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Let F be a field and K a separable normal extension of F of degree n. Let G =
= {91, 92, ....ga} be the Galois group of K[F. It is known that there exists an
element w € K such that g,w, g,w, ..., g,0 are linearly independent, hence they form
a basis of K/F. Such a basis is called a normal basis of K over F.

Various proofs of the existence of a normal basis are given in several textbooks.
The proofs always distinguish two cases: F is infinite and F is finite. In this last
case both F and K are finite fields. For example Van der Waerden ([9], Russian edition
pp. 239—243) proves the case F is infinite, the case F is finite is rather sketched.
A thorough discussion of the case F finite given in L. Rédei ([6], pp. 552—558)
is certainly not short. The proof of the case F finite (more generally K cyclic over F)
given in N. Jacobson ([ 3], pp. 57 and 61) is short but it is based on several previously
proved not quite elementary results. An analogous situation is in the book A. A.
Albert ([1], p. 120).

In this paper we first give a new short and transparent proof of the normal basis
theorem for cyclic extensions over any field F. In section 2 we give a method how to
find effectively all normal bases. As far as I can decide the systematic method
developed in this paper is new. In section 3 we illustrate this method on several
examples.

1

Theorem 1. Any cyclic extension K/F has a normal basis over F.

Proof. Write K = F(«), where « satisfies f(¢) = 0 and f(x) is an irreducible
cyclic polynomial of degree n over F. Let G = {g, g%, ..., ¢"" ', g" = 1} be the Galois
group of K/F. The roots of f(x) = 0 will be written in the form

— — — 2 — -1
0y =0, Oy =go, O3 =go..ou=4g" "a.
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Introduce the following n x n matrices:

1 1 o1 010...0
A4d=1o; o ...0 N=|001...0
2 o2 .. o2 ,
: 000 ...1
A 100 ...0

and (T denotes the transpose)

000 ...01
N'=N'=[100...00
010...00
000...10

Construct finally the n x n matrix C = (c;;) defined by

) gl =coo +Co® A+ ...+ Couot,
go  =cro  F e A oo F ot
ge® =y +Cp® A ..+,

o | »
ga" = cn-—l,O + cn—l,](x + ...+ cn*l,n*la’l >

(coo = 1, coy = ... = con—y = 0). Otherwise written

2 n—1\T 2 n—1I\T
(L op, 05, ..., 05 )T = C(1, 0y, of, ..., o )T

By applying ¢'~* (i = 2) to both sides we obtain (with the convention a,,,; = «,)
(1, oo 0y oo i 1) = C(L, 0ty 0f, .. a7

Hence the matrix C4 is equal to the matrix arising from 4 by (cyclicly) shifting
the columns of 4 to the right (i.e. we replace the first column in 4 by the last column,
the second by the first column, and so on). Therefore C4A = AN" and (since the
determinant |4| # 0)

(2 A71C4 = NT .,

We have proved that the matrices C and N” are similar in K = F(«). Now since all
elements of the matrices C and N” are in F, they are similar in F. [ This is the unique not
quite elementary statement from the theory of matrices used in the proof. It immedi-
ately follows from the fact that (2) implies 4~ '(C — AE) 4 = N” — JE and the
J-matrices C — AE and NT — AE have the same invariant factors. Hereby E is the
n X n unit matrix. |

Hence there exists a non-singular matrix P with elements in F such that PCP™! =
= NT. '

In the following sections it is more convenient to work with N (instead of N).
The matrices N and N7 are similar (in F). As a matter of fact we have N” = SNS,
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where 00...01
S=S"1"=[00 10
10...00
We finally have: There is a non-singular matrix Q (with all element in F) such that
3) QCQ™ ' =N.
Denote Q(1, o, ...,a" ")" = U = (uy, uy,...,u,)". Since Q is non-singular,
(uy.us, ..., u,) are linearly independent over F. We show that (uy, u,, ..., u,) is

a normal basis of F(ac) over F. We have
gU = Q(g1, g, ..., go" )" = QC(L, o, ..., " *)" = QCQ™'U = NU .
Explicitly:
(guy, guyy oo gu,) = (uy, uzy ooyt uy)

whence
uZ = gul’ u3 = guz’ e gun—l = llll b

and
U = (uy, guy, guy, ..., 9" 'uy).
This proves Theorem 1.
Note for further purposes: Since N” = E, the relation (3) implies C" = E. Next

since det [N| = (—1)""", we have det |C| = (—1)""".

2

We now turn to the question how to find effectively all normal bases of F(a)
over F. This will be done by using the matrix C introduced above.

We have seen: If an n x n matrix Q satisfies (3), then the elements of the column
vector Y = Q(1,a, ...,a" ")" form a normal basis. Conversely, suppose that the
elements of the vector Z = R(l,oc, ...,a”"‘)T with some non-singular matrix R

form a normal basis, i.e. gZ = NZ. Then
R(g1, gat, ..., goa" ") = NZ,
implies RC(I, oAy ot"fl)T = NZ and RCR™!Z = NZ. Hence RCR™! = N, ie. R
satisfies (3) with Q = R.
To find all solutions satisfying (3) (with unknown Q) we first find all solutions

of OC = NQ.
Denote by ¢; = (riy, Figs ..os 1) (i = 1,2, ..., n) the rows of Q. Then

04 010 ...0) (o
02 001 ...0(]e,
o= :
Ou—1 000 ... 1|]o,-:
0 100 ...0J o,
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implies ¢,C = 05, 0,C = 03, ....0,-,C = g, [and ¢,C = ¢,]. Hence Q is necessarily
of the form
(4) Q1
Q=|¢C
Qlcz

0, cr- 1
Conversely, if ¢, is an arbitrary row vector (with elements in F), then with respect
to C" = E we obtain

0.C
91C2
0.C=|: =NQ.
o, "t
9, '
This implies
Lemma 1. Any normal basis (w,, w,, ..., ..., w,) of the cyclic field F(«) is of the
form
w, 1 0 1
w, | =0« =|oC o ,
w" an—l an'l an-—l

where the row vector ¢ = (r,ry,....1,) (r;€ F) is restricted by the condition
det IQ] * 0.

