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1. Introduction. The theory of right topological semigroups (i.e. semigroups S
with a Hausdorff topology such that, for each s € S, the function g,: S — S defined
by Qs(t) = ts is continuous), especially compact right topological semigroups, has
been extensively developed. See for example [2]. The existence of a maximal right
topological compactification of a semigroup with topology (or a semitopological
or a right topological or a left topological semigroup) would be of considerable
interest. However, Example V.LII of [2], essentially due to J. W. Baker, shows
that such a maximal compactification cannot in general exist. (By a compactification
of a semigroup S with topology, we mean a pair (c/), X) consisting of a compact
Hausdorff semigroup X and a continuous homomorphism ¢: S — X with ¢[S]
dense in X. A compactification (¢, X) of S is maximal with respect to a given property
if it possesses the property and satisfies the universal extension condition: whenever
(4, Y) is a compactification of S possessing the property, there is a continuous homo-
morphism n: X — Ysuch that# o ¢ = A. Note that ¢ is not required to be an embed-
ding so the pair (¢, X) need not be a topological compactification.)

It was shown in Theorem IT1.4.5 of [2] that any Hausdorff semitopological semi-
group (i.e. one which is both left and right topological) has a compactification (e, X)
maximal with respect to the property that it is right topological and the requirement
that 1, be continuous for each s € S, (Here A,(y) = xy.) We show here in Section 2
that the same conclusion applies to any semigroup S with a topology. No continuity
assumptions need be made. One does not even need any separation axioms to apply.

In Section 3 we show that similar results hold with respect to the strong almost
periodic, almost periodic, and weak almost periodic compactification of S.

Of course, since e[ S] will be semitopological, if S is not semitopological e cannot
be an embedding. We determine in Section 4 when e is one-to-one and when, as
a mapping to e[ S] it is open. We then present an example showing that one can have
Hausdorff semigroups which are neither left nor right topological with e one-to-one

1y This author gratefully acknowledges support received from the National Science Foundation
via grants MCS81-00733 and DMS 83-20383.
2) Research supported in part by NSERC grant A7847.

103



and also such semigroups with e open. We also show that one can have completely
regular Hausdorff semitopological semigroups where e is neither one-to-one nor
open.

In Section 5, we provide explicit descriptions of the LMC-compactification for
several different semigroups.

We conclude this section with the following preliminary results.

1.1. Lemma. Let M and T be Hausdorff right topological semigroups and let S
be a semigroup and a topological space. Let y: S - M and ¢: S — T be continuous
homomorphisms. Assume that y[S] is dense in M and that, for each s € S, the func-
tions A,y and Ay, are continuous (in M and T respectively). If n: M — T is con-
tinuous and 1oy = ¢, then n is a homomorphism.

Proof. We must prove that n(ab) = n(a) n(b) for all a, b € M. Note first that if
a, b ey[S] (so that a = y(s) and b = y(t)) we have n(ab) = n(y(s) y(t)) = n(y(st)) =
= 4(s1) = 9(6) #(1) = () 1((1) = n(a) ().

Now, given a € y[S] with a = y(s), the continuous functions A o 7 and 77 o 4,
agree on the dense subspace y[S] of M. Thus given be M, n(ab) = n o A, (b) =
= g9 o 1(b) = n(a) n(b).

Finally, given b € M, the continuous functions # - g, and @, 1 agree on y[S].
Thus given a € M, n(ab) = 1 - 0,(a) = 0,4 - 1(a) = n(a)n(b). O

The proof of the following lemma is similar, and we omit it.

1.2. Lemma. Let T be a Hausdorff topological space and let S be a semigroup
which is also a topological space. Let + be a binary operation on T which is right
continuous, let ¢:S — T be a continuous homomorphism, and assume ¢[S] is
dense in T and J4, is continuous for each s € S. Then - is associative.

2. The LMC-compactification. Throughout this section, let S represent a semigroup
which is also a topological space. (No separation axioms are assumed.) Let K represent
either the real or complex numbers. (It is customary to take K = C but for the theory
the reals suffice.) Denote by C(S) the set of continuous bounded functions from S to K.

If S is semitopological and Hausdorff and (e, §S) is the compactification maximal
with respect to the properties that §S is right topological and that 1,4, is continuous
for each s € S, then the functions from S to K which extend continuously to 4S are
called the LMC-functions, and &S is called the LMC-compactification of S.

The class of LMC functions has been studied extensively; see for example [2], [7]
and [8], the first of which also gives the LMC compactification theorem.

The LMC functions were characterized [6], for semitopological S, as those f € C(S)
such that ¢l {f . g;: s€ S} = C(S), where the closure is taken in the product space K*.
We extend the definition of LMC to our arbitrary S with topology and observe that
the notions coincide if S is semitopological.

2.1. Definition. The function f is defined to be in LMC if and only if
(@) feC(s),
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(b) {fo2:s€eS} = C(S),

(c) cl{fo0s: seS} = C(S), and

(d) for each te S, cl{f-,00,: s€S} < C(S).

We can express this definition more succinctly by agreeing that 1, = ¢, = «, the
identity map. Then f e LMC if and only if for each te S U{1}, cl {fa AroQs:SES U
v {1}} = C(S).

2.2. Lemma. Let T be a compact Hausdorff right topological semigroup and
let ¢ be a continuous homomorphism from S to T such that Ay, is continuous for
each se S. If fe C(T), then f - ¢ € LMC.

Proof. Let te Su {1} and let gecl {(fo @) A0 01 s€ S U {1}}. Observe that
if g =fo¢oAl, then g is continuous; the boundedness of g follows from the
boundedness of f. Thus we assume g € cl {(f o @) o 4, 0 0, s € S}. It suffices to show
that there is some a € T such that for each x€ S, fo A4((a) = g(x). For then,
ift=1,9g=fc0,copandiftesS, g =folsu o0, ¢. In cither case, g is the com-
position of continuous functions.

Pick a net (5,04 in S such that {fo ¢ o 4,0 0, D, converges to g. By taking
a subnet if necessary we may assume {@(s,)>ser cOnverges to some a € T. Then for

each xe S and @ €l, fo dyue(P(s,) = Tlfo @ o io0y,), 50 fodgun(a) = g(x) as
required. []

We are now ready to define the function e and to define 6S as a topological space.
We use the product space X ;o pc Clg f[S]. Those familiar with the terminology
customarily used in analysis may wish to observe that the function e takes S to the
dual space C(S)* of C(S) and that the relative topology on C(S)* is the weak*-
topology.

