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ON CLOSED AND INDUCTIVELY CLOSED IMAGES
OF PRODUCTS OF METRIC SPACES

B. S. KLEBANOV, Moscow

1. INTRODUCTION

Let C be a class of topological spaces. The class of all spaces which are con-
tinuous closed images of products of spaces of this class will be called the ¢-extension
of C. We shall be mainly interested in the ¢-extension of the class of metric spaces.
The spaces which belong to this class will be called ¢-spaces. The problem of studying
¢-spaces was raised by V. V. Filippov. The class of ¢-spaces includes such important
and well-studied types of spaces as dyadic spaces (i.e., continuous Hausdorff images
of generalized Cantor cubes) and LaSnev spaces (i.e., continuous closed images of
metric spaces). Dyadic and Lagnev spaces have been studied separately. The joint
investigation of these two classes was stimulated by the well-known theorems
stating that in them the property of a space of being first-countable is equivalent
to its metrizability. So, the question naturally arises if a first-countable ¢-space is
metrizable. We have got a positive answer to the question. This fact, in our opinion,
convincingly demonstrates the use of studying ¢-spaces.

In the final section we investigate properties of spaces which are images of products
of metric spaces under inductively closed mappings (these mappings generalize
closed ones). The study provides us with further information on ¢-spaces.

2. PRELIMINARIES

Throughout the paper all mappings are assumed to be continuous and onto, and
all spaces are Tj. Products of spaces (i.c., Cartesian products endowed with the
Tychonoff topology) are denoted by [[{X,: r € T} or shorter [[X,. The symbols p,

t

and ps denote the projections of the product onto its factor X, and subproduct
[[{X,: teS}. Fora family of sets y Uy stands for Y{U: U ey}. The closure, the interior
and the boundary of a set A are denoted by Cl A4, Int 4 and Fr 4 respectively.
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For references we use in the main [1]; original papers are quoted only if we can
not refer to that book. The notation of cardinal functions follows [1].

In this note we want to offer, leaving out details, the main ideas used in the study
of closed and inductively closed images of products of metric spaces. Striving for
conciseness of the exposition we have omitted details in many proofs. Certain state-
ments are given without proof.

3. CLOSED IMAGES OF PRODUCTS OF METRIC SPACES (¢-SPACES)

We recall that a subset of a T;-space X is g-discrete in X if it can be represented
as a countable union of closed discrete subsets of X. Every metric space M has
a dense subset that is g-discrete in it, since M has a o-discrete base.

Theorem 1. Let X = [[{X,: t € T}, where each X, contains a dense subset which
is o-discrete in X, (in particular, X, is a metric space), and letf: X — Y be aclosed
map. Then Y = Y, U Y,, where Intf~'(y) = 0 for ye Y iff ye Y, and Y, is o-
discrete in Y.

Proof. Define Y, = {yeY:Intf '(y) =0 and Y, = Y\Y¥,. For each yeY,
take a finite T(y) < T and a non-empty open set U(y) < [[{X,: t € T(y)} such that
Prcy(U(¥)) = f71(). Let B, be a o-discrete subset of X,. The set [[{B,: e T(y)}
being dense in [[{X,: t€ T(y)}, there is a point a,e U(y) n []{B,: € T(y)}. Put
A(y) = proy(ay) and y = {A(y): y € Y}

We assert that the family y is o-discrete in X. Obviously, it suffices to show that
for each n 2 1 the family y, = {A(y): y € Y;, |[T(y)| = n} is o-discrete in X. The last
can be proved by induction with respect to n.

Choose a point in every element of y. Thus we obtain a set W which is o-discrete
in X. As f is closed, the set f(W) = Y, is o-discrete in Y. This completes the proof.

Theorem 2. Let X = [[X,, where each X, is a metric space, and let f: X - Y
t

be a closed map onto a q-space. Then Frf‘l(y) is compact for each y € Y.

We shall remind that Y is called a g-space [2] provided for each y € Y there exists
a countable set of neighbourhoods of y, {0,()},en, such that, if y, € 0,(), then the
sequence { Vn}ney has a convergent subsequence. Note that both countably compact
spaces and spaces of pointwise countable type are g-spaces. Actually the last theorem
is valid in the much more general case: one can suppose that all X,’s are isocompact
(see [3]) 6-spaces (see [4]) (every normal weakly paracompact space is an isocompact
0-space). In this generalized formulation Theorem 2 is an extension of the cor-
responding result of Michael [2] (the subject goes back to Vainstein’s lemma [1;
4.4.16]. The theorem has been proved also by Certanov [5]. From Theorem 2 one
readily deduces

Corollary 1. Under the assumptions of Theorem 2 there exists a closed subspace
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X* of X such that the restrictionf|X* is a perfect map andf(X*) = Y.In particular,
S will be ¢ k-covering map.