A row vector ¢ = (ry,...,r,) will be called admissible (with respect to C)
if for the corresponding matrix Q, we have dct fQI + 0.

For a given row vector ¢ denote by y,(4) the monic A-polynomial of smallest
degree (with coefficients in F) such that ¢ y,(C) = 0. The polynomial ,(4) is called
the minimal polynomial of ¢ with respect to C. It is well known that y,(4) is uniquely
determined and (1) | 2* — 1.

The condition that g, ¢C, ..., oC"~ ! are linearly independent says that the minimal
polynomial of ¢ with respect to C is A" — 1.

We decompose the polynomial A" — 1 into the product of monic irreducible
factors over F. This factorization is of the form

(5) =1 =[e2). 0:(4) ... 0(A)]".
a) If the characteristic of the field F is zero, or a prime p = 2 with (n. p) = 1,
then t = 1.
b) If the characteristic of F is p and n = mp®, (n, m) = 1,thent = p° e = I.
Construct now the polynomials

b)) =21, gy =t =t

01(2) el(4) o4)
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The minimal polynomial of a row vector ¢ with respect to Cis A" — 1 if and only if ¢
is such that
[ ¢1(C) +0, Q¢2(C) + 0, ...,Q¢r(C) +0.
This implies:
Lemma 2. Denote by W, the linear space of all row vectors g = (ry, ..., r)
satisfying o d),-(C) =0 (i =1,2,...,r). Then ¢ is admissible with respect to C
if and only if ¢ is not contained in the (set theoretical) union {Wy L W, u ...u W,}.

The procedure described by Lemma 2 can be essentially simplified. In particular,
it will turn out that it is not necessary to solve the system of linear equations

Q qb,(C) = 0.
Lemma 3. Any vector ¢ satisfying ¢ ¢(C)= 0 is contained in the linear space V;
spanned by the rows of the matrix ¢,(C).

Proof. a) We first give a very simple proof in the case that A" — 1 = ¢,(2) ...
... @(%), where all irreducible factors are different.

Since ¢{(C) . ¢{C) = 0, it is clear that any ¢ contained in V; satisfies ¢ ¢,(C) = 0.
We show conversely that any g satisfying ¢ ¢,(C) = 0 is contained in V.

Since ¢{(4) and ¢(4) are relatively prime, there are two polynomials &;(4), 7,(4)
such that &/(4) (%) + n/(4) ¢(2) = 1. This implies

éi(c) (Pi(C) + ’7;(C) d’i(c) =E,
and multiplying by ¢ we obtain

v Q=20 'fi(c) ‘Pi(C) +e ¢i(c) Wi(c) .

If o is such that ¢ ¢(C) =0, we get ¢ = ¢ £(C) ¢{C). Denote ¢ &(C) =
= (K9, K, ..., k) with k$? € F. Then ¢ = (k{”, ..., k) ¢{(C), which says that ¢
is a linear combination of the rows of ¢,(C), hence it is contained in V.

b) Suppose next the general case, i.e. the case that repeated irreducible factors

may occur. Write

=1 =[e4)... 0 A)]",
where n = mp®, (m, n) = 1, e = 0. We cannot apply the argument used above since
®{2) and ¢,(4) are not relatively prime. The proof which follows holds however
also in the case a) (i.e. e = 0).

Again, if ¢ is in the linear space V; spanned by the rows of q),-(C), then ¢ ¢,(C) = 0.
We prove conversely, if ¢ satisfies ¢ ¢,(C) = 0, then ¢ is in V.

Recall that there exists a non-singular matrix Q, such that Q,CQg ' = N. If g(4)
is any polynomial over F, then Q, g(C) Q5 ' = g(N).

Suppose that ¢ = (ry, 75, ..., 7,) satisfies ¢ ¢,(C) = 0. This is equivalent to
0 ${C) 05" = 0and 005" . Qp ${C) Q5 ' = 0. Write o' = 005" = (1}, 75, .., 7).
We then have
(6) o' ¢E(N) =0.
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If the vector ¢’ satisfies (6), then each of the rows of the matrix

’

0 (ST
o'N =|rry ... rm_4
o'N"! Fory ... T
satisfies (6)
The circulant to the right can be written in the form

ME + N + riN? + ... 4+ rN"™! = §(N).
Hence y(N) ¢{(N) = 0.
Write Y(4) = ¢i(4) x(A) + Xio(4), where deg xio(4) < deg @,(1) . Then y;o(2) is
necessarily the zero polynomial, since otherwise
[q’i(N) Xi(N) + Xio(N)] ¢i(N) = Xio(N) ¢i(N) =0,
and the minimal polynomial of N would be a polynomial of degree <n, which is
not true. Hence Y(N) = y(N) ¢(N). The first row of Y(N) is o' = (r}, 15, ..., r}).
Hence
0 =(1,0,...,0) x(N) @(N).
Denote (1,0, ..., 0) x(N) = (ki, k3, ..., k;,). We have
¢ = (ki ki, - ky) @4(N) .
Using NQ, = Q,C, and ¢(N) Q, = Q, ¢(C) we have successively
00" = (ki Ky, .. k) @i(N)
9 = (klls k5, ..., k,',) (Pi(N) Qo = (k,u ks, ..., k;.) Qo (Pi(c) .
Denoting  (ki, k3, ..., k;) Qo = (ky, ks ... k) (k;€ F), we finally obtain ¢ =

= (ky, ..., k,) @{C), i.e. ¢ is contained in the linear space spanned by the rows
of ¢,(C). This proves Lemma 3.