~2.3. Definition. (a) Define e: S — X ;e Clg f[S] by e(s) (f) = f(s).

(b) 8S = cle[S].

We observe immediately that §S is compact (by the Tychonoff Theorem) and
Hausdorff and that e[ S] is dense in 8S. We set out now to define the multiplication
on 4S.

2.4. Lemma. Let f € LMC and let x € S. Then f - A, € LMC.

Proof. Let teSu {1}. Then {(fod,) oA o0y seSuU{l}} = {folyoos
seSu{l}}. O

2.5. Definition. For f e LMC and v € 8S, define h, ;: S — K by h, ((s) = v(f o 4).

Observe that by Lemma 2.4, v is defined at f o A,.

2.6. Lemma. Let fe LMC and v € 6S. Then h, € LMC.

Proof. Let teSu{l}. We show that for each xeSufl}, h;oho0. €
ecl{foA oo seSu{1}}. One then has immediately that cl {hy,s o 410 0,1 x€S U
U{l}} ec{fohoo:seSu{l}} = C(S)
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To this end, let xe S U {1}, let F be a finite subset of S, and for each y € F, let U,
be a neighbourhood of h, ;o 4,0 0.(»). Then U = yer 7, 1[U,,] is a basic neigh-
borhood of h, ;oA o0, Let V= \yer nf‘oim[Uy]. (Observe that the projections
,:KS > K and 7p.;,, ¢ Xpamc Clx 9[S] > K.) Now given y€F, h, rolo0i(y) =
= h, [(tyx) = ¥(f o Ays) SO that V is a neighbourhood of v. Pick se S such that
e(s) € V. Then, given y € F, f o A, o 0x(y) = f(tyxs) = fo Aiyel(5) = e(5) (f o Arys) € U,
Thus f o A, 0 0xs € U as required. [

2.7. Definition For u, v €8S, define uv € KM by w(f) = u(h, ;).

2.8. Lemma. With the operation just defined, 3S is a right topological semigroup
and for each s € S, Ay is continuous.

Proof. We show first that for u, v € 8S, uv € 8S. Let F be a finite subset of LMC
and for each f e F, let U, be a neighbourhood of p ¥(f), so that U = ;. i '[U,]
is a basic neighborhood of pv. Now given feF, u(h, ) = uv(f)eU, so
Nyer T, U] is a neighborhood of y. Pick se S such that e(s) e (e 7, [U]-
Then given feF, v(foA) = h, (s) = e(s) (h, ;) €Uy so that (\,pnp; [Uf] is
a neighbourhood of v. Pick t € S such that e(t) € (\yer nf"i[Uf] Then given fe F,
e(st) (f) = f(st) = fo At) = e(t) (f o A) € U, s0 e(st) € U as required.

To see that the operation is associative, let u, v, n € 6S. Let fe LMC. Then
(w)n(f) = uv(h, ;) = u(h,,,,) and u(v,) (f) = ulh,,,) so it suffices to show
Bypyy = Pypgp. Let se€S. Then h,, (s) = v(hyso4) and h,, (s) = w(fod) =
= ¥(hy.2,) so it suffices to show h, oAy = h, ., Let teS. Then h, ;o A(t) =
= by f(st) = n(f o A)) = n(f o Ag 0 &) = by 12y (0)-

To see that JS is right topological, let v € 8S, let f € LMC and let U be open in K.
(So n;'[UTn éS is a subbasic open set in 8S.) Then o; '[x;'[U] n éS] =
= m, [U] n 8S.

Finally let s € S. To see that 4, is continuous let f € LMC and let U be open in K.
Then Azh[n;'[U] A 8S] = n;,[Uln6S. O

2.9. Lemma. The function e: S — 6S is a continuous homomorphism.

Proof. Let f e LMC and let U be open in K. Then e~ ![z; '[U] n 6S] = f~'[U]

so e is continuous.
To see that e is a homomorphism, let s, t € S and let f € LMC. Then e(s) e(r) (f) =

= €(5) (heqry.r) = hey.s(5) = e(1) (fo &) = f(st) = e(st) (). O

The following theorem says that (e, 8S) is the LMC-compactification of S. We say
““the” because, if (¢, T) is any other such compactification, then 8S and T are iso-
morphic and homeomorphic via a map n withn . e = ¢.

2.10. Theorem. Given a semigroup S with a topology, S is a compact Hausdorff
right topological semigroup, e:S — 6S is a continuous homomorphism, e[S]
is dense in 8S, and A5 is continuous for each s € S. Further, if T is a compact
Hausdorff right topological semigroup, ¢: S — T is a continuous homomorphism,
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and Ay is continuous for each se€ S, then there is continuous homomorphism
n: 88 = T such that noe = ¢.

Proof. Everything has been established except the existence of #. By Lemma 1.1
it suffices to show there exists a continuous #: 8S — T such that 7. e = ¢. For this
it in turn suffices to show that given any nets {s,>.r and {t,>,.;, any p € S and any
a,beT, if e(s,) > u, e(t,) > p, #(s,) - a, and §(t,) > b, then a = b. (For then
if e(s) = e(t), taking s, = s and 1, = t one sees that one can define # on ¢[S] by
n(e(s)) = ¢(s)- One then extends 1 continuously to u €8S by picking a net {5,).esr
such that e(s,) — p and defines n(p) = lim ¢(s,).)

ael

Suppose we have such <{s,>uer» {t,>,es, #€6S and a, b e T but that a #+ b. Pick
f e C(T) such that f(a) + f(b) and let ¢ = |f(a) — f(b)|. By Lemma 2.2, f - ¢ € LMC.
Let U= {xeK: |x — u(f.p)| <ef4, V={xeK: |x — f(a)| <[4}, and W =
= {xeK: |x — f(b)| < ¢/4}. Then n ;[U] is a neighborhood of p so pick o€l
and y, € J such that e(s,) and e(t,) are in n;,4[U] whenever a > a, and y = 7,.
Since f~*'[V] and f~![W] are neighborhoods of a and b respectively pick o = o,
and y 2 9, such that ¢(s,)ef '[V] and ¢(t,) ef " *[W]. Then |f(a) — f(b)] <
= |f(a) = £(#(s.)] + 17(d(s.)) = n(F o 9)| + [u(F = ) = F($(L,)] +
+ |f(¢(1,)) — f(b)] < &, a contradiction. [

2.11. Theorem. Let f: S — K. Then f extends continuously to &S (i.e. there exists
g € C(6S) with g - e = f) if and only if f € LMC.

