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CzechoslovakMathematical Journal, 38 (113) 1988, Praha 

ON EXTENSION OF VECTOR POLYMEASURES 

IvAN DoBRAKOV, Bratislava 

(Received November 28, 1985) 

Vector and operator valued polymeasures were introduced in [2], where some of 
their basic properties needed for the subsequent integration theory were deduced. 
In this paper we treat the problem of extension of a vector polymeasure from 
a Cartesian product of rings to the corresponding Cartesian product of generated 
<r-rings. Since, by definition, a non trivial vector polymeasure has no further extension 
to the generated product ff-ring, our setting of the extension problem for vector 
polymeasures is the right one. On the other hand, it is also important to know whether 
such further extension to the product c7-ring exists. For this latter problem we refer 
to References [1], [20], [21], [32] and [40] ofthe paper [2]. 

For uniform vector polymeasures, see Definition 1 in [2]; in Theorem 2 we give 
a necessary and sufficient condition for their extension. The proof of this result 
is based on Kluvanek's theorem on extension of vector measures, see [8] or Section 
1.5 in [1]. Under the assumption ofexistence ofcontrol polymeasures, see Section 3 
in [2], in Theorem 5 we give a necessary and sufficient condition for extension 
of a not necessarily uniform vector polymeasure. Hence solutions of Problem 1 
from [2] is of great importance for the extension problem for vector polymeasures. 

We adopt the notations from [2] without repeating their meanings. 
Our first theorem reduces the extension problem for operator valued polymeasures 

which are separately countably additive in the strong operator topology to the 
extension problem for vector polymeasures. 

Theorem 1. Let Г0: Mx x . . . x Md ^ tid)(Xu ...,Xd; Y) be an operator valued 
d-polymeasure separately countably additive in the strong operator topology 
and for each {xu...,xd)eXx x . . . x Xd let there be a separately countably 
additive vector d-polymeasure y(i): o-(@i) x ••• x cr(^d) ^ Ysuch that 7oc,)(#0 = 
= ro(Ri)(xi) for each (R,)eX^,. Put r ( ^ ) ( x , ) = y<,,,(4,) for ( ^ ) e X c r ( ^ ) 
and (x , )eXX,. Then Г:с(Мг) x ... x a{Mà) ^ L^(X^...,X,; У), and Г is the 
operator valued d-polymeasure separately countably additive in the strong operator 
topology which extends Г0. 

Proof. Let (Ai)eXo(Mi). Then the d-linearity of r(At) follows immediately 
from the d-linearity of Г0(Я;) for each (Rt) є X0t% by the application of Lemma 4 



from [2]. The separate continuity of r(At) is a consequence of the following facts: 
For a fixed (Xi) e XXt the set {у(х0(А[), (4J) є Xa(ßt)} is bounded in Y by the 
Nikodým uniform boundedness theorem for polymeasures, see (N) in [2]. Hence 
the set {r(R,), (Rt) є X<^J c Ďd)(Xu ...,Xd; Y) is pointwise bounded. Thus by the 
uniform boundedness principle for operators, see [5], this set is norm bounded 
in L c d ) (Z 1 ? . . . ,Z d ;7 ) . From here even the uniform boundednessof {r(A^),(A^)e 
є Xrj(^)} follows by Lemma 4 in [2]. The theorem is proved. 

Let us recall that a set function v: ffi ^> Y is called exhaustive (also strongly 
bounded, or strongly additive) if v(A^) ^ 0 for any sequence of pairwise disjoint 
sets AneM, n = 1,2, . . . . The next extension theorem for uniform vector poly­
measures is based on Kluvanek's extension theorem for vector measures, see [8], 
or Section 1.5 in [1]. 

Theorem 2. Let y 0
: ^ i x ••• x ^ d - * Y be a uniform vector d-polymeasure. 

Then there is a unique uniform vector d-polymeasure y: ff(^) x .. . x a(Md) -+ Y 
which extends y0 ifand only ify0 is separately uniformly exhaustive. 