We have proved the following Theorem which enables to find all normal bases
of cyclic extensions of any field. '

Theorem 2. Let F() be a cyclic extension of degree n of the field F and g a genera-
tor of the Galois group of F(a)[F. Construct the matrix C defined by (1). Let (5) be
the factorization of A" — 1 into irreducible factors over F. Denote by V; the linear
space spanned by the rows of the matrix ¢(C). Choose a row vector @ =
= (ry,7p, ..., 1) (with elements in F) such that ¢¢{V,u...uV,}. Construct
finally the column vector

Q= [w\ = [e 1
W, oC o
60" an—l an—l

Then (w;, ®,, ..., ®,) is a normal basis of F(«) with respect to F, and any normal
basis of F(«) over F is obtained in this manner.
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Remark. It should be noted that ¥; n V; may be different from 0. Next two normal
bases (considered as unordered n-tuples) are either identical or have no elements
in common.

3. Examples

The following examples illustrate the procedure described by Theorem 2. Several
supplementary observations are included in these examples.

In the case of finite fields we do not aim to construct large tables of normal bases.
On the contrary, we show how such tables can be replaced by rather simple statements
which enable to identify all generators of normal bases.

Example 1. Let R be the field of rational numbers and R(«) the extension obtained
by adjoining a root « of x> — 3x + 1 = 0. R(x) is cyclic over R and g: « — ga =
= —2 + o’ is the generator of the Galois group {1, g, g*}.

We wish to find all normal bases of R(x) over R.

Here g1 =1, gu = =2 4+ o?, ga® = (=2 + o?)> =4 — o — 0%,

1 0 0 1 0 0
C=-2 0 1 and C*=1{2 -1 —1
4 —1 -1 2 1 0
Since A* — 1 = (4 — 1) (4> + A + 1), we have
0O 0 O 300
p(C)=C—E=[-2=1 1], ¢;(C)=E+C+C*=[000
4 —1 =2 600

The space V; spanned by the vectors (—2, 1, 1) and (4, —1, ~2) is the set of all
vectors of the form k,(—2, —1,1) + k,(0, 1, 0), k; e R.
A vector ¢ = (r«, 75, r3) belongs to V; if and only if

ry T, Ty [
-2 =1 1 |=—(r  +2r;)=0.
0 10
The space V, is the set of all vectors of the form (r, 0, 0). Hence [with r, € R]
[N Q 1 ry r, 3 1
w, | =|0C o | =|(r; —2r, + 4r; —r; r, — 73| |
w5 0C?/ \a? Food2r, 2Py =1, Py —r, o?

gives all normal bases over R provided that ¢ = (ry, r,, r3) is chosen in such a manner
that (r,, r3) + (0,0) and r, + —2r;. '

Remark. The numbers o, @,, w5 satisfy an equation of degree 3 over R: m(x) =
= (x — o) (x — ®,) (x — w3) = 0. After some calculations we obtain

m(x) = (x — r)> = 6r3(x —7r)* + 3(3r; — 13 + rors) (x — ry) +

+ (13 = 3ryr — 13).
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These are all monic irreducible polynomials of degree 3 over R with roots in R(oc),
where the roots are linearly independent over R. [Provided that (r,, 73) + (0, 0)
and r; + —2r3.]

Example 2. Consider the polynomial f(x) = x* — 3 over the field F = R(i).
Let f(x) = 0. We have the find all normal bases of F(a) over F.

Here F(a)/F is of degree 4. Take as the generator of the Galois group g: a — ia.

Then gl = 1, ga = ia, ga® = —a?, ga® = —ia®. Hence
10 0 O
C=]01 0o 0
00 -1 O
00 0 —1

Next A* — 1 = (A —1)(42 + 1) (4 — i) (4 + i) implies
¢,(C)=C — E =diag(0,i—1, =2, —i—1),
¢,(C)=C+ E=diag(2,i+ 1,0, =i+ 1),
¢3(C) = C — iE = diag(1 — 1, 0, —1 — i, —=2i),
¢4(C) = C +iE = diag(1 +1i, 2i, —1 +1i, 0).
The space V; consists of all vectors of the form (0, ¥y, T3, Fy), Where 15, I3, 1y TUR
independently over all elements of R(i). Analogously for V,, V3, ¥,. The admissible
vectors are exactly those vectors ¢ = (ry, r,, 13, ry) for which ryr,rsr, + 0.
We have oC = (ry, ir,, —r3, —iry), ¢C* = (¢C) C = (ry, —r,, 13, —14), 0C* =
= (0C?) C = (ry, —iry, —r3,iry).
All normal bases are given by

ry r, I3 rg\ /1
Q=(ry 1ir, —r3; —irg| |«
v, =1, 13 — 71, |0?

; . ; 3

ry —ir, —r3  irg/ \o

provided that ryr,rsry % 0 [r; € R(i)]. _

In the following examples we shall deal with finite fields G F(q") as extensions
of degree n over G F(q) (3 = p*, s 2 1, p a prime). We shall occasionally write F,
instead of G F(q).

Suppose that in the decomposition (5) (over F,) the degree of ¢,(2) is d;, so that
d, + ... + d, = m. In this case it is known that the number of n-tuples

{o, 0, ..., co""_‘} , weF,,

forming a normal basis is equal to the number

1 1 1
V(Q;H):;q"(] ——F>..,<1—qdr>.

This has been proved by O. Ore [5] and reproduced in a slightly other form in [2]
and [4]
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Recall also the well known fact that the number of monic irreducible polynomials
of degree n over F, is given by the formula

(g, n) = %d}/:y (S)f.