The property of being a regular space is multiplicative, hereditary and preserved
under perfect maps. Hence Corollary 1 yields

Corollary 2. If a ¢-space is a q-space, then it is regular.

Corollary 3. A countably compact ¢-space is a dyadic space.

Proof. Let f be a closed map of the product of metric spaces X = [[X, onto
t

a countably compact space Y. Since a countably compact space is a g-space, we can

choose a subspace X* of X as in Corollary 1. Therefore, by virtue of the well-known

properties of countably compact spaces [1; 3.10.4, 3.10.10], theset F = f~ '(Y) N X*

is countably compact. Consequently, each p,(F) is compact. Clearly, f([[p{F)) = Y,
t

which is — by Corollary 2 — a Hausdorff space. It remains to notice that the con-
tinuous Hausdorff images of products of metric compact spaces are precisely the
dyadic spaces.

The next theorem is one of our main results.

Theorem 3. Let X = [[{X,: t € T}, where each X, is a metric space. If X admits
a closed map onto a non-discrete q-space, then the family {X,},ET contains at
most countably many non-compact spaces.

For the proof we shall need the following

Lemma 1. Let X = [[{X,:teT}. If X has a non-empty compact Gssubset,
then the family {X,},ET contains at most countably many non-compacts spaces.

Proof of Theorem 3. By virtue of Lemma 1 it suffices to find in X a non-empty
compact Gsset. Let f: X — Y be a closed map onto a non-discrete g-space. Theorems
1 and 2 imply that Y = Y, U Y;, where for ye Y Intf~'(y) = 0 iff ye ¥,, £~ 1(y)
is compact for each y € Y, and Y, is o-discrete in Y. Two cases are possible.

1) Assume that Y, + 0. Fix a y, € Y, and a countable family {O,(y,)} as in the
definition of a g-space. By Corollary 2 we can suppose that Cl 0, 4(y,) = 0,(y,)
for each n. Since Yis a g-space, F = ﬂO,,( yo) is a closed countably compact G,-subset

of Y. As Y, is a Gy-set in Y, one can find, using the regularity of Y, a closed countably
compact G-subset F; of Y such that y, e F; = F n Y,. The restriction of f to R =
= f7!(F,) is a perfect map. Therefore R is a closed countably compact G;-set in X.
Since R is closed in the compact set [[{p(R): te T}, it is also compact. Finally,
S 7' (»o) E R, so that R =+ 0.

2) Let now Y, = 0, i.e., Int f~'(y) + 0 for each y € Y. Since Y is a non-discrete
g-space, there exists a countable set C < Y having an accumulation point, say y*.
For every y € C choose a point a, € Int f~ l(y). Clearly, there exists a finite T(y) = T
such that the set A(y) = pr(y) Pry(a,) is contained in f (). As f is closed, there is
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a point be Frf='(y*) n CLU{A(y): ye C}. Let S = U{T(y):yeC} and R =
= ps! Ps(b). One verifies that the inclusion R < Fr f~!(y*) holds. By Theorem 2
Frf~ ‘(y*) is compact, and so is its closed subset R. The set S being at most countable,
ps{b) is a Gy-set in ps(X), and hence R is a Gy-set in X. The proof is finished.
Theorem 3 impels us to distinguish the following special caseifa ¢-space. A space
is called a y-space if it is a closed image of the product of the from []C,x M, where
t

each C, is a metric compact space and M is a metric space. The y-space can be
defined equivalently as a closed image of the product of a dyadic and a metric space.
Notice that every y-space is paracompact. The almost metrizable spaces [6] are
important examples of y-spaces.

The last theorem yields

Corollary 4. In the realm of g-spaces the concepts of a ¢-space and a Y-space
are equivalent.

Theorem 4. Let Y be a ¢-space that is also a g-space. Then Y is a paracompact
p-space.

Proof. By Corollary 4 Y is a y-space. Applying Corollary 1, we conclude that Y
is a perfect image of a closed subspace of the product of a compact space and a metric
one. But the subspaces like this are exactly the paracompact p-spaces (see [7; Ch. V.
228, Ch. VI. 60]. To complete the proof it remains to notice that the property of
being a paracompact p-space is preserved under prefect maps (see [8]).

