this case y(E) = [pfdm for each
Eeo(P).

Corollary. Let m: 2, > L(X, Y) be countably additive in the strong operator
topology and let its semivariation i be o-finite on P,. Then S(2,, X) = 3, hence
by Theorem 1.16, see [5], we may suppose in our integration theory that the semi-
variation w is only o-finite on 2.

In what follows we suppose that the semivariation # is o-finite on 2.
A relation between integrability and S*-integrability is given by

Theorem 1. A #™ -measurable function f: T—X is integrable if and only if it is
S*-integrable on F = {te T, f(t) & 0} (equivalently, if f is S*-integrableon each
set E € o(2)). In this case we have the equality

(1) [efdm = gS*fdm
for each set E € o(2).

Proof. Let f: T— X be a & -measurable function, and take a sequence of %~ -
simple functions f,: T— X, n = 1,2, ... such that f,(t) > f(t) and |£,(1)] ~ |f()|

for each te T. Put X, = sp{ U f,(T)}. Then it is clear that in our theorem we may
n=1

replace the measure m by the measure m; = m: 2 - L(X,, Y) (#,(E) < m(E) for
each E € o(2)). Now, since X, is a separable Banach space, by Theorem III.13.-1),
see [7], there is a countably additive measure Ap: F N o(2) — [0, 1] such that
NeFno(?) and AfN) = 0 implies m,(N) = 0. Owing to the Egoroff-Lusin
theorem, see Section 1.4 in part I = [5], there is a set N € F n ¢(2) and a sequence
of sets F,e Fn #", k =1,2, ... such that As(N) = 0, F, /F — N, and on each F,,
k =1,2,... the sequence f,, n = 1,2, ... converges uniformly to f. It is obvious
that in our theorem we may replace the function f by the function f. yp_y. Since
by assumption the semivariation # is o-finite on 2, without loss of generality we may
suppose that m(Fk) < + oo for each kK = 1,2,.... But then for each k =1,2, ...
the function f . xr,, hence also the function f . yr,, ,-r,, is integrable; it is S-integrable
on F, see Definition 1 and Lemma 2 in part VI = [10]; it is S*-integrable on F by
assertion 2) of Lemma 1 above, and all three integrals are equal on each set E € o(2).

Suppose first that the function f. yp_y is S*-integrable on F — N. Since by as-
sertion 1) of Lemma 1 the indefinite S*-integral E — zS*fdm, E € o(2), is
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a countably additive vector measure, f . xy_y is integrable and (1) holds by Lemma 2.

Conversely, let the function f . yz_y be integrable. Take ¢ > O and let ke {1, 2, ...}
be fixed. Then by the S- and S*-integrability of the function f. xf,,, -, on Fypy — F,
there is a finite #-partition n(F,,, — F,) such that for any countable 2-partition
(Ev)) = n(Fysy — Fi) 2 n(Fysy — F,), any points 1, ;€ E,;, and any E e o(2),
the series ) m(E n E, ;) f(t,.;) converges unconditionally, and

&
(*) IZ m(E O Ei) f(t:) — _[En(Fk,,,x_Fk)del! < el
Put

o

n(F — N) =kZ (Fee1 — Fi)

=1

and let us have a countable #-partition n(F — N) = n(F — N). Then

n(F—N) =2”(Fk+1 - F),

k=1
where

”(Fk+1 - Fk) = (Ek,i) = “e(FkH - Fk)
is a countable Z-partition for each k = 1, 2, ... . Take any points t, ; € E, ;. We assert

that the series ) m(E, ;) f(1; ;) is unconditionally convergent in Y. According to
k,i

Lemma 4 in part III = [7] this is equivalent to the following two assertions:
a) for each k = 1,2, ... the series Y m(E, ;) f(#.;) is unconditionally convergent

in Y, which holds by the S*-integrability of the function f on F,,; — F,, and
b) for any sequence of subsets I, = {1,2,...}, k = 1,2, ... the series
]
> m(Ey;) f(t,:)
K=1 iely
is unconditionally convergent in Y. This is also true, since for a fixed sequence I,,
k =1,2,..., the inequality (x) implies

€
| X m(Exi) f(ti,1) = J(u Bynceiss—ro S dm| < e
iel, ien, 2

=]
for each k =1,2,..., and the series ) (f( y g.;yn(Fis1-FoSdm) is unconditio-
k=1 i€l

nally convergent in Y by the countable additivity of the integral E — [ f. xp_y dm,
Eeo(2).
Now using (*) we have

IkZ_m(Ek,i)f(tk,i) - jE_Nfdm|,< €.

Thus f . xp_y is S*-integrable on F — N by Definition 1 and (1) holds. The theorem
is proved.