Remark 1. If we wish to know only the number v(q, n) it is not necessary to
know the factors ¢,(4) explicitly. It is known (see [ 7]) that the number o, of irreducible
factors of degree k of A" — 1 over F,, (n, q) = 1, is given by the formula

1 k

o = —Zu<~)(n,q‘ - 1),
k t7x t

where u is the Moebius function. The numbers o, may be successively calculated

from the system

Yto,=(nq"—1), k=12,..[n2].

t/k

For instance, for the polynomial A!*> — 1 over F, we have

oy = (152 — 1),

20, + 0, = (15,2 — 1),

365 + 0, = (15,2% — 1),

40, + 20, + 0, = (15,2* — 1),

This gives 6, = 1, 0, = 1, 03 = 0, 0, = 3. Hence in our notation d, = 1, d, = 2,
dy = d, = ds = 4. Therefore

3
v(2,15)=é215<1—9(1—51;)(1—;) = 675.

The field GF(2'°) has 675 normal bases over GF(2).

For our purposes the complete factorization of A" — 1 over F, is of course
necessary.

Remark 2. For numerical calculations it is useful further to note. The matrix C
is non-singular. As a matter of fact we have det [C| = (—1)""". On the other hand
C — E has exactly the rank n — 1. Both statements follow from a general theory
concerning factorization of polynomials over finite fields given by the author in [8]
(See also [2].)

For convenience we introduce the following notion. An irreducible monic poly-
nomial g(x) of degree n over F, will be called an N-polynomial if the roots of
g(x) = 0 form a normal basis of G F(g") over G F(q). If (w, @*, ..., @*""") is a normal
basis of G F(q") over G F(q), then the monic minimal polynomial m(x) of all the
elements o, 7, ..., """ is the same polynomial of degree n and m(x) is an N-poly-
nomial. [The number of N-polynomial is exactly ¥(q, n).]
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If G F(q") is represented in the form F («), then each basis is expressed as an n-tuple
of polynomials in o of degree <n — 1. But the totality of all N-polynomials does not
depend on the special choice of .

To decide whether a given irreducible polynomial f(x) is an N-polynomial is
of course conceptually very simple. Let f(«) = 0. It is sufficient to calculate o, o, ...
..., " as polynomials in a,a?,...,«" ! and to check the linear independence.
It is advantageous to use the matrix C.

Example 3. We have decide whether the irreducible polynomial f(x) = x* +
+ 2x* + x + 1 over G F(3) is an N-polynomial.
This is the case if and only if ¢ = (0, 1,0, 0) is an admissible vector with respect
to C.
Let o be defined by f(x) = 0. We have 1 = 1, o® = o, af = 20 + 20® + 20,
a® = 2 + 20. Hence
1000
0001
0222/
2200

Now (0, 1,0,0) C = (0,0,0,1), (0,0,0,1) C=(220, 0),(2,2,0,0) C =(2,0,0,2).
The matrix

0100

0001

2200

2002

is singular. The given polynomial is not an N-polynomial over G F(3).

Example 4. Find all normal bases of G F(7%) over G F(7) [in a given representa-
tion of G F(7?)] and the corresponding quadratic N-polynomials.

Choose an irreducible polynomial of degree 2 over F,, e.g., f(x) = x? + 1, and
represent F o as Fo(a), where f(o) = 0.
We have J(7,2) =2I. Since 2> —1=(2—1)(A+ 1), we have v(7,2) =

=3.7(1 - 32 =18
Here 1 = 1, a’ = 60, so that

10

c=(0¢)

00

<p1(c)=C—E=<05>, <pz(C)=C+E=<gg).

The space V; consists of all vectors of the form k,(0, 1), k, € F,. The space V, is
the set of all vectors of the form k,(1, 0), k, € F;. A vector (r,, r,) does not belong

and
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to ViuV, iff r; # 0 and r, % 0. Hence the admissible vectors are the 36 vectors
o = (ry, r;), where ry, r, run independently over the set {1,2,....6}.
Since (ry, ;) C = (ry, 6r,), we obtain all normal bases in the form:

Q= (“’1> - (’1’ "2) (1) - (’1 M ’"2“), rir, # 0.
W, ry, 61, ) \a ry — T
Since the couples (ry, ;) and (ry, 6r,) lead to the same normal basis we obtained
18 different normal bases.
In this case [and in general for n = 2, n = 3 independently of 4] it is easy to find
all N-polynomials. It is sufficient to calculate

m(x) =(x — o) (x —wy) =[x = (r; + ary)] [x = (r; —ar,)] =
=(x—r)+r;, rr, 0.

Since ri(mod 7) is one of the elements 1, 2, 4, m(x) gives the 18 different quadratic
N-polynomials over F.

Remark 1. Note that knowing one irreducible polynomial (namely x* + 1)
we have found ‘“‘almost all’’ irreducible polynomils. The remaining three irreducible
polynomials which are not N-polynomials are x2 + 1, x® + 2, x* + 4.

Remark 2. The polynomial f(x) = x? + x + 3 is irreducible over F,. It is pri-
mitive and moreover an N-polynomial. If we represent F,q as F,(), where f(8) = 0,
the form of the normal bases will be, of course, different (but in some sense not
“simpler”).

Here 7 = 6 + 6. Hence

c:(é;’) ¢1(c):c—E:(‘6)‘5’>, ¢2(C)=C+E=(§g>.

The space V; is the set of all vectors of the form k (6, 5), k; € F5, what is the same
as ki(1, 2), ki € F;. The space V; is the set of all vectors of the form k,(1, 0), k, € F,.

A vector ¢ = (ry, r,) is admissible if and only if , % 0 and r, # 2r,. The normal
bases are now given by

0= w1_<g 1\ _[ry, r, 1 _r1+rzﬁ
o) \eCJ\B) \ry+6rp,6r,) \B)  \ry—r,—rB)°

Of course, the set of N-polynomials remains the same as above.