Seeking to generalize theorems concerning ¢-spaces, we have come to a con-
sideration of the g-extension of stratifiable [9] spaces. The class of stratifiable spaces
contains metric spaces; however, the property of being stratifiable is more flexible:
it is not only hereditary and countably-multiplicative, but also is invariant under
closed maps. An analysis of our proofs shows that Theorems 1—3 remain true for
the spaces belonging to the ¢@-extension of stratifiable spaces. Let us observe that
Theorem 4 partially holds for the spaces of that kind, viz., one can assert that Y
is paracompact, but not necessarily a p-space.

The following theorem plays the key role in the proofs of metrization theorems
for ¢-spaces.

Theorem 5. Assume that each dyadic subspace of the Y-space Y is metrizable.
Then Y is a Lasnev space.

The combined application of Theorems 3 and 5, together with criteria on the
metrizability of dyadic spaces and Lasnev spaces, allows to get a series of theorems
on the metrization of ¢-spaces. In particular, the following important theorem holds.

Theorem 6. A first-countable @-space is metrizable.

To prove Theorem 6 one should apply first Corollary 4 from Theorem 3, then
[1; 3.12.12(e)] and Theorem 5, and finally [1; 4.4.17]. Let us mention that our paper
[10] contains stronger than Theorem 6 results.
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We conclude this section with the result which generalizes Vainstein’s theorem on
closed images of complete metric spaces [1; 4.5.13(e)].

Theorem 7. Let X be a product of complete metric spaces. If a metric space Y
is a closed image of X, then Y is completely metrizable.

Proof. Suppose that Y is non-discrete (the contrary case is obvious). Then
Theorem 3 is applicable. It is well-known that both compact and complete metric
spaces are Cech-complete. Since compactness is multiplicative, we deduce that X
can be considered as a countable product of Cech-complete spaces. Hence, X is
Cech-complete [1; 3.9.8]. Applying Corollary 1 and the properties of Cech-com-
pleteness [1;3.9.6, 3.9.10], we obtain that the metric space Y is Cech-complete, i.e.,
is metrizable in a complete manner.

4. INDUCTIVELY CLOSED IMAGES OF PRODUCTS OF METRIC SPACES

A map f: X — Y is called inductively closed if there exists a set X* < X such
that the restriction f|X* is a closed map and f(X*) = Y.

This definition is due to V. V. Filippov. Clearly, closed maps and retractions are
inductively closed.

Following [ 1], for a space X by e(X) we denote the extent of X, i.e., X, sup {|F|: F
is a closed discrete subset of X}. Observe that e(X) does not exceed both the Lindelof
number and the hereditary Souslin number of X.

The fundamental result of the section is
Theorem 8. Let X, = [[X,, where each X, is a metric space, and let f: Xo —» Y
t

be a closed map. Assume that one of the following holds:
Case 1. e(Y) < 7,
Case 2. Y is countably compact.
Then for each t there exists a subspace Z, of X, — with d(Z,) < t in Case 1 and
which is compact in Case 2 — such that f([[Z, " T,) = Y.
t

(Likeness between Cases 1 and 2 is explainded by the fact that countable com-
pactness of a space means finiteness of its closed discrete subsets).

For the proof we need

Lemma 2. Let o be a disjoint open cover of a space X and f: X — Y be a closed
map. If e(Y) < t (resp. Y is countably compact), then there exists a subfamily
B < o such that: '

a) |B| < t(resp. finite); b) |f(U)| > t (resp. infinite) for all U € B; ¢) | f(Ux\ B)]

(resp. finite).

Proof of Theorem 8. Without loss of generality we can assume that dim X, = 0
for any X,. Indeed, as shown by Morita [1; 4.4.J], one can find a metric space X

IA

T
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with dim X; = 0 which admits a perfect map, say h,, onto X,. Since h = []h, is
t

a perfect map [1; 3.7.7], so is the map g defined as the restriction of h to X =
= h™*(X,). Therefore the map f o g: X{ — Yis closed. If we have found in each X;
a subspace Z; with the required properties, then Z, = h,(Z;) will suit our purposes.
Further we shall suppose that dim X, = 0.

We shall give first the proof for Case 1, so that let e(Y) < 7. Since dim X, = 0,
each open cover of any subset of X, has a refinement consisting of disjoint open sets
of arbitrarily small diameter [1; 7.3.1]. Using this fact and Lemma 2, for each X,
and n = 1,2, ... one can construct by recursion with respect to n a family 4,, and
its subfamily u,, such that: (1) 2,, consists of disjoint open subsets of p(X,),each
having diameter <1/n; (2) Uiy, = p(Xo) and Ulyss = Uttus 3) |tt] = 7
(@) [f(p7 ' (W))| > = for all We p,; (5) |f(U{p ' (W): We Ay p})| < 7.