This theorem enables us to connect our results with the results of M. Sion from
[19]. However, let us make the following remarks:
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a) As the following two simple examples demonstrate, the concepts (1) — “‘f be-
haves almost as a bounded function”, and (2) — “A behaves as a bounded finitely
additive measure” of Definition 4.1 on p. 61 in [19] are misleading.

Example 1. We construct a bounded measurable function f which does not
“behave almost as a bounded function”. In our notation, let T=N = {1,2,...},
# =2"T, X =reall, Y= R — reals, and let m: 2 - ¢4 < I, = X* = L(X, R) be
defined by countable additivity from the following elementary values:

m({k}) =—ek——(0 0,1,0,...)€c,.
K
Now the function f: T — X defined by the equalities f(k) = e, el;, ke N =T,
is the required one. Note that in the setting of this example the requirement “f behaves

o0
almost as a bounded function” means Y |f(k)| < + oo!
K=1

Example 2. The concept (2) — “A behaves as a bounded finitely additive measure”
in our setting and terminology means: m: 2 — L(X, Y) is countably additive in the
uniform operator topology and has finite semivariation # on #.However, there are
measures m: ? — L(X ,Y), 2 being a o-ring countably additive in the uniform
operator topology, hence necessarily bounded, see Corollary IV.10.2 in [14], which
do not have finite semivariation # on P. The following is a simple one, see Example 5
inpart I = [§]: T=N,2 =2", X =reall,, Y= R, and m: 2 - I3 = I, isdefined
by countable additivity from the elementary values m({k}) = (1/k). e, € I,. Hence
we have a countably additive bounded measure which does not “behave as a bounded
finitely additive measure”.

2. TWO SUPPLEMENTS TO PART V

A. The Beppo Levi property. According to Theorem II.4, see [6], the L,-pseudo-
norm satisfies m(f, E) = m(|f|, E) = sup f&|f| dv(y*m, -) for each #?-measurable

function f: T— X (or f: T — [0, +oo)) and each set E e o(#) U T. Hence by the
classical Fatou property of the integral we immediately see that (-, E) has the
Fatou property, i.e., if f,f,: T— [O, +), n=1,2,... are P-measurable and
fu 7 f, then (f,, E) » m(f, E) for each E € 6(2), hence also for E = T. From this
we easily see that for a given Z-measurable function f: T — X (or f: T — [0, + w0))
the set function #(f, +): 6(2) — [0, + o) is continuous if and only if it is exhaustive
Le., if m(f, E,) — 0 for any sequence of pairwise disjoint sets E, € (%), n = 1,2, ... .

Definition 2. We say that a measure m: # — L{X, Y) (countably additive in the
strong operator with o-finite semivariation # on #) has the Beppo Levi property,
if the conditions: f, € £,(m), n = 1,2, ..., f: T — X P-measurable, |f,(1)] ~ |f(t)|
for each te T, and A(f, T) = lim m(f,, T) < + oo imply fe £,(m).
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Let us note two immediate facts:

1) If ¢y ¢ Y, i.e., if Y does not contain a subspace isomorphic to the space c,,
for example if Y is weakly sequentially complete, see pp. 160—161 in [1], then any m
considered has the Beppo Levi property, see Theorem V.2 in [9].

2) If m has the Beppo Levi property, then the conditions: f, € £ (m),n = 1,2, ...,
£(t) > f(t)e X and |f,(t)] 7 |f(1)] for each te T, and M(f, T) < +oo imply that
the sequence f,, n = 1,2, ... converges to f in &,(m), i.., that m(f — f,, T) > 0
as n — oo. This assertion is an immediate consequence of the Lebesgue dominated
convergence theorem in %#,(m), see Theorem I1.17 in [6].

Using Theorem 1 in [20] one can easily see that the next theorem contains the
result of Theorem 8.8 in [3]. Note also the close relationship between [3] and our
part II = [6] with some de facto overlaps.

Before stating the theorem let us recall some notions from part II. By Definition
14 fe L, M(m) (fe L Im)) if f: T—> X is P-measurable (integrable), and
w(f, T) < +oo. Further, 2~ denotes the greatest 5-subring of 2 on which the
semivariation 1 is continuous, see the end of p. 686 in [6].