Proof. By the extension theorem of Kluvánek, see [8], or Section 1.5 in [1], for 
each (A2,...,Ad)e&2

 x ••• x ^d there is a unique countably additive extension 
7i(*, A2, .., Ad): a{M^ ^> 7ofy 0 - According to Theorem 11 in [3], or to [9], these 
extensions Уі (•, A2,..., Ad): a(aii) ^ Y, (A2,..., Ad) e M2 x ... x md are uniformly 
countably additive. Hence by the well known result of Theorem IV.9.2 in [5], see 
also Theorem 3.10 in [6] and Theorem 7 in [3], there is a countably additive measure 
Xx: o-(^i) ~> [0, + oo) such that the vector measures y^*, A29 • .., Ad), (A2, ..., Ad) є 
є ^ 2

 x ••• x &d, a r e uniformly absolutely continuous with respect to Àt on v(Ri). 
Now, by Theorem D in § 13 in [7], for each Ai є <j(^) there is a sequence А1}П e 0tu 

n = 1, 2, ... such that X1(A1 Л A1>n) ^ 0. But then Уі(А1}Ю A2, ..., Ad) ^ 
^> yt{Au A2,..., Ad) uniformly with respect to (Л2, ..., Ad) e $2 x ... x 0ld by the 
above mentioned uniform absolute continuity. From here and from the assumption 
that y0 is a uniform vector d-polymeasure on 0t^ x ... x 0td we easily see that 
yx: a{M^) x 0l2 x ... x 3td ^> Yis a uniform vector d-polymeasure. 

Repeating the argument, we successively obtain extensions ylf2: o{&^ x a(&2) x 
x Мъ x ... x Md ^> У, ..., ylt...fd: v(&t) x . . . x a(@d) ^ Y which are uniform 
vector d-polymeasures. Hence y = yi}...,d is the required unique extension of y0-
The theorem is proved. 

According to the remarkable result of K. Ylinen, see Theorem 4.4 in [10] and (Y) 
in [2], each scalar bimeasure ß: <9% x Sř2 ^ K is a uniform bimeasure. Hence 
we have 

Corollary 1. A scalar bimeasure ß0: &x x ffl2 ^ K can be uniquely extended to 
a necessarily uniform scalar bimeasure ß: cr(&^ x a({M2) ~> K if and only if ß0 is 
separately uniformly exhaustive on 0lx x 0l2. 

From Corollary 2 of Theorem 2 in [2] we know that each vector d-polymeasure 
y: 2N x . . . x 2N ~> Y(N = {1, 2,.. .}) is uniform. Hence we have also 
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Corollary 2* Let Ф be the ring ofallfintte subsets ofN = {1, 2 , . . . } . Then a vector 
d-polymeasure y0: Ф x . . . x Ф ^ Y can be uniquely extended to a necessarily 
uniform vector d-polymeasure y: 2N x ... x 2N ~+ Yifand only ify0 is separately 
uniformly exhaustive on Ф x . . . x Ф. 

Unfortunately the author knows no further types of uniform polymeasures on 
Cartesian products of cr-rings, except the trivial case of polymeasures with bounded 
variations (clearly uniform) which have extensions with bounded variations. 

Theorem 3. Let Y be a reflexive Banach space, and let y0: 0lx x ... x 0là ~> Y 
be a vector d-polymeasure such that the scalar d-polymeasure y*y0 can be extended 
to a d-polymeasure on o(0l^ x . . . x cr(0£d)for each у* є У*. Then there is a unique 
vector d-polymeasure y: cr(^i) x ... x a{Md) ~* Ywhich extends y0. 

P r o o f . L e t (A,)eXff(^t) be fixed, and for у * є У * put у(Аь)(у*) = yy*(At), 
where yy* is the unique extension of y*y0. By Lemma 4 in [2], y{A^): У* ^ K is 
clearly linear. Since for each у* є У* the range of the scalar d-polymeasure yy* is 
bounded on Xa(^i), see the Nikodým theorem (N) in [2], the uniform boundedness 
principle for operators implies that the set {y0(Rt), (jRž) є X0tt] embedded in У** is 
bounded, see Theorem II.3.20 in [5]. Hence there is a constant C > 0 such that 
bo(*i) (У*)\ ^ C . \y*\ for each (R\) є X0tt and each j ; * є У*. But then by Lemma 4 
in [2] we have the inequality \y(At) (y*)\ = |y,.(4,)| й C . \y*\ for each (At) є Xa(0t,) 
and each у* є У*. Thus y(At) є У** = У. Now the separate countable additivity 
of y follows from the Orlicz-Pettis theorem, see the beginning of Section 1 in [2]. 
The theorem is proved. 

Since polymeasures with bounded variations (the variation of a polymeasure was 
introduced in Definition 3 in [2]) are evidently uniform, using Theorem 2 we obtain 

Corollary 1. Let Y be a reflexive Banach space, and let y0: Мг x ... x 0ld '-+ Y 
be a vector d-polymeasure such that the variatton u(y*y0,(...)) is a bounded d-
polymeasure on 0l^ x . . . x 0ldfor each у*є У*. Then there is a unique vector 
d-polymeasure y: a{0l^ x ... x a(&d) ~+ Ywhich extends y0. 