Put M,, = Up,, and M, = (\M,,. One can show that d(M,) < 1. If

nx1

S([IM,n X,) = Y, the proof is completed. Otherwise, for every point ye Y\
t

N(ITM, n X,) choose a point in f~*(y). Let R be the set of all so chosen points.
t

It turns out that |p(R)\M,| < t for each t. Let Z, = M, U p,(R). The preceding
inequalities imply that d(Z,) < . Evidently, f([[Z, n X,) = Y.
t

The proof for Case 2 is similar to that for Case 1. Making use of the equality
dim X, = 0 and Lemma 2, one can construct, for each X, and n = 1, a family 4,,
and its subfamily p,, such as follows. They satisfy conditions (1) and (2) indicated
above, as well as conditions (3)—(5), in which one should replace “ <7 by “finite”
and “> 7"’ by “infinite”. The set M, is defined as earlier. It appears that M, is compact.
Let us consider the case when Y\ f([[M, n X,) = 0. Define R as above. One can

t

prove that if the set p,(R) \ M, is infinite, then any its infinite subset has an accumula-

tion point in M,. Thus the set Z, = M, U p,(R) is compact. Besides, f([[Z, n X,) =

=Y t '
From Theorem 8 we infer

Theorem 9. Let f be an inductively closed map of | [X,, where each X, is a metric
t

space, and let P = f(X). Assume that one of the following holds:
Cuse 1. e(P) < =,
Case 2. P is countably compact.
Then for each t there exists a subspace Z, of X, — with d(Z,) < t in Case 1 and
which is compact in Case 2 — such thatf(HZ,) 2 P.
t

Let us proceed to applications of Theorem 9.

Theorem 10. Let Y be an inductively closed image of a product of metric spaces
and e(Y) < 1. Then we have:
(a) the Sanin number of Y < «;
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(b) if Y is a Hausdorff space and y(Y) < 2%, then d(Y) < 1;

(¢) if Yis a Hausdorff space and y(Y) < 7, then nw(Y) < .

Proof. Theorem 9 implies that Y can be considered as a continuous image of
[[{Z.: t e T}, where Z, is metric and d(Z,) < t for each t € T. By virtue of the Sanin
theorem [1; 2.7.11], $([]{Z,: te T}) < t. Continuous mappings do not increase
the Sanin number, thus (a) is proved. In case (b) Gleason’s factoring theorem (cf.
[1; 2.7.13]) implies that there exists an S < T with |S| < 2° such that [[{Z,: 1€ S}
can be mapped onto Y. By [1; 2.3.15] d([[{Z,: teS}) <, therefore d(Y) < .
Finally, to prove (c), we apply again Gleason’s theorem and find an S’ < T with
|S’| < 7 such that [[{Z,: t € S’} admits a map onto Y. Each Z, being metric, d(Z,) =
= w(Z,). Hence w([[{Z,: te S'}) < 7 [1;2.3.13], so that nw(Y) < =.

As it is seen from the proof, Theorem 10(c) for = = X, can be strengthened as
follows.

Theorem 11. Let a Hausdorff space Y be an inductively closed image of a product
of metric spaces. If e(Y) = R, and y(Y) = R, then Y is a closed image of a metric
space of weight .

Applying first the assertion of Theorem 9 for Case 1 and then a technique of
Arhangel’skii [11], one can obtain

Theorem 12. Let X be a product of metric spaces, f: X — Y be a closed map,
e(Y) < 1, and the tightness of Y < 1. Then there exists a closed set R = X such that
w(R) < 7 and f(R) = Y.

In particular, if © = Ny in Theorem 12, then Y'is a closed image of a metric space
of weight ¥,.

The statement of Theorem 9 for Case 2 yields

Corollary 5. Let a Hausdorff space Y be an inductively closed image of a product
of metric spaces. If a set P = Y is countably compact, then P is contained in
a dyadic subspace of Y.

Notice that the above corollary generalizes Corollary 3. Since dyadicity is here-
ditary with respect to non-empty closed Gj-sets [1; 4.5.10], Corollary 5 implies that
if the set P is, moreover, a non-empty closed G;-set, then it is a dyadic space.

Let us note in conclusion that a more detailed exposition of the problems considered
in this note can be found in [12].
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