Theorem 2. The following conditions are equivalent:
a) L M(m) = £,3(m),

b)f,,eﬂ’ﬂ(m) n=12.., |f|- [fk|=0 for n*k, nk=12,. and
N
supm(Zf,,,T)—hmm Z|f,,[ T) ~m(2|f| T) < + oo imply m(f,,,T)—>O
and

) Ly M(m) = Z(m),
and if they hold, then m has the Beppo Levi property.
If 2 = o(2~) and m has the Beppo Levi property, then, conversely, & .#(m) =
= Z,(m).
Proof. a) = b) Suppose the contrary. Then there is an ¢ > 0 and a sequence f,,
= 1,2, ... satisfying the assumptions of b) such that #(f,, T) > ¢ for each n =
= 1,2, .... But then by the definition of the L;-pseudonorm there are g, € S(2, X),
=1, 2 . such that |g,| < |f,| and |r, g, dm| > & for each n = 1,2, ..., where

F, = {te T, f,(t) £ 0}. Put g =3 g,. Then clearly g: T > X is Z-measurable,
© n=1

and m(g, T) < (Y. |f,|., T) < +o0. Hence g is integrable by a), [r gdm =
n=1

= [f, g,dm — 0 by the countable additivity of the integral (F,,, n=1,2,... are
pairwise disjoint), a contradiction.

b) = ¢) Suppose there is an fe &,.#(m) — (m) Then M(f, +) is not con-
tinuous, equivalently not exhaustive, on 0(9’) Hence there is an ¢ > 0 and a sequence
of pairwise disjoint sets E, € o(#), n = 1, 2, ... such that m(f, E,) = m(f . xg,, T) >
> ¢foreachn = 1,2,.... Taking f, = f. xg,, n = 1, 2, ... we see that b) does not
hold.

c) = a), since & M(m) > £, S(m) > L(m) in general.
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Clearly c) implies the Beppo Levi property of m.

If Z c a(.@~), then each Z-measurable function f: T —» X is 2~ -measurable.
Hence for any #-measurable function f: T — X there is a sequence f, € S(?~, X) <
c Z(m), n=1,2,... such that f,(t) - f(t) and |f,(t)] ~ |f(t)| for each teT
Thus obviously the Beppo Levi property of m implies c). The theorem is proved.

B. A theorem on integration by substitution. Before proceeding to the next theorem
let us note that if v(m, *): Z > [0, + 0] is o-finite, and if f: T—> X and g: T —
— L(Y, Z) are 2#-measurable functions, then there is a J-subring 2’ < 2 such that
2 < o(#'), v(m, +) s finite valued on #’, and both the functions f and g are bounded

on each set Ee 2. (Put 2 = {teT, |f(1)| + |9(t)] £ k} 0 2", where " = 2
k=1
is such a d-ring that v(m, +) is finite valued on it.)

Theorem 3. Let the variation v(m, ) be finite valued on 2, and let f: T — X and
g: T — L(Y, Z) be ?-measurable functions bounded on sets from 2. For E € 2 put

I(E) = {rgdm and ngE)= [gfdm,

where in the first equality we consider m: ? - L(X, Y)Q L(L(Y, Z), L(X, Z))
UeLX,Y), UQUeLLY,Z), L(X,Z), UV=VU for Ve (Y, Z)). Then
l;:? — L(X,Z) is countably additive in the uniform operator topology with
(1, E) £ ||g|s v(m, E) < + 0, and n;: 2 - YQ L(L(Y, Z), Z) is countably ad-
ditive in the uniform operator topology of L(L(Y,Z),Z) with v(n;, E) < |f]k.
.vo(m.E) < +o0 for each Ee 2.

Further, the function f is integrable with respect to the measure 1, if and only
if the function g is integrable with respect to the measure n;. In this case

fefdly = [gfd(f.gdm) = [pgd(].fdm) = [;gdn,
for each E € o(2).
Proof. The first assertions are immediate from Theorem 1.6, see [5].
Suppose f is integrable with respect to [, and let f,: T—> X, n = 1,2, ... be
a sequence of #-simple functions such that f,(t) — f(t) for each t € Tand [z fdl, =
[=o]
= lim [ f, dl, for each Eeo(#). Put F = {teT, f,(t) + 0} € o(?). According
n=1

n— oo
to the Egoroff-Lusin theorem, see Section 1.4 in [5], which obviously remains valid
for the o-finite measure v(m, +): 6(2) - [0, + 0], there is a set N € o(#) n F and
a sequence of sets F,e 2, k = 1,2,... such that v(m,N) =0, F, # F — N, and
on each Fy, k = 1,2, ... the sequence f,, n = 1,2, ... converges uniformly to the

function f.
e

Put 2 = (F,UN)n 2. Then 2 < 2 is a d-subring, and clearly o(%') =

k=1

= F n (). Hence we may replace 2 by #'. But for E € 2’ we have
ny(E) = [gfodm = [gf dm = n/(E),
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and
sup o1, ) < sup | - o(m, E) < + 0.