Proof. For the sufficiency, define g: S — K by g(v) = v(f). Given s € S g(e(s)) =
= e(s) (f) = f(s). Given U open in K, g~ [U] = =y '[U] n 3S.
The necessity is an immediate consequence of Lemma 2.2. [

3. Other compactifications. It seems clear that the other compactifications produced
in [2] for semitopological semigroups also exist for an arbitrary semigroup with
topology. To define the relevant class of functions on S, one simply adds the require-
ment of [2] to the requirement that fe LMC and then goes through the steps of
Section 2.

In certain cases one can get the desired conclusion more quickly. For example, let
us consider the almost periodic compactification (a, aS) of S, characterized in [2]
as the compactification maximal subject to being a topological semigroup.

3.1. Theorem. Let S be a semigroup with topology. There is a compact Hausdorff
topological semigroup oS and a continuous homomorphism a: S — «S such that
a[S] is dense in oS and whenever T is a compact Hausdorff topological semigroup
and ¢: S — Tis a continuous homomorphism with [S] dense in T, there is a con-
tinuous homomorphism n: oS — T such that noa = ¢.

Proof. Since ¢[S] is a semitopological semigroup we have by [2, Theorem
111.9.4] an almost periodic compactification (a*, a(e[S])) of e[S]. We let aS =
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= ofe[S]) and a = a*ce. Then a is a continuous homomorphism and a[S] is
dense in aS.

Let T be a compact topological semigroup and let ¢: S — T be a continuous
homomorphism with ¢[S] dense in T. Then for each s€ S, A4, is continuous so
pick by Theorem 2.10 a continuous homomorphism y: S — T such that yo e = ¢.

Since afe[ S]) is the almost periodic compactification of e[S] and y[e[S]] = ¢[S]
which is dense in T, we may pick a continuous homomorphism #: «(e[S]) » T
such that 7o a* = y|s Then n:aS > T and noa =noa*ce=y0e=¢ as
required. []

Nearly verbatim proofs establish that we can obtain the strong almost periodic and
weak almost periodic compactification for any semigroup S with topology.

Denote by (w, wS) the weak almost periodic compactification of S (maximal
with respect to wS being semitopological). We obtain in Theorem 3.3 an amusing
characterization of wS. :

3.2. Lemma. If S is compact, then 0S = ®S.

Proof. Since S is compact and e[ S] is dense in 8S, e[S] = 8S. Thus 65 is semi-
topological and hence 6S = wS. O

3.3. Theorem. Let S be any semigroup with topology. Then 5(55) = wS.

Proof. By Lemma 3.2, we have §(6S) = w(3S) so we show w(8S) = wS. Observe
o(38S) is semitopological and w - e[ S] is dense in w(3S). Let T be a compact semi-
topological semigroup and let ¢: S — T be a continuous homomorphism with ¢[S]
dense in T. Pick a continuous homomorphism y:dS — T with y.e = ¢. Pick
n: w(8S) > Twith now = y. Then o (woe) = ¢ as required. []

For the next theorem, we remind the reader that the strong almost periodic
compactification (m, uS) of S is the compactification maximal with respect to uS
being a topological group.

3.4. Theorem. If S is a group and a compact space, then 6S is the strong almost
periodic compactification of S (and oS as well).

Proof. By Lemma 3.2, §S is semitopological. As the homomorphic image of
a group 4S is a group. Therefore, by Ellis’ Theorem [3], 6S is a topological group. [

4. One-to-one and open. It is not clear that one loses much by extending the LMC-
compactification to apply to an arbitrary semigroup with topology. On the one hand,
since e[S] is a semitopological semigroup, e cannot be an embedding unless S is
semitopological. On the other hand, as we shall see, e may fail to be one-to-one and
open (as a map to e[S]) even when S is a completely regular semitopological semi-
group. (Complete regularity is important since the absence of this property also
trivially forces e to not be an embedding.) It may also be one-to-one and it may be
open when S is neither left nor right topological.
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4.1. Definition. (a) For f € C(S), coz (f) = {x € S: f(x) * 0}.
(b) For x, y€e S, x ~ y if and only if f(x) = f(y) for all f € LMC.

4.2. Theorem. Let S be a semigroup and a topological space. Then e is

(a) one-to-one if and only if LMC separates the points of S;

(b) open as a map to e[S] if and only if whenever x € S and U is a neighborhood
of x there exists f € LMC such that x € coz(f) and coz(f) < {y e S: there exists
ze U with z = y};

(c) an embedding if and only if LMC separates the points of S and {coz (f):
f€LMC} is a basis for the topology of S.

Proof. Statement (a) is trivial and (c) is a trivial consequence of (a) and (b). We
establish (b).

For the sufficiency, let U be open in S and let a e e[U]. Pick x € U such that
e(x) = a. Pick f e LMC such that xecoz(f) and coz(f) < {y e S: there exists zeU
such that z &~ y}. Then a e n; '[K\{0}] n ¢[S] = [U].

For the necessity let x € S and let U be a neighborhood of x. Then e[ U] is a neigh-
borhood of e(x) in e[S] so pick ¥ open in 8S such that e(x)e Vn e[S] = e[U].
Since 4S is compact Hausdorff, it is completely regular, so pick g € C(éS) such
that g(e(x)) = 1 and g[6S\V] = {0}. Let f=goe. By Lemma 2.2, feLMC.
Immediately, x e coz(f). Let yecoz(f). Then e(y)e Vne[S] so e(y)ee[U].
Pick z € U such that e(y) = e(z). Thenz ~ y. 0O

4.3. Example. A completely regular Hausdorff semigroup S which is neither left
nor right topological but for which e: S — ¢[S] is open.