Example 5. Find all normal bases of G F(7*) over G F(7?) for fixed chosen repre-
sentations of G F(7*) and G F(7?). Find also the set of all N-polynomials of degree 2
over G F(7?). '

We represent F,o as F,(b), where b satisfies b> + 1 = 0. Next x> + x + b is
irreducible over F,(b). Denote by o a root of x*> + x + b = 0. Then F,40; can
be represented as F,(b, a), i.e. any element of F,40; is of the form u + v, where
u,ve Fy(b)and o*> + a + b = 0.

[The fact that x*> + x + b is irreducible over F,(b) can be proved directly by
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showing that there is no element & + by, ¢€F,, ne F,, satisfying (¢ + bn)? +
+ (& +bn)+b=0]

The number of monic irreducible quadratic polynomials over Fao is J(49,2) =
+ 4[49% — 49] = 1176. Since > — 1 = (A — 1)(4 + 1), we have for the number
of different bases (or different N-polynomials) v(49,2) = 4. 49%(1 — 25)* = 1152.

To construct the matrix C we need «® = o*°. By using a®> = —(x + b) we have
successively a* = —(1 + b) + (2b — 1) o, a® = =3 + (2 + 4b) a, &’ = (4 — 2b) +
+ (2 — 4b) a and finally «*° = 6 + 6. Therefore

c:(é(;) ¢1(C)=C—E=((6)(5)), ¢2(C)=C+E=(§g).

The space V; consists of all vectors of the form k(1, 2), where k, € F(b). The space
V, is the set of all vectors k,(1, 0), k, € F4(b). Hence a vector ¢ = (ry, r2) is admissible
if and only if , + 0 and r, + 2r;.

This gives 48 vectors of the form (0, 7,), 7, + 0, and 48.47 vectors of the form
(ry,r2), ry £0, 1, + 2r,. Together there exist 48.47 + 48 = 2304 admissible
vectors [with elements from F(b)].

Now
10
oC = (rl, r2) (6 6) = (r1 + 6r,, 6r2) .

Hence all normal bases are given by

(7) 0= o\ _ ry r, 1 _ (" + rya
w, =1y, —F) \a ry—r,—ra)’

with the restriction r, % 0, r, # 2r;.

Since again the vectors (ry, ;) and (ry + 6r,, 6r,) lead to the same basis we obtain
4.2304 = 1152 different normal bases, given by (7).

To find all N-polynomials it is sufficient to form
mx) =(x — o) (x —0;) =[x —(r; + )] [x = (ry — ry — ry2)] =
=(x —r)? +ryx —ry) + br3.
We have proved: All the 1152 N-polynomials are given by
(8) m(x) = x* + (r, — 2ry) x + r{ — ryr, + br,
where ry, r, € F4(b), with the restrictions r, # 0, r, # 2r,.

Remark. We may use the polynomial m(x) to describe all irreducible polynomials
of degree 2 over F,(b).

If w, and w, = w}® are different elements the polynomial (x — @,) (x — @,) is
irreducible  over  Fo(b). Now @; — w, = (ry + r,a) — (ry — r; — ry0) =
= r,(1 + 2u). Hence putting in m(x) any (ry, r,) with r, + 0 we get an irreducible
polynomial. The non-admissible vectors satisfying this condition are the vectors
(ry» r,), where r, = 2r;, r; + 0. Putting in (8) r, = 2r, we obtain m(x) = x* —
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— (1 4 3b) ri. For ry € F4(b), ry * 0, this gives }(49 — 1) = 24 different irreducible
quadratic polynomials over F,(b).

Summarily: The polynomials m(x) and 7i1(x) describe all the 1176 monic irreducible
quadratic polynomials over F,(b).

Example 6. We have to find all normal bases of G F(7%) over G F(7) in a given
representation of G F(72).
There exist 112 irreducible monic polynomials of degree 3 over F,.

We shall represent Fs,; as F,(«), where a® + 2 = 0. Here o = 4a, a'* = 202,
so that
100
C=1040
002

Further },3 -1 = (A — 1) (j. - 4) (/{ — 2) over F_]’ so that the number of N-pOly—
nomials is ¥(7,3) = 1. 73(1 — %)* = 72.

We have
000 400
¢ (C)=C—E=[030], ¢,(C)=C—4E=[000],
00 I 005
600
¢3(C)=C—-2E={020
000

The space ¥; consists of all vectors of the form (0, r,, r3) Analogously for V,
and V3. Hence the vector ¢ = (ry, r,, r3) is admissible if and only if ryr,ry * 0.

All normal bases are of the form

Wy 0 1 ry+ e+ raal
w, | ={0C | |a | =|r +4ra+ 2r;a¢],
W5 0C?/) \o? ry 4 2ry0 + 4rya?
where r,, r,, r3 run independently over all elements of the set {1,2,...,6}. The

vectors (ry, 13, 3), (ry, 4rs, 2r3) and (ry, 2r,, 4r3) lead always to the same basis.

This result may be formulated as follows: An element f = r, + r,a + rya’e
e F,(a) is a generator of a normal basis of F,(«) over F, if and only if ryr,r; # 0.
This immediately enables to decide whether a given element § € F,(«) is a generator
of a normal basis or not. [ For large n, n > 3, analogous statements make unnecessary
the construction of huge tables of normal bases. See Examples 9 and 10.]