Further, since f,, n = 1, 2, ... are Z-simple functions, clearly

Jefudly = [ef,d([ g dm) = [ggd(] f,dm) = [pg dn;, — [gfd],
for each E € o(2') = F n o(2).
Thus by Theorem IV.1 in [8] the function g is integrable with respect to the
measure n;: 2 - YQ L(L(Y, Z), Z), and

fegdn, =1lim [pgdn, = [gfdl,
n— oo

for each E € 6(2') = F n o(2).
The converse assertion may be proved similarly. The theorem is proved.

3. MEASURABILITY OF THE PARTIAL INTEGRAL
AND OTHER SUPPLEMENTS TO PART III

The following simple consequence of Lemma 2, hence of the basic Theorem I.15
in [5], is the key to the affirmative solution of the problem of measurability of the
partial integral from Section 2 in part III = [7].

Theorem 4. Let ' < P be a dé-subring, and let the function f': T — X be in-
tegrable with respect to the measure m: 2 — L(X, Y) and ?'-measurable. Then f’
is integrable with respect to the restricted measure m' = m: ?' - L(X, Y), and

fef'dm’ = [pf'dm
for each E e o(%').

Proof. Let f,’,: T—-X,n=1,2,... be a sequence of #'-simple functions such
ool

that f,(t) » f'(t) for each te T, and put X, = 5p { U f+(T)}. Obviously we may
n=1

replace the measure m by the measure m; = m: 2 — L(X, Y). Since X, is a se-
parable Banach space, according to Theorem III.13-1), there is a countably additive

@
measure Ap: F'no(?) > [0,1], where F' =U {teT, f(t) + 0} €a(#), such
n=1

that N € F' n 6(2) and Az(N) = 0 implies m,(N) = 0. Now by the Egoroff-Lusin
theorem, see Section 1.4 in [5], there is a set N’ € F' n o(2’) and a sequence of sets
F,e?, k=1,2,... such that /IF,(N’) =0, F, # F' — N’, and on each set Fy,
k =1,2,... the sequence f,, n = 1,2, ... converges uniformly to the function f’.
Since the semivariation 1 is o-finite on 2, without loss of generality we may suppose
that m(F;) < + oo foreach k = 1,2, ... . But then also m(F;) < my(Fy) < m(F) <
< 4+ oo foreach k = 1,2, .... Now the assertion of the theorem immediately follows
from Lemma 2 above.

The following theorem solves affirmatively the measurability problem for the
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partial integral from Section 2 in part III. Obviously we may suppose that the
semivariation # is only o-finite on £. Hence in the Fubini theorem, i.e., in Theorem
III.15 the assumption of I-essential 2-measurability of gy is superfluous and,
moreover, we may suppose that the semivariations 7 and 1 are only o-finite on 2
and 2, respectively. Up to the end of this section let us use the notation from part I1I.

Theorem 5. Let f: T x S — X be a # @ 2-measurable function, 9 < 25 being
an arbitrary 6-ring, and let for each s€S the function f(-, s): T— X be integrable
with respect to the measure m. Then for each set E € 6(? ® 9) the function gg: S —
=Y, gi(s) = [gs f(+,5) dm, s€ S, is D-measurable.

Proof. Let E€o(? ® 2). Since the function f. xz is 2 ® Z-measurable, ac-
cording to Lemma III.3 there exists a sequence A,€ %, n = 1,2,... such that
fxg is 8({A,}1) ® P-measurable. But then by Theorem 4 for each se S the
function (f. xg) (+,s) is integrable with respect to the restricted measure m’' =
= m: §({4,}=1) » L'X, Y), and

95(s) = [e:f (-, 5) dm = [ f(+, ) dm’ = gi(s).

Since 6({4,};%,) is countably generated, gy = g is P-measurable by Theorem
I11.12-2) in [7].

Concerning the existence of products of operator valued measures, see Theorem
IIL.1 in [7], we add the following result.

Theorem 6. Let m: 2, — LX, Y) be countably additive in the strong operator
topology and let v(m(+) x, A) < + o for each x € X and each A € P, (for example,
if Yis the space of scalars and m: P, — X* is countably additive in the X-topology
of X*). Let further I: 2, — L(Y, Z) be countably additive in the uniform operator
topology. (We do not suppose that the semivariations  and 1 are o-finite on P,
and 2,, respectively.) Then the product measure 1 @ m: 2, @ 2, > L(X, Z)
exists. If the semivariation 1 is finite on a d-subring 2 = 2, then, moreover,

(1) (I ® m)(E)x = [s m(E*) x dl
for each E€ #, ® 2 and each x € X.