Let S be the set of positive integers under addition. Define ¢: S — (O, 1) as follows.
Given neS, let a = [log,(n)] and let ¢(n) = (2(n — 29) + 1)/2**'. (Thus ¢
enumerates the dyadic rationals in (0, 1) in their natural order: 1/2, 1/4, 3/4, 1/8, 3/8,
5/8,7/8, 1/16, ...). Define a topology Ton S by T = {¢"![U]: U is open in the usual
topology on (0, 1)}. Trivially T is Hausdorff and completely regular. Observe that
each non-empty member of T contains arbitrarily long blocks of S. Thatis,if U is open
in (0,1) and me S then there exists ne S with {n,n + 1, n + 2,...,n + m} <
c ¢ '[U]

It now suffices, in order to see that e is open, to show that LMC s the set of constant
functions. (For then e[ S] is a singleton.) To this end, let f € C(S) such that f is not
constant, pick x, y € S such that f(x) # f(y), and let € = |f(x) — f(y)|- Let U =
= {zeS:|f(z) — f(y)| < ¢/2}. Then U is open and x ¢ cl U. Pick a neighborhood ¥
of x such that Vn U = ¢. Since U is infinite, we can pick m € S such that x + m e U.
We claim that f - g,, is not continuous. Suppose that it is. Then |f o .(x) — f(¥)] <
< /2 so pick a neighbourhood W of x such that for all z € W, |f - ¢,(2z) — f(¥)| <
< gf2. Pick ne S such that {n,n + 1, n + 2,...,n + m} < VA W. Since ne W,
[f(n + m) — ()] < ¢/2so that n + m e U and hence U n V * 0, a contradiction.

Note that we have also established that S is not right topological (nor left topo-
logical since S is commutative). Indeed, since there do exist non constant continuous
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functions, for example ¢, one has the function ¢, Produced above cannot be con-
tinuous. []

4.4. Example. A completely regular Hausdorff semigroup S which is neither
right nor left topological but for which e is one-to-one.

Let SN be the Stone-Cech compactification of the discrete set of positive integers,
let pe BN\ N and let S = N U {p} where S has the relative topology. Let the opera-
tion on S be ordinary addition on N with, forneNn+ p=p+n=p+ p = p.

Since S is commutative, in order to show that S is neither right nor left topological,
it suffices to show that 4, is not continuous. (Note 1 is not an identity.)

Let A be the set of even members of N. By [4, 6S] either 4 U {p} or (4 + 1) U {p}
is a neighborhood of p. Since A7 '[4 U {p}] = (4 — 1) u {p} and 7' [(4 + 1) L
v {p}] = 4 v {p}, 4, is not continuous at p.

To see that e is one-to-one it suffices, by Theorem 3.2, to show that for each n e N,
the characteristic function gy, is in LMC. Trivially each ¥, is continuous. Let n € N.
Observe that if 1€ S U {0} and se Sy {0}, then xg o 4 0 Qs = X © Q1,5 SO that
given 1€ SU {0, {xmoioos:se€SU{0} S {xumo0e:seSu{0}}. But {)g ooy
seSuU{0}} = {xpm: m < n} {0} = cl({)m: m = n} U {0) where 0 is the func-
tion constantly 0. [J

Example V.2.3(b) of [2] is an example of a completely regular Hausdorff semi-
topological semigroup such that e: S — e[S] is not open. (See Section 5 for a detailed
analysis of this example.)

Example 92 of [11] (due to Hewitt in [5]) is an example of a regular Hausdorff
space X with C(X) consisting solely of the constant functions. If one then defines
a trivial multiplication on X (for example xy = y for all x and y) one makes X
a semitopological semigroup. Then e[ X] is a singleton.

What we are after is an example of a completely regular Hausdorff semitopological
semigroup for which e is not one-to-one and is not open as a map to e[ S].

We remark that it would now suffice to obtain such S with e not one-to-one.
Indeed if e;: S; — el[Sl] is not open and e,: S, - §S, is not one-to-one, then
e:S; x (S u {1}) - &(S; x (S, U {1})) is not one-to-one and not open as a map
to ¢[S; x (S, u {1})]. (Here 1 is adjoined as an isolated identity — whether or
not S, originally had an identity.) We omit the verification of the above assertion
since it turns out that we don’t need it. That is, the example we construct with e not
one-to-one also fails to have e: T — e[ T| open.

4.5. Definition. Let T be the free semigroup on the set of distinct letters {a, b} U
U {xq, xg, ...} U {5y, 85,000

The idea of the construction is simple enough. We define a topology on T so that
x, = b, bs, — b and for each k, x;s, — a, while we keep the operations continuous
from the left and right. Unfortunately, the details of the construction are somewhat
complicated, and we will require several lemmas.
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4.6. Definition. (a) Define a relation R on T by w;Rw, if and only if there exist
u,ve Tu {0} such that

(i) w, = ubv and w; = ux,v for some k € N and the leftmost letter of v, if any,
is not a member of {s,: n > k}; or

(ii) w, = ubv and w, = ubs,v for some neN; or
(iii) w, = uav and w; = ux,s,v for some k, ne N with n > k.
(b) Let < be the transitive closure of R.

We illustrate this order by drawing the lattice of all words greater than or equal
to the word bs;s,X354X55;.

bab
/‘\
) babs, bxssf,tg ‘ bs,ab
D SN
b ax.5 s bx;s,bs, bsqus, bs,x,s,b bs,s,ab
<]
bx;s,%5, bs,ax;s; bs,x;s,bs,  bs;s,abs, bs;sx,s,b
N
bs,x,s,%s, bs,s,axs, bs,s,x;s,bs,

\l//

b s,5,% 5%
We omit the routine proof of the following lemma.

4.7. Lemma. (a) Let Wy, uy, ..., u; be members of T and let w, = uyu,, ..., u,.
Assume that for each i€ {1,2,...,1 — 1} none of the following cases hold:
(i) u; = t,x, and u; 1y = s,t, for some k,neNj;
(ii) u; = tyx,s,t, and u;,y = s,t; where k = n and all letters of t,, if any,
are in {s,:re N};

(iii) u; = 1,bt, and u;y = s,t; and all letters of t,, if any, are in {s,: r € N}.

If wy < w,, then there exist vy, v,,...,v; in T such that w, = v,v, ... v, and each
u; < v;. .

(b) Let uy, us,...,u; and vy, v,,...,v, be members of T such that for each i,
u;

v;. Assume that for each ie {1, 2,..,1— 1} we do not have some k < n with
u; = t;x;, v; = t,b, and u;, | = s,t5. Then wu, ... u; £ v,0,...0,

I IA
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Observe that the restrictions in part (a) are needed by considering w; = x,s,,
Wy = a; Wy = X381, Wy = b; Wy = X35:5;, w, = b; and w; = bsys;, Wa = b. To
see that the restriction in part (b) is needed let u; = x3, u = 54, v, = b, v, = 5,

4.8. Lemma. Let wy, w,, w3, and w, be members of T.

(@) If wy < w, and wy < wy, then wy, = w,.

(b) {g e T: wy < q} is finite.

(c) If w, £ wy, then {q € T: qRw, and q < w,} is finite.

(d) If w,Rw, and w, < wy and wy < wy < Wy, then there exists Wse T such
that wsRws and wy, < ws < wy.