We now turn to the problem to find all N-polynomials. Any N-polynomial is of
the form

) = (3 = ) (x = w3)(x - ) -
= [(x = ry) = (rpo + rsa®)] [(x — ry) — (4ryo + 2r3a)].
A =) = (2raa + drye?)]
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After some calculations we obtain

(9) m(x) = (X —ry)’ - rars(x — rl) + 2("2 - ng).
If r,r3 = a, then

3 5,3
2(rg—2r§)=z<rg—2i>=2l 247
Since r3(mod 7) is either 1 or —1, we have

m(x) = (x = r)® —a(x —ry) £ 2(1 — 2a%).
If here ry and a run independently through the elements {1, 2, ..., 6}, we obtain all
the 72 different N-polynomials (each polynomial exactly once). Such a nice result
is hardly available for n = 4.

Remark. We may use the result (9) to describe in a condensed form all the 112
irreducible polynomials of degree 3 over F,..

The polynomial (x — ;) (x — ®])(x — »1®) is irreducible if and only if the
elements ; = ry + ra + 302, ] = r; + 4o + 2r;02, o} =7, + 2ra +
+ 4r;a? are mutually different. This is true unless r, = r3 = 0.

Since the N-polynomials are automatically irreducible, we have only to consider
the non-admissible vectors (0, r,, r3), (ry, 0, r3), (ry, 5, 0) with the exception of the
case (ry, 0, 0).

a) If r; = 0, r,ry # 0, we have m®)(x) = x> — ryrax + 2(r3 — 2r3).

b) If ryeFq, ry =0, r3 + 0, we get mP(x) = (x — ry)* + 3r3.

¢) If ryeFq 1y 0, 715 =0, we get m®(x) = (x—r)+ 2r3.

This gives 12 + 14 + 14 = 40 irreducible polynomials (which are not N-poly-
nomials).

Example 7. Consider the field G F(3*) over G F(3), if G F(3*) is represented
by Fi(x) and o* + o + 2 = 0.

a) There exist 18 irreducible polynomials of degree 4 over F;. One of them is
x* + x + 2.

Since A* — 1 = (A —1)(2+ 1)(2* + 1) over F;, we have v(3,4)=1%.3%.
(1 = 3)?.(1 — §) = 8. Hence there are 8 different normal bases.
Using a* + o + 2 = 0 we get a® = o 4+ 2o, «® = a + «® + o, so that

1000 1000
0001 , _|0111
C_0012’ C“0201
0111 0121
0000 2000
0201 0101
¢:(C)=C—-E= 0002/ 9:C)=C+E= 0022/
0110 0112
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2000
0211
0211
0122

To get simple descriptions of the vector spaces V;, V,, V3, we use elementary row
operations. It follows that V;, V,, V3 are spanned by the rows of the following
matrices

¢3(C)=C* +E =

0100 1000 1000
0010}, 0101}, 0122/.
0001 0011

The space V; consists of all vectors of the form (0, F3s T3, Ty). Hence an admissible
vector is necessarily of the form (ry, r,, r3, 1), r; * 0. Next an admissible vector
(ry, 2, r3, r4) does not belong to V,, therefore we have necessarily

Ty Ty Py Ty
1000
0101
0011

=r,+r;—ry*0.

Any vector not contained in V; U V, is of the form (ry, r,, r3, r4), Where r; * 0,
ry # r, + r3. From these 36 vectors we have to exclude the 4 vectors contained
in V3 (with ry; =% 0):

(1,1,2,2), (1,2,1,1), (2,1,2,2), (2,2,1,1),
(which satisfy ry =& r, + r3).

We obtained the following result: An element B e Fy(a), B = ry + ryo + rya® +
+ r,0°, is a generator of a normal basis if and only if 7, + 0, r, # 7, + r3 and
(ro, 73 ra) £ (1,2,2), (ry 73 1rg) &= (2,1, 1).

This solves, as a matter of fact, our problem since for any f e F3(oz) we can im-
mediately decide whether f is a generator of a normal basis or not. E.g. f, =
=14 o+ 20> + «® is a generator, while f, = 1 + 20 + 2a% + «* is not
a generator (since r, + r3 = r,).

b) In the case (as our) where the number of admissible vectors is relatively small
we can write down all admissible vectors. In our case the first half of them is:

(1001), (1020), (1200), (1121),
(1002), (1021), (1201), (1212),
(1010), (1100), (1110), (1220),
(1012), (1102), (1111),(1222).

The second half is obtained by multiplying each vector by the element 2.

The rows of the matrices M = [g, ¢C, ¢C?, ¢C*]" introduced below are calculated
successively as ¢C, (¢C) C, (eC?) C.
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Put,e.g. ¢ = (1, 0,0, 1). This gives the matrix M,. Then choose for ¢ an admissible
vector which is not a row of My, e.g., ¢ = (1, 1, 0, 2). This gives M,. In this manner
we obtain the matrices M; — M. Multiplying each row by 2 we get M5 — M.

1001 1102 1200
1111 1220 1002
Mi=11121 M, 1020 M3‘1222
1100 1021 1212
1012 2002 2201
1201 2222 2110
M4‘1110 Ms 2212 M6‘2010
1010 2200 .2012
2100 2021
2001 _ 2102
My = 2111} Ms = 2220
2121 2020
The normal bases Q; (i = 1,2, ..., 8) are given by M, (1, o, o?, &*)". Le.
1+ a3 2 + 202 + o
o —[lTe+a®+a Q_2+oc+oc3
ol +a+ 224+ 777 T2 4 200 + 202
1+« 2 + 247

¢) We now turn to the problem to describe all N-polynomials. It is easy (even
for n > 4) to write down the matrix M corresponding to the “‘general form” of an
admissible vector (with indeterminates ry, r,, 3, r,). This is obtained by successive
multiplication of the rows by C. In our case we have

ry T2 s T4

ry ” ry+ 1yt +2ry +ry
Py ¥y +2rs+ry 1+ 2r,r+ ry g
Py Tty T3 ATy 2+ 1y r,

The elements of the matrix M are always linear forms of the r;.