Proof. For xeX define .2, > L(L(Y, Z), Z) by the equality i (4)U =
= U m(A) x, where U € L(Y, Z) and A € 2,. Then j,: 2, - L(L(Y, Z), Z) s evidently
countably additive in the strong operator topology and ﬁx(A) = v(ﬂx, A) =
= o(m(+) x, A) < + oo for each 4 € Z,,. Hence fi, = v(m{-) x, *) is a finite countably
additive measure on 2,. Thus by Theorem II1.3 in [7] the product measure ji, ® I:
2, ® P, — Z exists, and by Theorem III.1 we have

(hx ® ) (E) = [r UE,) dft,

for each Ee 2y ® #,. Since fi,(4)I(B) = I(B) m(4)x for each AeP?,, Be 2,
and xeX, Lemma IIl.1 implies that the product measure ! ® m: 2, ® 2, —
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- L(X, Z)exists and (I ® m) (E) x = (4, ® ) (E)foreachEe 24 ® 2, = 2, ® 2,
and each x € X. Finally, if the semivariation ! is finite on a é-subring 2 = 2, then
Theorem IIL1 implies (1). The theorem is proved.

The following theorem is related to Theorem II1.6.

Theorem 7. Let f: T X S—> X be a Z ® D-measurable function, let ¥ < P
be a 6-subring such that Ae #, Be ¥ imply An Be PV, and let the function
f(+, s) be ¥ -measurable for each s € S. Then the function f is ?¥ @ Z-measurable.

Proof. First we prove the theorem for 2 ® Z-simple functions. However, this
is clearly equivalent to proving the theorem for the characteristic function yz: T X
X S — {0, 1} of each set E€e Z ® 2. If E € #, where Z is the ring of all finite
unions of pairwise disjoint rectangles A x B, A€ 2, Be 2, then obviously yj is
P2V ® P-measurable if XE( -, 8) is 2" -measurable for each s € S. Denote by « the
class of all sets E € 6(9’ ® 2) for which the theorem is true for yz. Then clearly ./
is a monotone ring, hence # = ¢(#? ® 2) by Theorem B in § 6 in [15].

Next we show that if u: T— X is #Y-measurable, v: T —» X is P-measurable,
and [v(t)| < |u(t)| for each t € T, then v is 2 -measurable. Given such functions u
and v, take a sequence of 2Y-simple functions u,: T— X, n = 1,2, ... such that
u,(t) - u(t) and |u,(t)] ~ |u(t)] for each te T, and similarly take a sequence of
#-simple functions v,: T— X, n = 1,2, ... such that v,(t) = v(t) and |v,(t)| ~ [v(1)]
for each t € T, see Section 1.2 in part I. Now clearly

W, = ,u'll A U"I v,, h= 1,2,...

o]
is a sequence of 2" -simple functions such that w,(t) — v(t) for each t e T, hence v
is 2" -measurable.

Finally, let f: T x S — X be Z ® Z2-measurable, and let f(-, s) be 2V -measurable
for each se S. Take a sequence of Z ® Z-simple functions f,: Tx S > X, n =
= 1,2,... such that f,(t,s) > f(t,s) and |f,(t, s)| 7 |f(t, s)| for each (t,s)e T x S.
By the preceding paragraph each function f,,(-,s), n=12,..., se8§, is #"-
measurable. Hence by the first paragraph of the proof each f,, n = 1,2, ... is
PV ® P-measurable. Thus f is ¥ ® P-measurable, and the theorem is proved.

The next Tonelli type result is an improvement of Theorem 8 in [21].

Theorem 8. Let v(m, +): 2 — [0, +00) be o-finite, let f: T x S » X be ? @ 2-
measurable, and let
4(z*) = fras [ 9)] d(e(m, ) ® v(z*1, ) < +o0

for each z*eZ*. Then f(-,s)e £,(m) for l-almost every seS; in particular,
G, s) is integrable with respect to m for l-almost every s € S.

Proof. By the classical Fubini-Tonelli theorem, see Theorem III.11.14 in [14].
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since v(z*1, +) is finite valued on a é-subring 2, = 2 such that 2 < ¢(2,), we have
fsx [f(+,5)| do(m, <) do(z*1, +) = q(z*) < +

for each z* e Z*. Hence by Theorem II.4 in [6] and the uniform boundedness

principle we have

a =1[z|f(-.5)| de(m, -). 5) = Jup 4(%) < +o0

Now according to Theorem 1116 in [7] the function h7ys: S — [0, + 0], hrxs(s) =
= [r|f(+, s)| dv(m, +), s € S, is 2-measurable. Hence by the Tschebyscheff inequality,
see Corollary of Theorem II.1 in [6],

I({seS, hrxs(s) = +0}) < {seS, hyys(s) = n}) < U(hyxs, S)

_a
n

for each n=1,2,.... Thus f(+,s)e Z,(v(m, +)) = £,(m) for Il-almost every
s € S; in particular, f(, s) is integrable with respect to m for l-almost every se S,
see Lemma IL.1 in [6]. The theorem is proved.

The next corollary is immediate.