Proof. Statements (a) and (b) are trivial. To establish (c), let 4 = {g € T: gRw,
and g < w,}. Since there are finitely many choices of u and v for which w, = uby
or w, = uav, it suffices to show for a given choice of u and v that

(i) if w, = ubv, then {q € A: g = ux,v for some k € N} is finite;

(ii) if w, = ubv, then {q € A: g = ubs,v for some n e N} is finite; and

(iii) if w, = uav, then {q € A: g = ux,s,v for some k, n € N with k < n} is finite.

We establish (i), the other cases being similar. To do this, we show thatif g = ux,»
then there exist u’, »” with u < u’ and v < v’ such that w; = u'x’. Since w; has
only finitely many occurences of x’s this will suffice. We may write v = t,t, where ¢,
is a possibly empty word from {s,: n € N} and the leftmost letter of ¢, if any, is not
in {s,:neN}. Then w, = ubt;t, and q = ux,t,t,. Pick by Lemma 4.7(a) u’, t,,
and 7, in TuU {Q} such that w, = u't3ty, u < v, xt; < t3, and t, < 1,. Now if
Xty ¥ t3, then t3 is b followed by a tail of #; so that bt, < t3 and hence by Lemma
4. 7(b) w, < wy, a contradiction. Thus 3 = x,t; so letting v = ¢,t,, we have w, =
= u'x,w" as required.

To see (d), assume w Rw,, w, < w,, and w; < wy < w,. We shall assume we have
u,ve TU {0} and k < n in N such that w, = uav and w, = ux;s,v, the other
cases being similar. Since w; < ws, pick by Lemma 4.7(a) t,, t,, and ¢, such that
Wi = tityts, u S ty, 45, < t,, and v = t3. Since wy < wy, pick 14, t5, and tg such
that t; < t4, t, = ts, and 13 < tg and wy = t,tsts. Then t, = x5, or t, = a. If
t, = XSy, let ws = tiat;. Then wisRws and w, < ws < w, as required. Thus we
assume t, = a. Then w, < w;. Since wy < w,, pick ws such that wy;Rws and ws <

In fact the set in Lemma 4.8(c) can have at most one member, but this is not
important to us. We now proceed to describe the topology on T.

4.9. Definition. (a) Let U = {U < T: for each we U, {ve T: vRw and v¢ U} is
finite}.

(b) For U< Tand w e T, let N(w;,U) = {w,€T: w, <w, and {veT: w, <
<v=w}cU}

4.10. Lemma. If U € U and wy € U, then N(wy, U) e U.

Proof. Let w, € N(w,, U). Let A = {we T: wRw, and w ¢ N(w,, U)}. We need
to show that A4 is finite. Suppose instead that A is infinite. For each w € A4, pick v(w)
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such that w < v(w) < w, and v(w) ¢ U. Since w; € U we have in fact that w <
< v(w) < wy. Since w, e N(w,, U), we cannot have w, < v(w) for any we A. Let
B = {v(w): we A}. By Lemma 4.8(c), for each ve B, {we 4: v = v(w)} is finite.
Thus B must be infinite. For each v € B, pick by Lemma 4.8(d), u(v) € T such that
vR u(v) and w, < u(v) < w;. By Lemma 4.8(b), {ue T: w, < u < w,} is finite,
pick u e T such that {v € B: u = u(v)} is infinite. But w, < u < w, so u € U. Since
ueU, {ve T: vRu and v ¢ U} is finite. Since BN U = 0, this is a contradiction. [J

4.11. Lemma. U is a completely regular Hausdorff topology on T.

Proof. U is trivially a topology on T. To see that U is Hausdorff, let w; and w,
be distinct members of T. By Lemma 4.8(a), we assume without loss of generality
that w, £ w;. Let U = {weT:w < w;}andletV={weT:w < w,and w £ w,}.
Then w; € U, w, € V and trivially U is open. To see that V'is open, let w € ¥ and note
that {ue T: uRw and u ¢ V} = {ue T: uRw and u < w,}. By Lemma 4.8(c), this
latter set is finite.

By Lemma 4.10, {N(w, U): U € U and w, € U} is a basis for U. To see that U is
a completely regular topology, it suffices to show that each N(w,, U) is closed. (For
then Yycw,,vy is continuous.) Indeed, let U e U and w, € U. Let w, € T\ N(wy, U).
If wo £wy, let V={weT: w<w, and w £ w;}. As above V is open and ¥'n
A N(wy, U) = 0. Thus we assume w, < w,. Pick ve T such that w, < v < w,
andv¢U. LetV={ueT u <v}. Then VeU, w, eV, and VA N(w;,U) = 0. O

4.12. Lemma. With the topology U, T is a semitopological semigroup.

Proof. Let ze T and let U be open. We first let ¥ = 1] '[U] and show that V
is open. Let w, € Vand let B = {we T: wRw; and w ¢ V}. Let C = {w e T: wRzw,
and w ¢ U}. Since zw, € U, C is finite. Then 4,[ B] = C and hence, since 4, is one-to-
one, B is finite.

To see that T is right topological, let V = g, 1[U] and let w; € V. The proof here
is identical to the left case unless we have z’, w' € Tu {@} and some n € N such that
z = s,z/ and w; = w'b so we assume this case holds. Let as before B = {we T
wRw,; and.w¢V} and let C = {weT: wRw,z and w¢U}. Then ¢, [B\ {w'x,:
k < n}] = Cso B\{w'x;: k < n} is finite so B is finite. [

4.13. Lemma. Let fe LMC(T). Then f(a) = f(b). Consequently e(a) = e(b).

Proof. Suppose f(a) + f(b) and let ¢ = |f(b) — f(a)|- Since f is bounded pick
a compact subset 4 of K such that f[T] < 4. Then {f o g,,)s= is a sequence in the
compact product AT so pick an accumulation point g of this sequence. Since f € LMC,
g€ C(T). :

Let U= {weT: |f(w) — f(b)| <¢/5}, V={weT: |f(w) - f(a)| <e¢/5}; and
W= {weT:|g(w) — g(b)| < ¢/5}. Then U, V, and W are open. Since b € W and for
each k € N, x,Rb we may pick k such that x, € W. Since a € Vand for n > k, x,s,Ra,
we may pick m € N such that x,s, € V whenever n = m. Since b e U and for each
n e N, bs,Rb, we may pick m’ € N such that bs, € U whenever n = m’.
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Let B = n;'[{zeK: |z — g(x)| < ¢/5}] n iy '[{zeK: |z — g(b)| < ¢/5}]. Then
B is a neighbourhood of g so pick n > max {m, m'} such that f. g, € B. Then
156) — J(bs)| < /5 since bs,e U, |7(bs) — g(b)] < o5 since f-0, B, lo(8) -
— g(x)| < ¢f5 since x, € W, |g(xi) — f(xus,)| < ¢/5 since f o 0, € B, and |f(x;s,) —
— f(a)| < /5 since x,s, € V. Thus |f(b) — f(a)| < &, a contradiction. [J