Denote @y = ry + 100 + r30® + rga’, . 04 =1 + (ry + 13 +14)a +
+ (2r, + r3) a® + r,a®. What is technically by far not easy is to calculate the product
(x = @) ... (x = w,) (with indeterminates ;).

But for any specified admissible vector (rl,rz, r3, r4) the corresponding N-
polynomial can be obtained as the minimal polynomial of 8 = r; + r,a + rya? +
+ r4a® by a well known general procedure (see, e.g., [4]).

Consider, e.g., Q, and the third row f = 1 + 2% (Recall that all rows of Q;
have the same minimal polynomial.) We compute

1 =1,
B =1+ 247,
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B =2+ 20 + o2,
B3=1+4 20>+,
B* =2+ a+ 2¢% + o,

Then the coefficients of the monic minimal polynomial m(x) = b, + b;x + b,x* +
+ bsx® + x* are given as the solution of

1000
1020

(b, by, by, by, 1) 221 0f = (0,0,0,0).
1021
2121

This gives (b, by, by, by, 1) =(2,1,1,2,1) and m(x) = 2 + x + x* + 2x* + x*.
Denote by m(x) the minimal polynomial corresponding to the rows of M;. In our
example we obtain:

my(x) = 2 + 2x + x*, ms(x) =2 + x> + x*,

my(x) =2 + x + x* + 2x> + x*, me(x) = 2 4+ 2x + x? + x> + x*,
my(x) =1 4 x + 2x> + x*, my(x) =1+ 2x + x* + x*,
my(x) =1+ 2x + x% +2x> + x*,  my(x) =1+ x + x? + x> + x*.

These are the eight N-polynomials of degree 4 over Fj.

Remark 1.1t is of course not necessary always to use the general method applied
above to find the minimal polynomials.

Consider, e.g., the basis Q, and f =1+ a. Then a«* + a + 2 = 0 implies
B-1)*+(B-1)+2=0, ie. p*+ 28>+ 2=0 which immediately gives
my(x).

M contains the same rows as M, multiplicated by 2. We have f = 1 + o* € Q,,
By =28=2+20€Q;. Now 2+ 28> + p* =0 implies 2 + 2.(38,)® +
+ (4B,)* = 0 which gives ms(x). Knowing mj,(x), ms(x), my(x) we obtain in the
same manner mg(x), m,(x) and mg(x).

Remark 2. The polynomial x* + x + 2 over G F(3) is a primitive polynomial.
Hence all non-zero elements of F3(«) can be represented by the sequence {, o2, o, ...
ot =207, a0 = 1},

In the following [ug, Uy, U,, u3] will denote uy + uj0 + u0? + uz0®, and we
shall freely consider 2 as a vector as well as a set of elements.

We compute
a=1[0,1,0,0], «*=1[0,0,1,0], «*=[0,0,0,1], «*=][1,2,0,0].

Since ot € Q;, we may write Q; = {a*, a'?, &35, 2'%%} = {a*, «'2, «*°, «*®}. Since
Q; = 2Q, and 2 = o*°, we have Q, = {a**, &°2, ¢"%, a®®
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Further computing gives:
o =[0,1,2,0], «5=[0,0,1,2], o’ =[2,1,0,1], «®=11,1,1,0].

Hence Q, = {of, 0%, &72, 0°¢} and Qg = {a*®, a®*, 032, 6},

Analogously we obtain: Q, = {a'', &®* a'?, &°"}, Q¢ = {&°', «"3, &*%, a'7},
Q, = {a”, 32, 037, oc31}, Q, = {o‘ss7 «%, o7, tx“}.

This ““multiplicative representation” of normal bases has been used in [10] (and
reproduced in [4]), where of course, many other informations concerning finite
fields are included.

If we are interested only in normal bases, the result obtained in a) replaces a tabula-
tion since it enables to decide immediately whether a given B € Fg, (written in its
usual form) is a generator of a normal basis or not.

Example 8. Consider the field G F(2°) as extension of degree 3 over G F(22).

a) The number of irreducible polynomials of degree 3 over Fy is J(4, 3) = 20.

We represent the field F, by means of the irreducible polynomial x? + x + 1
over F,. We have F, = {0, 1, b, b*}, where b> + b + 1 = 0. Over F, the poly-
nomial A* — 1 splits into three factors: 1> — 1 = (4 — 1)(% — b) (4 — b?). The
number of N-polynomials is v(4,3) = }.4%(1 — })* = 9.

We now choose an irreducible polynomial of degree 3 over Fy, e.g., f(x) = x* +
+ x + 1, and represent Fg, as Fo(«), where a® + a + 1 = 0. Hence all elements
of F4() are of the form uy + ujo + u,a?, where u; € F,.

Recall that the generator of the Galois group is now g: « — o = a*. We have
o* = a + o? and «® = « so that

1
C=(011
01
Further
000 b20 0
0, (C)=C—E=|001], <p2(C)=C—bE= 0 b21},
011 01 b
bo0ooO
qo3(C)=C~b2E= 0b1
01 p?

The spaces V; (over F,) are spanned by the rows of the following matrices

001 100 100
010/ \01b/” \ODb1

A vector ¢ = (ry, '3, 73) (r; € F,) is admissible if and only if

ry ry I3 ryr; 1y ry ry 13
001 |=r=+0, {100 |=r3+br,+0, |1 00 |=bry+r,+0.
010 0105 0 b1

Hence (ry, r,, r3) is admissible if and only if 7, & 0, r; % br,, r3 % br,.
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This implies the following result: An element f = r; + ryu + r3o0® [r; € Fy(b)]
is a generator of a normal basis of F4(«) over F,(b) if and only if ry # 0, r; + br,,
rs + b’r,.