Corollary. Let y*e Y* and let f: T x S - X be a #? ® 2-measurable function.
Suppose that
Sres |f(t 5)] d(e(y*m, +) @ v(z*], +)) < + 0
for each z* € Z*. Then the function f(, s) is integrable with respeci to the measure
y*m for l-almost every se S (the l-null set depending on y*).

The next theorem, which may be proved similarly as Theorem 8, shows that in
the case ¢, ¢ Y, see pp. 160—161 in [1], the assumptions of the preceding theorem
can be weakened.

Theorem 9, Let f: T X S be a P @ 2-measurable function, let the function
hypxs: S = [0, + 0], hrxs(s) = m(f(+,s), T), seS, be 2-measurable, and let
s hrxs dv(z*1, *) < + o0 for each z* € Z*. Then m(f(+,s), T) < +oo for l-almost
every s € S; in particular, the function f(-,s) is weakly integrable, (see the para-
graph before Example on p. 533 in [5]) for l-almost every se€ S. Hence if ¢, ¢ Y,
then f(+,s)e &,(m) for l-almost every se S. (see Theorem I1.10 in [6]); in parti-
cular, f(+, s) is integrable with respect to the measure m for l-almost every s € S.

Concerning the 2-measurability of the function hrys see Theorem IIL7 in [7].

4. INDIRECT PRODUCTS OF OPERATOR VALUED MEASURES
AND THE GENERAL FUBINI THEOREM

Let (T, 2),(S, 2) or (S, 2), X, Y, and Z be as in part IIL, let I: 2 - L(Y, Z) be
countably additive in the strong operator topology, and let its semivariation I be o-
finite on 2. Our basic new assumptions are the following: '

(Ao)/(Agb)/: For each se S an operator valued measure m(s, -): Z - L(X, Y)
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is given which is countably additive in the strong operator topology, and the function
s = m(s, A) x . x5(s), s€ S, is Jbounded/ 2-measurable (or Z-measurable).

Throughout this section we assume (A,). From the well known theorem of Pettis,
see Theorem 3.5.5 in [16], we immediately have that for separable Banach spaces X
the function s — m(s, A) . xs(s) € L(X, Y), s€ S, is 2- (or 2-) measurable for each
Ae?and Be 2 (or Be 9).

We shall also use the following assumption

(A;): For each A€ 2, Be 2 and x € X the function s — m(s, 4) x . y4(s), s€ S,
is integrable with respect to I.

Theorem 10. Assume (A,) and for Ae 2, Be 2 and x € X put
B(A, B)x = B(A,B) = [gm(-, 4) xdl.

Then f,: P x 2 — Z is separately countably additive, i.e., it is a vector bimeasure
in the sense of Definition VIIL1 in [11], for each x € X. If either (Ayb) holds, or X
is separable, then B(A, B)e L(X, Z) = I'*{(X, K; Z). Hence in these cases B: 2 x
x 2 - I'*X,K; Z} is an operator valued bimeasure separately countably ad-

ditive in the strong operator topology, (see Definition VIIL1). If either sup s, A) <
seB

< +o0 for each Ae P and Be 2, or the function s — s, A). y(s), s€S, is
finite valued and 2-measurable for each Ae P and B € 2, then the semivariation
B: 2 x 2 - [0, + 0], (see Definition VIIL3), is locally o-finite, (see Definition
VIILS).

Proof. The first assertion of the theorem may be proved similarly as Lemma
L5 in [7].

To the second assertion of the theorem: If X is separable, then by (A,) and the
Pettis theorem, see Theorem 3.5.5 in [16], the function s — mis, A) . x5(s) € L'X, Y),
se€ S, is 2-measurable for each A€ ? and Be 2. Let A€ P and Be 2 be fixed.
Since by assumption the semivariation I is o-finite on 2, there is a sequence B, € 2,
n=1,2,... such that B, ~ B and I(B}) < +oo for each n = 1,2, .... For n =

@0
=1,2,...put B, = {se B, |m(s, 4)| < n}, and let 2* = U (B, n B;) n 2. Then 2*
n=1
is a d-subring of 2 such that ¢(2*) = 2, and B(4, B) € L'X, Z) for each B* € 2*.
Now B(4. B) € L(X, Z) by Theorem 1 in [12].
(o]
If (Aob) holds, then we put 2* = (J B, n 2.
n=1

The last assertions of the theorem are evident from the definitions and the proper-
ties of the integral.

The next definition generalizes Definition III.1 in [7]

Definition 3. Assuming (Al), we say that the indirect product of the measures
m(s, *): ? - L(X,Y), seS, and the measure I: 2 — L(Y, Z) exists, if there is
a necessarily unique L{X, Z) valued measure on # ® 2 countably additive in the

445



strong operator topology, which we denote by I ® m(s, ’), such that
(I @ m(s, *)) (A x B)x = [gm(s, A) x dI

for each Ae ?, Be 2 and xe X.