4.14. Lemma. For each k € N, X,y € LMC(T).

Proof. Since {x,} is open and closed, x, is continuous. Given u, ve TU {0}
with {u, v} # {0}, X(sy o Ao 0, = 0. Thus, given ue TU {0}, {}(y o luo 0 vETU
v {0} = (X, 0} = C(T). O

4.15. Theorem. T is a completely regular Hausdorff semitopological semigroup
for which e: T — ¢[T] is neither one-to-one nor open.

Proof. By Lemmas 4.11 and 4.12 T'is a completely regular Hausdorff semitopo-
logical semigroup. By Theorem 4.2 and Lemma 4.13, e is not one-to-one. To see
that e is not open, let U = {a} U {x;s,: k, neN and k < n'. Then U is open in T
and by Lemma 4.13 e(b) € e[U]. Suppose ¢[U] is open in e[T] and pick, by the
continuity of e, a neighbourhood V of b such that e[ V'] = e[U]. Pick k € N such that
x; € V. Pick ze U such that e(x,) = e(z). But y,,(x) = 1, x@y(z) = 0, and, by
Lemma 4.14, y,., € LMC, a contradiction. []

5. Some examples of §S. We present here three examples where we have identified
0Sis areasonably concrete fashion. The first two examples are right topological groups
which are based on the circle group which we denote by T. The ideas for these two
examples are derived from [9]. '

We let TT have the product topology with coordinate -wise operations.
P pology

5.1. Theorem. Let S = TT x T where S has the product topology and where,
for (hy,wy) and (hy, wy) €S, (hy, wy).(hy, wy) = ((hyoA,,) . hyy wy.wy). Then
T = §S.

Proof. Let n,(h, w) = w. When we say ,,T = 3S” we mean that (n,, T) satisfies
the conditions of Theorem 2.10. To see this let M be a compact Hausdorff right
topological semigroup and let ¢: S — M be a continuous homomorphism such
that Ag(x is continuous for each x € X. Define n: T — M by n(w) = ¢(1, w) where T
is the function constantly. Then # is a continuous homomorphism. To complete
the proof, it suffices to show that for (h,w)e S, ¢(h, w) = ¢(I, w). (For then
nom, = ¢.) For this it in turn suffices to show that given he TT ¢(h, 1) = ¢(T, 1),
since (h, w) = (I, w) . (h, 1).

Suppose instead that ¢(h, 1) # ¢(T, 1) and pick disjoint neighborhoods U, and U,
of ¢(h, 1) and (T, 1) respectively. Since ¢(T, 1) . ¢(h, 1) e U;, pick a neighborhood
U, of ¢(T, 1) such that U . é(h, 1) = U,. Pick neighborhoods ¥ of T and L, of 1
such that ¢[V X L1] < U, N U;. Pick finite F = T and for each x € F, a neigh-
borhood P, of 1 such that Ner 7z '[P:] € V-
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Inductively, choose a sequence (w,>Ey such that |w, — 1| < 1/n, w,FNF =90
and for n > 1, w,F n (Fu J'Z1 w,F) = 0. Define i’ € TT by h'(w,x) = h(x)~" for
each x e F and each ne N and h (x) = 1 otherwise. (Note that, by the choice of the
w,’s, h' is well defined.)

Now, given xe F, h'(x) = 1 so h’e V and thus ¢(h’, 1) € U; so that ¢(h’, 1).
.¢(h,1) e U,. Pick a neighborhood U, of ¢(h, 1) such that ¢(h’,1).U, = U,.
Pick neighborhoods Q of h and L, of 1 such that ¢[Q x L,] = U,. Pick n such that
w,eL, n L,.

Now (h, w,) € Q x L, so ¢(h', 1). ¢(h, w,) e Uy. But (0, 1). (b, w,) = ((h' - 4,,) .
.h,w,). Given xeF, (W4, (x)=h(wx)=h(x)"" so (Wo4,,).h)(x)=
Thus (h' o Aw,) . he V. Thus ¢((h', 1) . (h, w,)) € ¢[V x L,] = U,, a contradiction.

O

In Theorem 5.1, the topological center of S (A(S) = {x e S: A, is continuous})
is dense. To be precise, (h, w) € A(S) if and only if & is continuous. By way of contrast,
in Theorem 5.2, A(S) will consist of exactly two points (namely (1, 1) and (-1, 1)).

The topological space in Theorem 5.2 is familiar. See for exampe [2, p. 172].

5.2. Theorem. Let S = T x {—1,1} where, for (wy, x;) and (w,,x,) in S,
(Wi, x1) - (Wa, X3) = (Wi*wa, x,x,). For & >0 and (w,x)eS, let N((w,x),¢) =
= {(we", x): 0 £ § < &} U {(we™, —x): 0 < § < &} and take {N((w, x), €): & > 0}
as a basis for the neighborhoods of (w, x). Then §S = {1}.

Proof. As in Theorem 5.1, we let M be a compact Hausdorff right topological
semigroup and let ¢: S — M be a continuous homomorphism with 4,4,, continuous
for each x € S. We show that ¢ must be constant. For this it suffices to show that
#(1,1) = ¢(1, —1). (For then (w, 1) = ¢(1,1). ¢(w, 1) = ¢(1, —1). p(w, 1) =
= ¢(w, —1). From this ¢(w? 1) = ¢p(w, 1). ¢p(w, 1) = ¢(w, 1). ¢(w, —1) =
= ¢(1, —1). Since every element of T is a square, this suffices.)

Suppose instead ¢(1, 1) & ¢(1, —1) and pick disjoint neighborhoods U, and U,
of ¢(1, 1) and ¢(1, —1) respectively. Pick a neighborhood ¥; of (1, 1) such that
#[V,] = U, and pick ¢ > 0 such that N((1, 1), e) = V;. Pick a neighborhood U,
of ¢(1, 1) such that Us. ¢(1, —1) = U,. Pick a neighborhood ¥, of (1, 1) with
$[V2] < Us. Pick 8,0 < 6 < ¢, with (e?, 1) € V,.