This immediately enables to decide whether a given f is a generator of a normal
basis or not. E.g., f = 1 + ba + ba? is a generator, while g/ = 1 + ba + b%x is
not a generator of a normal basis.

b) The admissible vectors in which r; = 1 are the following 9 vectors:

(10) (1,0, 1), (1,1,0), (1, b, b),
(1, o, b), (1,1,1), (1, % 0),
(1,0, b%), (1, b, 0), (1, b2, b?).
The remaining 18 admissible vectors are obtained by multiplyning all the vectors
in (10) by b and b? respectively.
The matrices M = (g, oC, ¢C?)" coresponding to the vectors in (10) are

101 10056 10 b2
M,=[110], My={1bo0|, My={1b%0
111 1bb 1 b2 b?
Hence we obtain the normal bases
1+ a2 1 + ba? 1 + b%a?
Q =11+« , Q=1+ ba , Q=11+ b«
1+ a+ o? 1 + ba + ba? 1 + b%x + b%a?

The remaining bases Q, — Q, are obtained by multiplying Q,, 2,, Q; by b and b2
respectively.

¢) To obtain the minimal polynomial m,(x) of B = 1 + o it is sufficient to insert
a=p+1into x> + x + 1 = 0. This gives > + p* + 1 = 0. Hence m,(x) =
= x> + x> + 1. Analogously we obtain m,(x) = x> + x* + bx + b? and ms(x) =
= x> + x? + b%x + b.

Replacing in m(x), m,(x), ms(x) the term x by the term bx we obtain
my(x) = x> + b2x2 + 1,
ms(x) = x* + b2x* + b%x + b?,
me(x) = x> + b2x* + x + b.

Finally replacing in m(x), my(x), ms(x) the term x by b?x we get
mq(x) = x> + bx* + 1,
mg(x) = x> + bx? + x + b%,
mo(x) = x> + bx? + bx + b.
The polynomials m(x), ..., me(x) are all N-polynomials of degree 3 over F,.

Example 9. Find all normal bases of G F(3%) over G F(3)if G F(3°) is represented
as Fa(a), where o + a + 2 = 0.
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There exist 116 irreducible polynomials of degree 6 over F3 The polynomial
x® + x + 2 is one of them.

Since 2° — 1 = (4 — 1)* (2 + 1) over F5, there exist ¥(3,6) = §.3%(1 — })? =
= 54 normal bases of E;,q over F;.

We have o = 1, o® = a3, a® = | + 20, &® = o® + 20¢*, «'2 =1 + o + a? and
al’ = o«® + a* + o°. Therefore

100000
000100
c=|120000],
000120
111000
000111
000000 200000
020100 ‘ 010100
p(C)=C—E=[122000], ¢(C)=C+E=[121000
000020 000220
111020 111010
000110 000112

The matrix C — E is of rank 5, hence V; has dimension 5 and it is immediately seen
that ¥, consists of all vectors ¢ = (ry, r, r3, F4, s, 0), where ry, ..., rs run in-
dependently over all elements of Fj.

By elementary row transformations we find that the vectors contained in V, are of
the form

(7‘1, Fa, V3, Vg ¥y — Ty — T3, 7'6)

where ry, 7,, r3, 4 and rs run independently over all elements of Fj. (Hence V, is
again of dimension 5.)

The admissible row vectors are all vectors ¢ = (ry, 7, ..., F¢), Where rg & 0 and
Fs £ ¥y — 1y — F3.

Hence an element f = ry + ryo + 130 + ryo® + rsoa® + reu® € Fa(a) is a generator
of a normal basis over F; if and only if r¢ = O and r5 £+ r, — 1, — 73.

This statement enables again to decide immediately whether a given fe F 3(oc)
generates a normal basis or not.

The admissible vectors are the vectors

Q=(r1,r2,r3,r4,r4—r2——r3 +a’r6)>

where ry, r,, r3, r, Tun independently over F; = {0, 1, 2} while a and rg run in-
dependently over the set {1,2}. This gives 3*.2? = 324 admissible vectors. Since
always 6 vectors give the same normal basis we obtain indeed 54 different normal

bases.
If we take, e.g., 0y = (0, 0,0,0, 1, 1), which is an admissible vector, we get (by
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succesive multiplication by C) the normal basis

00001 1)(1
111111 ]|a
Q =[001001]]|a
12011 1]]a
211101 ]a*
020001) (e

The remaining 53 normal bases are obtained in the same way.

Example 10. Rather simple results are obtained if the degree is a power of the
characteristic. Consider the case G F(5°) over G F(5).

There are 624 irreducible polynomials of degree 5 over F5. One of them is f(x) =
=x* + 4x + 1. Since 2°> — 1 = (4 — 1)° (mod 5), there exist £.5%(1 — 1) = 500
normal bases. If « satisfies f(a) = 0, we have o® =1, o® =4+, a!® =1 +
+3a 40?0 =4 +3a+ 202+ a2 =1+ o+ o> + o + ot

Hence

10000 00000
41000 40000
C=1]13100}{, C—E=]|13000
43210 43200
11111 11110

The vector space V spanned by the rows of C — E consists of all vectors of the
form (ry, 75, 3, 74, 0) (r; € F5). The admissible vectors are the 5* . 4 = 2500 vectors
of form (ry, r,, r3, 14, s), Where rs & 0. This implies:

Anelement f = r + roa + rya® + rqa’ + rsa* e F5(o) is a generator of a normal
basis of Fs(a) over Fs if and only if 5 % 0.

It follows, e.g., that a* is generator of a normal basis, and this basis is (o*, 22°,

a9, 790, ¢?399) Tt is of course by far simpler to use our method and to compute
(00001)C, for i =1,2,3,4. We obtain

00001)(1
11111])}«
Q=|[13421]]c?
12431
04141)\a*

The corresponding N-polynomial (i.e. the minimal polynomial of «*) is m(x) =
=4+ x4+ x>+ x>+ x* +x°.
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