We now successively check the validity of the results from part III in this general
setting of indirect products. When the situation is clear, we omit the formulation
of the corresponding theorem, lemma etc.. We will simply write G-Theorem III
(G for generalized) and, if necessary, indicate its proof.

G-Lemma III.1 holds — by virtue of Theorem 1 from [12] the proof is evident.

We shall need the following assumptions:

(A;) [(Azb);: There is a d-subring 2, < £ such that the measure m(s, +): 2, -
- L(X , Y) is countably additive in the uniform operator topology for each se S,
and the function s — ||m(s, *)|| (4) . xs(s), s € S, is Z-measurable [and bounded, for
each Ae?, and Be 9.

(A3) [(Asb)[: There is a d-subring 2~ < 2 such that the semivariation (s, *):
2~ — [0, + ) is continuous for each se S, and the function s — (s, 4) . xz(s),
s e S, is Z-measurable /and bounded/ for each A€ 2~ and Be 9.

G-Lemma 1I1.2, 1) Assume (A,) [(Aob)/. Then for each E€ # ® @ and each
x € X the function s — m(s, E’) x, s€ S, is -measurable [and bounded)/.

2) Assume(A;) [(A;b)/. Then for each E € 2, ® 2 the functions — |m(s, - )| (E¥),
s €S, is Z-measurable [and bounded|.

3) Assume (Aj) [(Asb)/. Then for each Ee 2~ ® @ the function s — (s, E),
s €S, is P-measurable [and bounded|.

G-Theorem III.1 holds under the assumption (Al). The necessity part may be
proved as in Theorem III.1, while the sufficiency part may be proved similarly as
Lemma IIL5 in [7].

G-Theorems 1I1.2 holds.

G-Theorem II1.3 holds if we successively assume (A;b) = (Aqb) N (A,), (A,b)
and (A;b).

G-Theorem 1114 is valid if sup (s, A) < + o for each A€ 2 and Be 2.

seB

G-Theorem IILS is valid if both sup (s, T) and I(S) are finite.
seS

G-Theorem II1.6 holds under the assumption (Aj).

G-Theorem IIL.7 is valid if the following three conditions are satisfied:

a) Y has a countable norming set,

b) v(y*m(s, +), A) < +oo for each A€ P, se S, and each y* e Y*, and

¢) the function s — v(y*m(s, +), 4) . x(s), s € S, is D-measurable for each 4 € 2,
Be 9, and each y* e Y*.

G-Theorem IIL.8 holds for the function gg for each Ee 2~ ® 2 if (A3) holds.

G-Theorem IIL9 is valid under the assumption (A;).

We shall need another assumption:

(A,): For each couple (A4, B)€ o(?) x o(2) there are (A4,,B,)e? x 9, n =
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=1,2,...such that 4, /* 4, B, /* B, and sup (s, 4,) < 4+ oo foreachn = 1,2, ...
seB,,

G-Theorem 11110 is valid under the assumption (A,).
G-Theorem IIL.11 holds under the assumption (A,) in the sense that the set of all

r

finite sums of the form Z ) ,AjeAgn P, x;€ Xy, 5€Byandr = 1,2, ...

is dense in the subset {IA f( s) dm(s, ), A€ o(2), s € S} of Y, where A4, € o(%) and
B, € 0(2) are such that {(t,s)e T x S, f(t,s) # 0} = 4, x B,.

G-Corollary of Theorem III.11 is valid under the assumption (A4) and the as-
sumption that the set {m(s, 4) x, A€ Ay N P, se B,} is separable for each x € X
for some Ay € a(?), By € o(2Z) such that {(t,s)eT x S, f(t,s) + 0} = 4, x B,.

G-Theorem II1.12 holds under the assumption (A,). (Take 4, and B, as above.
If # = 6(%), where # is a countable ring, then the function s — m(s, R) x . xp,(s),
s€ S, being Z-measurable by (A,), is separable valued for each Re £ and each
xeX.)

G-Theorem 5 (VILS) is valid under the assumption (Ay).

G-Lemma IIL5 holds under the assumption (A,).

For the general Fubini theorem below we shall need our last assumption

(As): For each couple (4, B)e 2 x 2 and each x € X there is a countably ad-
tive measure Ay 5, AN P —[0,1] such that Ce An P, 1,5,(C) =0 implies
m(s, C) x = 0 for each s € B.

Let us note that if m(s, *) = m for each s €S, then (As) obviously holds, since
each countably additive vector measure has a control measure.

The following lemma is immediate.