Then ¢(e”, 1). ¢(1, —1)e U, so pick a neighborhood U, of ¢(1, —1) with
$(e”, 1) . U, < U,. Pick a neighborhood W of (1, —1) with ¢[W] = U,. Pick 1,
0 <t <34, such that (e, 1)e W. Then ¢(e”, 1). p(e”™, 1)e U,. But (e, 1).
(e7 1) = ("°79, 1) and 0<d—1<6<ss0 (e™*7, 1) e V;. Thus ¢((e®, 1).
.(e”", 1)) e Uy, a contradiction. []

The remainder of this section is devoted to a characterization of a familiar semi-
topological semigroup as a quotient of 6R, where R is the real numbers under addition
with the usual topology. As in [2, Example V.2.3(b)], we let S = Ru {0} where
topologically 0 is a point at + oo and algebraically 6 + x = x + 0 = O for all xe S.
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As is well known, LMC(R) is the set of bounded uniformly continuous functions
on R. (See for example [2, Theorem I1.14.6].) Consequently, by Theorem 4.2(c),
e: R - OR is an embedding. Therefore we are justified in pretending that R = 6R
and we will do so. We begin by characterizing (in a negative fashion) the members
of LMC(S).

5.3. Lemma. Let f:S — K. Then f¢LMC(S) if and only if either f|p ¢ LMC(R)
or there exist sequences {x, ;= 1, <V, >y, and {a,>*., in R such that
(a) lim y, = + o0,

n— o

(b) for each ke N, lim f(y, + x,) = a;, and

n—o

(c) lim a, exists and lim a, + f(6).

k= k=

Proof. Observe that, since S is commutative and g, is the identity, f € LMC(S)
if and only if cl {f - o, s€ S} < C(S).

For the necessity, pick g € cl {f - ¢, s € S} \ C(S). Observe that f o g, is constantly
equal to f(0). Thus g ecl {f - o,: s € R} and hence g|gecl {f|r o0, seR}. If g|r ¢ C(R),
then f| ¢ LMC(R). We thus assume that g| € C(R) so that g is bounded and g is not
continuous at 6.

Trivially g(6) = f(6), since f - 0,(8) = f() for each s € R. Pick a neighborhood V'
of g(6) in K such that g *[V] is not a neighborhood of . For each ne N pick
z,> n such that g(z,) ¢V. Then {g(z,));> , is a bounded sequence in K so pick a sub-
sequence {y,>o.; of {z,>=, such that {g(y,)>,= converges. Let for each n, a, =
= g(»,). Thus statements (a) and (c) hold.

For each neN, let U, = Ni=; 7, [{zeK: |z — g(»)| < 1/n}] and, since U,
is a neighborhood of g, pick x, € R such that f - ¢, € U,. Then given n > k we have
|f o ex () — g(v)] < 1/n so limf(yk + x,) = 9(»,) as required.

For the sufficiency observe that trivially if f|z ¢ LMC(R), then f ¢ LM C(S). We thus
assume we have sequences (x> 1, {¥.>21, and {a,>> in R satisfying (a), (b),
and (c). Let g be any cluster point (in K5) of {fo @, >y Again g(0) = f(6). We
show that lim g(y,) = lim a,, establishing that g is not continuous. To this end,

k— o0 k=0

let ¢ > 0 be given and let b = lim g,. Pick [ such that for k > I, |ak — b| < 8/‘3.

k=0
We claim that for k> 1, |g(») — b <e, so let k> I Let U=m,'[{zeK:
|z — g(»)| < ¢/3}]. Pick m such that, for n > m, |f(y, + x,) — @] < &[3. Pick
n > m such that fo o, €U. Then |[f(y, + x,) — g(v)| < &/3, |[f(ne + Xa) — ai| <
< ¢/3, and |a, — b| < ¢/3 s0 |9(y) — b| < ¢ as required. [J

We denote by R* and R~ the sets {x € R: x > 0} and {x € R: x < 0}, respectively.

5.4. Lemma. Let U be open in 3R. There exist q € 6R and r e cl;z(R*) N R such
that ¥ + q € U if and only if there exist V open in 6R and sequences {Ynin=1 and
{Xypp=y in R such that

" 116



(a) clirV = U,

(b) lim y, = +o0, and

n—>o0

(©) {y»e + x,2k,neN and k < n} = V.

Proof. For the necessity, pick g € ;R and r € cl;s(R*)\R such that r + ge U
and pick a neighborhood V of » + g with cl;zV = U. Then V is a neighborhood
of g,(r) so pick a neighborhood W of r such that ¢ [W] = V. Now r e clr(R*)\R
so pick a sequence {y,>>, in Wn R* with lim y, = +c. Now, given ne N,

V. + q € Vand 4, is continuous so pick a neighborhood 4, of g such that AlA4,] €
< V. Given neN, ()j=; 4, is a neighborhood of g so pick x,e Rn - 4.
Then {y, + x,: k,ne N and k < n} S Vas required.

For the sufficiency, let V, {p,>e%1, and {x,»;>; satisfy statements (a), (b) and (c).
Let r be a cluster point of {y,»e>; in 6R. Since lim y, = +o0, r e clz(R*)\R.

Let g be a cluster point of {x,y,=1 in 6R. Suppose that r + g ¢ U. Then r + g ¢
¢ cl;zV so pick a neighborhood W; of r + g such that Wy n ¥V = 0. Since W, is
a neighborhood of g,(r), pick a neighborhood W, of r such that g, [W,] = W;.
Pick k such that y, € W,. Then y, + g € W, so pick a neighborhood W; of g such that
A, [Ws] = W,. Pick n > k such that x,e W;. Then y, + x,€ Wy n V, a contra-
diction. [

Now given e: S — 48, eIR is a continuous homomorphism from R to S and 1,
is continuous for each s € R. Thus, by Theorem 2.10 we have a continuous homo-
morphism # so that the following diagram commutes. (Recall that we are assuming

that R < JR.) 7
O0R—— S

]Ll LZIe
L,
R—— S

Since R is dense in S, #n is onto 6S. Consequently &S is a quotient of éR via 7.
Theorem 5.6 shows that there is only one equivalence class which is not a singleton
and identifies precisely what the members of that equivalence class are.