Using Corollary 1 of Theorem 2 we also obtain 

Corollary 2. Let Y be a reflexive Banach space. Then a vector bimeasure ß0: ^1 x 
x 0l2 ~* Ycan be uniquely extended to a vector bimeasure ß: a(ffl^ x a(^2) ~~* Y 
ifand only iffor each y* є У* the scalar bimeasure y*ß0' &i x $%i ~* K is separa­
tely uniformly exhaustive. 

It is an interesting open problem whetherTheorem 3 remains valid i f y i s a Banach 
space not containing an isomorphic copy of the space c0. 

We shall say that a set function v^: 0£ ** Yx is (ö ^> є) ~ absolutely continuous 
with respect to a set function v: 01 ~> y i f |vj(^)| < є whenever A e 01 and v(^) < ö, 
where v(y4) = sup{|v(5)j, ВеАслЩ. For countably additive vector measures 
on a cr-ring the (ö ^> e)-absolute continuity coincides with the (we may say (0 ^ 0) —) 
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absolute continuity of Definition 2 in [2], see [3]. The next theorem is a generaliza­
tion of Theorem 12 from [3]. 

Theorem 4. Let y: cr(&x) x ... x cr(^d) ~> Y be a vector d-polymeasure and let 
A j . : c r ( ^ ) ^ [ 0 , + o o ) , i = l , . . . , a , be countably additive measures. Then y is 
separately (ô ~> s)-absolutely continuous with respect to the polymeasure Xx x ... 
... x Xd on a(&x) x ... x o-(^d) if and only if its restriction to Mx x ... x 0td 

is separately (S ^ s)-absolutely continuous with respect to the restriction Xx x ... 
. . . x Xd: mx x . . . x mà ^ [0, + oo). 

Proof. The necessity implication is trivial. Conversely, let y: Rx x ... x ffîd ^ Y 
be separately (5 ^ e)-absolutely continuous with respect to Xx x ... x Xd: Mx x . . . 
. . . x md ^ [0, +oo). According to Theorem 12 in [3], y(-, R2,..., Rd): a{M^ ^ Y 
is (3 ^ e)-absolutely continuous with respect to Xx: a(&x) -^ [0, +oo) on o{0tx) for 
each (R2,...,Rd)e@2 x ••• x ®à- Hence if Nxea{Mx) and Xx(Nx) = 0, then 
y(Nl9 R2,..., Rd) = 0 for each (R2,..., Rd) є m2 x ... x Md. Now let (A2,..., Ad) є 
6f f ( l 2 ) x ... x o{$d). Since y(Nx, ...):a(ât2)

 x ••• x <*{^d) ~̂  Y i s a vector 
(d — l)-polymeasure, by Lemma 4 in [2] there are AUneMb i = 2, . . . , i , и = 
= 1, 2, ... such that 

y(iVl5 A29..., i4d) = lim y(Nx, A2>n,..., Adett) = 0 . 
H^OO 

Hence y(-, Л 2 , . . . , Ad): o{$tx) ~» 7 i s (0 ~> 0); hence equivalently (ô -+ e)-absolutely 
continuous with respect to Xx: v(&x) ~» [0, +oo) on o(@tx) for each (A2,..., ^ ) є 
є a{$2) x ... x c>(&d). By symmetry in coordinates, analogous assertions hold for 
ř = 2, ..., d. The theorem is proved. 

Theorem 5. Let y0: 0tx x ... x @td -+ Y be a vector d-polymeasure and suppose 
that there are countably additive measures ^ : a ( ^ ) ^ [ 0 , + o o ) , i = l,...,d, 
such that y0 is separately (ô -+ syabsolutely continuous with respect to Xx x ... 
. . . x Xd on 0lx x . . . x Md. Then there is a unique separately countably additive 
extension y: cr(&x) x ... x a(Md) ~> Yof y0 if and only if thefollowing condition 
holds: 
(1) if Ait„ e 0£b i = 1, ..., d, n = 1, 2, ... , and Хліп(#) converges a.e. 

Xi — (Xi'. v(&i) ~> [0, + oo)) 0П T£/or eacfo i — 1, ..., J then 

lim у ( Л М і , . . . , i4dfBd) є Yexists. 
rti,...,rtd^oo 

In that case Xx x ... x Xd is a control d-polymeasurefor y in the sense of Definition 
4 in [2]. 