Lemma 3. Let X be a separable Banach space and assume (As). Then for each
couple (A, B) € o(2) there is a countably additive measure A p5: A P — [0,1]
such that Ce An 2, A, 5(C) = 0 implies m(s, C) = 0 for each s € B.

For Ae 2 let ca(A n 2, Y) denote the Banach space of all countably additive
vector measures y: AN 2 — Y with the semivariation norm ||y|| (4). If Yis the space
of scalars, we write simply ca(A N P).

The next lemma is also immediate.

Lemma 4. Assumption (As) holds if either

a) the set of vector measures m(s, ) xeca(An 2,Y), se B, is separable for
each couple (A, B)e 2 x 2 and each xe X, or

b) Y has a countable norming set, for example, if Y is separable or a dual of
a separable Banach space, (sece Theorem 2.8.5 in [16]), and the set of scalar
measures y*m{s, -) x € ca(A N P), s € B, is separable for each couple (A, B)e Z x
X 2, each x € X, and each y* € Y*.

We are now ready to prove

Theorem 11 (General Fubini Theorem). Assume (A;) and (A,). Let the indirect
product | ® m{s, ) PRI L{X, Z) exist, let :TxS—>X be a ?® 2-

447



measurable function, and let the function f(+,s) be integrable with respect to the
measure m(s, +) for each s€ S. For E€ o(? ® 2) let gz: S — Y be the 2-measurable
Sunction gg(s) = [g. f(+,s)dm(s, *), se S, (see G-Theorem 5), and consider the
following assertions:

a) f is integrable with respect to the indirect product measure | @ m(s,:);

b) the function gy is integrable with respect to the measure | for each set E e
€o(? ® 2), and
(F) [ 41 ® m(s, ) = fs for (- 5) dm(s, -)dl = s gzl
for each Ec o(? @ 2).

Then b) implies a) and (F). If we assume (As) then, conversely, a) implies b)
and (F).

Proof. Take a couple (4o, By) € 6(2) x 0(2) such that {(t,s)e T x S, f(t,5) *
+ 0} = 4, x B,. According to assumption (A,) there are (4, B,)e? x 2,
k =1,2,... such that A, » A,, B, 7 B,, and sup 's, 4,) < +oo for each k =

s€By
= 1,2, .... By o-finiteness of the semivariation ! on 2 there are B,e 2, k = 1,2, ...

such that B, / By, and I(B;) < +oo foreach k = 1,2, ....
Let f: Tx S—>X,n=1,2,... be a sequence of Z ® 2-simle functions such
that £,(t,s) = f(t, s) and |£,(t, s)] ~ |£(t, sj| for each (1, s)e T x S, see Section 1.2

in [5]. Put X, =5p { Ejlfn(T x S)}. Obviously we may replace X by X,. Since X,

is separable, by Theorem IIL.13-1) there is a countably additive measure
2:(Ag x Bo)no(? ® 2) - [0,1] such that Ne(4, x By)) no(? ® 2) and
(N) = 0 implies (I ® m(s, )y (N) = 0, where (I ® m(s,*)) =1® m(s, *):

b) = a) and (F). According to G-Lemma IIL.5 the set function

E— [s{ef(s.s)dm(s, *)dl, Ee(4, x By)no(? ® 2),

is a countably additive vector measure. Let 4,: (4, x By) N o(? @ 2) - [0, 1]
be its control measure. Put A = 1; + 1,. By the Egoroff-Lusin theorem, see Section
1.4 in [5], there is a set N €(4y X By) no(? ® 2) and a sequence of sets F, €
€?® 2, k=1,2,...such that A(N) =0, F, #/ F — N, where F = {(t,s)e T x S,
f(t,s) % 0}, and on each set Fy, k = 1,2, ... the sequence f,, n = 1,2, ... converges
uniformly to the function f. Put F, = (4, x (B,n B))n F,, k = 1,2,.... Now a)
and (F) immediately follow from G-Theorem III.4 and Lemma 2.

(As) and a) = b) and (F). Since X, is separable, by Lemma 3 there is a countably
additive measure A4, g1 Ag 0 2 — [0, 1] such that Ce 4y n 2 and 14, 5(C) = 0
implies m(s, C) = 0 for each se B,. Let Ee o(? ® 2). Since the function g is
9-measurable, by Lemma IIL6 there is a countably additive measure wg: o(2) —
— [0, 1] such that D € 6(2) and wg(D) = 0 implies that g . yp is integrable with
respect to I and [, g dl = 0. It remains to put 15(G) = 4,(G) + (0g @ A4y,5;) (G)
for Ge 6(2 ® 2) and to apply G-Theorem II1.4 and Lemma 2 to obtain b) and (F).

Finally, as a corollary we have that G-Theorem II1.16 holds if susp (s, T) < + 0.

SE,
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