5.5. Lemma. Let 1 be the continuous homomorphism from SR to 8S such that
1(s) = e(s) for all se R. For p, te SR, agree that p ~ t if and only if n(p) = n(t).
Given p,t€0R, pa t if and only if there if there exist f € C(6R) and g € LMC(S)
such that f(p) + f(t) and f|g = 9|r-

Proof. For the necessity, let p, t € SR such that p % t. Then 5(p) * n(t) so pick
h e C(6S) such that h(n(p)) * h(y(t)). Let g = h o e. By Theorem 2.11, g € LMC(S).
By Lemma 5.3, g|g € LMC(R) so, again by Theorem 2.11, there exists fe C(éR)
such thatf]R = g]R. Now f and h - 5 agree on the dense subset Rof 6Rso f = hoq
and hence f(p) # f(t) as required.

For the sufficiency assume we have p,tedR, fe C(6R), and g € LMC(S) such
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that f(p) * f(¢) and f|r = g|x. Pick by Theorem 2.11, h € C(3S) such that h o e = g.
Then as above hon and f agree on R so h oy = f. Thus h(n(p)) = f(p) + f(1) =
= h(n(t)) and hence #(p) * n(t) as required. [

5.6. Theorem. Let 1 and ~ be as in Lemma 5.5. The ~-equivalence classes of 6R
are the singletons and clog{r + q: q € 5R and r € clsg(R*)\ R}.

Proof. Let 4 = {r + q: g€ dR and reclg(R*)\R}. We first let p, t € clyrA
and show that p ~ t. Suppose instead that p &  and pick, by Lemma 5.5, f € C(6R)
and g € LMC(S) such that f(p) # f(t) and f|g = g|r. We assume without loss of
generality that f(p) + g(0) and let ¢ = |f(p) — g(0)|. Pick a neighborhood U of p
such that f[U]  {zeK: |z — f(p)| < ¢/2}. Since p e cl;rd, pick by Lemma 5.4
Vopen in 6R and sequences (¥, n=; and {x,>,% such thatclzV < U, lim y, = + 0,

n—+ow

and {y, + x,: k,neN and k < n} = V. By thinning {x,>;>; we may presume
that for each keN, limf(yk + x,) exists. Let a, = Iimf(yk + x,) and observe

n—* o0 n—oo

that |a, — f(p)| < &/2. Thinning the sequence {y,>-; so that lim a, exists, we have

n—>w

that [lim a, — f(p)| < &/2 so that lim a, + g(0). Since g|g = f|z We have that each
k=0 k=
a; = lim g(y, + x,). Thus, by Lemma 5.3, g ¢ LMC(S), a contradiction.

k=

To complete the proof we let p, t € R, assume p =+ t and p ¢ cly;p4 and show that
pat. Since p * ¢ and p ¢ cl;z 4, pick a neighborhood U of p such that ¢ ¢ U and
U n A = 0.Pick fe C(6R) such that f(p) = 1and f[6R\ U] = {0}. Define g: S - K
by glx = f|z and g(0) = 0. Since f(p) = 1 + 0 = f(¢), it suffices by Lemma 5.5
to show that g e LMC(S).

Suppose instead g ¢ LMC(S). Now f|r € LMC(R) by Theorem 2.11, 50 g|z € LMC(R).
Thus by Lemma 5.3, we have sequences {X,)r= 1, {Vun=1 >and {a,>,=1 in R such that
lim y, = + o0, for each ke N lim g(y, + x,) = a;, lim a, exists, and lim a, + g(6).

n-ow n—oo n—o k=

Let b = lim a,. Then b + 0. By eliminating early terms, if necessary, we may presume

k=
each |a,| > |b|/2. Likewise by thinning <{x,>7>,, We may presume that for n > k,
we have g(y; + x,) > |b|/2. Let V = {q € 6R: |f(q)| > |b|/2}. Then V is open in 6R
and cl,zV € U, since f[SR\ U] = {0}. Further since f|z = g|, we have {y, + x,: k,
neNand k< n} < V. But then, by Lemma 5.4, U n 4 % 0, a contradiction. []

Theorem 5.6 tells us that §S is obtained from SR by collapsing c]aR{r + q:qedR
and r e clr(R*)\ R} to the point 6. This is similar to what occurs when R and S
are considered as topological spaces. Then one obtains S (the Stone Cech com-
pactification of S) by collapsing clzz(R*) to the point 6. The major difference is that
clsr{r + q: g€ SR and reclx(R*)\R} includes points of clz(R7), as we shall
see in Theorem 5.7. This result allows us to see in a graphic fashion why e: S — e[S]
is not open. Given a neighborhood U of e(f), #7'[U] is a neighborhood of points
of clsx(R™) and hence includes points of R™. Thus each neighborhood of e(6)
includes points of ¢[R ] so that e[ R* U {6} ] is not open in ¢[S].
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5.7. Theorem. Let A = {r + q: g € SR and r € clyzg(R*) \ R}. Then clz(R*)\R =
< A, Rncl;zd = 0, and clyz(R™) N A * 0.

Proof. For the first assertion observe that each r € 4R satisfies r + 0 = r. For the
second assertion, let se R. Let U = {x eR:s—1<x<s+ 1}. Since R is locally
compact, U is open in R. We claim U n A = (. Suppose instead U n 4 = @ and
pick V, {y,di=; and {x,>7-; as guaranteed by Lemma 5.4. Since {y, + x,: neN
and n > 1} & V < U we have {x, )i, is bounded. But then, since {y; + x,:n, ke N
and n > k} < V, we must have {y,);% is bounded so that lim y, + + 0, a contra-
diction. k=

Finally, we show that cl;z(R™)\ R is a left ideal of SR. (Thus if r € cl,z(R*)\ R
and geclog(R7)\R, then r + ge AnclizR™.) To this end, let g €cl;z(R™)\R
and let p € 6R. Let U be a neighborhood of p + g and pick a neighborhood V of p
such that Q,,[V] c U. Pick xe Vn R, so x + g € U. Pick a neighborhood W of g
such that A,[W] = U. Since q € clyz(R™) \ R, pick y € W such that y < —x. Then
x + yeUn R™ as required. []

The situation is the same if one starts with the group Z of integers under addition
and lets T= Z u {0} with 0 topologically and algebraically at +oo. In this case
in fact 6Z = BZ [1, Theorem 2.4] so that §T is the quotient of BZ obtained by col-
lapsing clg;{r + q: q € BZ and r e clyz(—N)\ Z} to a point. The proofs are similar
to the ones we have done and in fact somewhat simpler. We omit them. (The reader
should be cautioned however, that we write r + g for what was called ¢ + rin [1].)
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