Proof. Let(JRi, ' . . . ,Kj_i)eafi x . . . x 0td„v Sincebyassumption 
yQ(Ri,...,Rd-u.):âid^'Yis (5^e)-absolutely continuous with respect to the 
bounded measure Xd: Md -* [0, + oo). by Kluvanek's theorem on extension, see [8] 
or Section 1.5 in [1], there is a unique countably additive extension 
yd(Rx,...,Rd-x)(.):a(<Md)^ Yof?0(Ri9...,Rd„l9 .):Md^ Y AccordingtoTheo-
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rem 12 in [3], see Theorem 4 and its proof, this extension is (Ô ̂  s)-absolutely 
continuous with respect to A d : a ( ^ d ) ^ [ 0 , + o o ) . By symmetry in coordinates, 
analogous assertions hold if d is replaced by any i = 1, ..., (d — 1). 

Suppose (1) and let (Au ...,A^ea{0t^ x ... x a(âtd). Due to Theorem D in 
§ 13 and Theorem D in §22 in [7] there are ^ е Я , , i = 1, . . . ,d , n = l , 2 , . . . 
such that XAt,n(') ~* ^ i ( - ) ^ u a*e- o n ̂  f o r e a c h l = *> •••> d- Hence by (1) we may 
unambigously define у(Л1? ..., Ad) = Jim y0(Alnii..., Adttld). (If АііП e # ř , i = 

« l , . " j " d ~ * ° 0 

= 1, ..., d9 п = 1, 2 , . . . , and z^',..(-) ^ &*,(•) Лг a.e. on Tu then & ^ ( . ) ^ Zx,(0 
A; a.e. on Ti9 where i4^*í#B = Л м for n odd and = A'Un for и even.) 

Clearly y extends y09 so it remains to show that y is separately countablyadditive. 
Since our assumptions are symmetric with respect to the coordinates, it is enough 
to prove that y(Al9...9Ad-u.):cr(g$d)->Yis countably additive for each 
(Au...9Ai.1)ea^l1) x ... x cr(^_i). 

Let (Al9...,Ad-i)e°fâi) x ••• x vfód-i) b e fixed. Then for each Adea{0td)9 

y(Au...,Ad)± lim yo(A>ní,--;Ad>nd) = 
лі,...,и<і^оо 

lim \imy0(AUni,..., Ad__í}tld_l9 Adtttd) = 
" l f . . . > ' l d - 1 ^ 0 0 rtd^O0 

lim yd(Al)ni,...,Ad_Und_l)(Ad), 
ni,...,rtd- i^oo 

since XAa.nÁ-) -+ XAd(-)
 X~à a-e- o n T<*> a n d s i n c e yAAx,m> • • -, 4 r - i * , - i ) ( 0 : *0**) ^ У 

is (ô ̂  e)-absolutely continuous with respect to Àd. Consequently, since yd(Aíttlí9 . . . 
•••9 ^d-i,Md-i) (•)'• aißd) ~» X nl9..., nd.1 = 1, 2 , . . . are countably additive vector 
measures, the countable additivity ofy(Ai9 ..., Ad-U .) : o{$d) ~> Yfollows from the 
(VHSN) — theorem, see Theorem 1.4.8 in [1]. Hence the sufficiency is proved. 

Conversely, let y: a{^t^ x ... x a(&d) ^> 7 b e the unique separately countably 
additive extension of y0. First we show that X1 x . . . x Xd is a control ď-polymeasure 
for y on бг(^1) x ... x a(Md). By symmetry in the coordinates it is enough to deduce 
that Ad є a(&d) and Xd{Ad) = 0 implies y(Al9 ..., Ad) = 0 for each (Al9 ..., Ad_1) є 
e a ^ ) x . . . x a(&d_1). Hence let Ad be such and let (Al9...9Ad^1) be fixed. 
According to Lemma 4 in [2] there are AUn є 0li9 i = 1, ..., J — 1, n = 1, 2, .. . 
such that y ( ^ ! , . . . , Ла) = Km у(Л1іИ, ..., 4, , .1 ) В , i4d). But y(Altn9...,Ad-lt„,Ad) = 

n~*CQ 

= yd(Aí>n9..., Ad„í)n) (Ad) = 0 for each и = 1, 2, ... by the (0 -+ 0)-absolute con­
tinuity of yd(Aít1t9..., Ad„í>n) (.): a(&d) ~+ Y with respect to Xd9 which was proved 
at the beginning of the proof. Now using this control d-polymeasure for y we im­
mediately obtain condition (1) as a direct consequence of Theorem 1 m [2]. The 
theorem is proved. 

Let us note that for d = 1 condition (1) in the just proved theorem is a consequence 
of the assumed (ô ~* e)-absolute continuity of y0 with respect to Xv Whether the 
analogue holds for d > 1 remains an open problem. 
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Using Theorem 11 in [2] we immediately obtain the following 

Corollary. Let each 0th і =г 1, 2 , . . . , d, be a countable ring. Then a vector d-poly-
measure y0:&t x ... x 0td^ Y can be uniquely extended to a vector d-poly-
measure y: o-(^i) x ... x a($d) ^ Y if and only if there are countably additive 
measures kt: o*(&t) ^> [0, +oo), i = 1, ..., d9 such that y0 is separately (S ^ e)-
absolutely continuous with respect to Xx x ... x Xd on 0tt x ... x 0ld, and (1) 
of Theorem 5 holds. 

Let us note that ifit turns out that each vector J-polymeasure y: <9% x .. . x 9>d ^> 
^> Yhas a control d-polymeasure, see Section 3 in [2], then the above corollary will 
be true for any rings 0tb i = 1 , . . . , d. 

In some situations the following result may be useful. 

Theorem 6. Let 1 S ^i < d bea positive integer, let y0'^i x ••• x Sřdy x 
x &dí + í x . . . x ffld^> Ybe a vector d-polymeasure, and let there be countably 
additive measures Xt: cr(^) ^ [0, +oo), i = dx + 1, . . . ,d , such that y0(Au ... 
...,Adi,...): &dl + i x ... x Md^Y is separately (6^>z)-absolutely continuous 
with respect to Xdl + 1 x ... x kdfor each (Au ...,Adí)e^?

í x ... x Sřdl. Then y0 

can be uniquely extended to a vector d-holymeasure y: <9% x .. . x £fdy x 
x <K#* + i) x ••• x a(âld)^

 Y if and only if y0(Al9...9Adl,...): @di + l x ... 
... x&d-^Y can be extended to a (d — d^-polymeasure yd-dl(Al9...9Adl): 
cr (^ 1 + 1) x ... x cr(^)^> Yfor each (Aí,...,Adí)e^í x ...S?dí. (in that case 
y(Au...,Ad) = yd_di(Au...,Adí)(Adí + 1,...,Ad) for each (Al9...,Ad)e^l x ... 
. . . x £fdl x v(&dl + i) x . . . x a(&d) by the uniqueness ofextensions.) 

Proof. The necessity is obvious. Conversely, suppose that the extensions 
yd-dAAi>--->Adt)' <K#dt + i) x ••• x <*(@d)^ Y exist for each (Al9...,Adl)e 
є £fx x ... x £řdi. Define y by the equality in the brackets above. We have to show 
that y(...9Adl + i9 ...9Ad): ífx x ... x ^dl ~+ Yis separately countably additive for 
each (Adí + l9...,Ad)ea(Mdí + í) x . . . x a(Md). Let ^ e < j ( ^ ) , i = d1 + l,...,d. 
According to Theorem D in §13 in [7] there are AUne0ti9 i = d1 + l , . . . , d , 
n = l,2,... such that Ai(AiAAifn)^O.HQncQy(Aí,...,Adl9Adí + ín,...,Ad^^ 
^y(Au...,Ad) for each (Au...9Ad)eSřx x ... x $fix by Theorem 12 in [2]. 
Since by assumption y(.>-,Adl + ltn9...9Adt^: Sfx x . . . x Sřdx ~> Yare vector dr 

polymeasures for each n = 1, 2, ... , the (VHSN)-theorem for polymeasures, see the 
beginning in [2], implies the required separate countable additivity of 
y(...,Adl + 1,...9Ad):^l x ... x Sřdi ^ Y. The theorem is proved. 

Using Theorem 2 in [4], Theorem 10 and Corollary ofTheorem 14 in [2] we easily 
obtain our last 

Theorem 7. Let Th i — 1, ..., d, be locally compact Hausdorfftopological spaces, 
and let <êi (^o,i) denote the class ofcompact (compact Gô) subsets ofT{. Then 

1) for each separately regular vector Borel d-polymeasure 
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y: u{<$^) x . . . x ff(#d) -+ Y and for each (Ai) є Xa(^i) there is a d-tuple (Bt) є 
є Xff(íř0fJ) swcfc řftař у(Л^) = y(B-); 

2) eacfr t>ector Baire d-holymeasure y0: Xa(^ O Í ) ^ Y, wfoícfo fcas a control 

d-polymeasure, can be uniquely extended to a separately regular vector Borel 

d-polymeasure y: Xcr(^.) ~> Y, and 

3) each uniform vector Baire d-polymeasure y0: Xa(^0>i) ~» Ycan be uniquely 

extended to a separately uniformly regular vector Borel d-polymeasure y: Xcr(^i) ~* 

~> Y. 

The analogues hold ifo-(*$t) is replaced by a (%), i — 1, . . . , d, where %t denotes 

the class of all open subsets of Tr 
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