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ON EXTENSION OF VECTOR POLYMEASURES

IvaN DoBRrAKOV, Bratislava

(Received November 28, 1985)

Vector and operator valued polymeasures were introduced in [2], where some of
their basic properties needed for the subsequent integration theory were deduced.
In this paper we treat the problem of extension of a vector polymeasure from
a Cartesian product of rings to the corresponding Cartesian product of generated
g-rings. Since, by definition, a non trivial vector polymeasure has no further extension
to the generated product g-ring, our setting of the extension problem for vector
polymeasures is the right one. On the other hand, it is also important to know whether
such further extension to the product o-ring exists. For this latter problem we refer
to References [1], [20], [21], [32] and [40] of the paper [2].

For uniform vector polymeasures, see Definition 1 in [2]; in Theorem 2 we give
a necessary and sufficient condition for their extension. The proof of this result
is based on Kluvéanek’s theorem on extension of vector measures, see [8] or Section
L5 in [1]. Under the assumption of existence of control polymeasures, see Section 3
in [2], in Theorem 5 we give a necessary and sufficient condition for extension
of a not necessarily uniform vector polymeasure. Hence solutions of Problem 1
from [2] is of great importance for the extension problem for vector polymeasures.

We adopt the notations from [2] without repeating their meanings.

Our first theorem reduces the extension problem for operator valued polymeasures
which are separately countably additive in the strong operator topology to the
extension problem for vector polymeasures.

Theorem 1. Let I'y: #; % ... x Ry — L[Y(Xy,...,X4; Y) be an operator valued
d-polymeasure separately countably additive in the strong operator topology
and for each (xi,...,x;)€Xy X ... X X, let there be a separately countably
additive vector d-polymeasure y.,y: 6(%;) % ... x o(#;) > Y such that y,(R;) =
= I'o(R) (x;) for each (R))eXZ;. Put I'(4)(x)) = yi,(4;) for (4;)€Xo(#,)
and (x;) € XX ;. Then T: o(R,) % ... x o(R;) - LV(X,,...,Xy; Y), and T is the
operator valued d-polymeasure separately countably additive in the strong operator
topology which extends I'y.

Proof. Let (A4;) e Xa(#;). Then the d-linearity of I'(4;) follows immediately
from the d-linearity of I'y(R;) for each (R;) € X%, by the application of Lemma 4
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from [2]. The separate continuity of I'(4;) is a consequence of the following facts:
For a fixed (x;) e XX the set {y.,(4}), (4}) € Xo(%;)} is bounded in Y by the
Nikodym uniform boundedness theorem for polymeasures, see (N) in [2]. Hence
the set {I'(R,), (R,) € X&;} < [[(X,, ..., X,; Y) is pointwise bounded. Thus by the
uniform boundedness principle for operators, see [5], this set is norm bounded
in [X,,...,X,;; Y). From here even the uniform boundednessof {I'(4,),(4;) €
€ Xo(#;)} follows by Lemma 4 in [2]. The theorem is proved.

Let us recall that a set function v: # — Y is called exhaustive (also strongly
bounded, or strongly additive) if v(4,) — 0 for any sequence of pairwise disjoint
sets A,€ #, n=1,2,.... The next extension theorem for uniform vector poly-
measures is based on Kluvanek’s extension theorem for vector measures, see [8],
or Section I.5 in [1].

Theorem 2. Let yy: #; X ... X &3 — Y be a uniform vector d-polymeasure.
Then there is a unique uniform vector d-polymeasure y: o(#,) x ... x o(#,) > Y
which extends vy, if and only if y, is separately uniformly exhaustive.

Proof. By the extension theorem of Kluvanek, see [8], or Section L.5 in [1], for
each (4,, o A) € Ry X ... X R, there is a unique countably additive extension
71(%, Az, ..., A)): 6(#,) > Y of y,. According to Theorem 11 in [3], or to [9], these
extensions y4(*, 4,, ..., 47): 6(#,) > Y, (45, ..., A)) € B, x ... X R, are uniformly
countably additive. Hence by the well known result of Theorem IV.9.2 in [5], see
also Theorem 3.10 in [6] and Theorem 7 in [3], there is a countably additive measure
Az 6(#,) = [0, +00) such that the vector measures y;(*, A, ..., 4y), (4z, ..., A7) €
€Ry X ... X Ry, are uniformly absolutely continuous with respect to 4, on a(Rl).
Now, by Theorem D in § 13 in [7], for each 4, € o(<,) there is a sequence 4, , € %,
n=12.. such that ,(4, AA,;,)— 0. But then 7,(Ay,, 43, ..., 4;)
— 7,(4;, 4,, ..., A;) uniformly with respect to (4,, ..., 4;) € #, X ... X &, by the
above mentioned uniform absolute continuity. From here and from the assumption
that y, is a uniform vector d-polymeasure on #; x ... x #; we easily see that
71:6(R,) x R, x ... x R, — Yis a uniform vector d-polymeasure.

Repeating the argument, we successively obtain extensions y; ,: 6(%,) x o(%,) x
X Ry X oo X By Y, ooy gt 6(Ry) % ... x o(#;) > Y which are uniform
vector d-polymeasures. Hence y = y; .., is the required unique extension of y,.
The theorem is proved.

According to the remarkable result of K. Ylinen, see Theorem 4.4 in [10] and (Y)
in [2], each scalar bimeasure f: ¥; x &, — K is a uniform bimeasure. Hence
we have

Corollary 1. A scalar bimeasure S,: £, x #, - K can be uniquely extended to
a necessarily uniform scalar bimeasure B: o(%#,) x o(#,) —» K if and only if B, is
separately uniformly exhaustive on Z; x %,.

From Corollary 2 of Theorem 2 in [2] we know that each vector d-polymeasure
7:2¥ x ... x 2Y 5 Y(N = {1,2,...}) is uniform. Hence we have also
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Corollary 2. Let ¢ be the ring of all fintte subsets of N = {1, 2, ...}. Then a vector
d-polymeasure y,: ® x ... x ® - Y can be uniquely extended to a necessarily
uniform vector d-polymeasure y: 2V x ... x 2¥ — Yif and only if 7, is separately
uniformly exhaustive on ® x ... x .

Unfortunately the author knows no further types of uniform polymeasures on
Cartesian products of o-rings, except the trivial case of polymeasures with bounded
variations (clearly uniform) which have extensions with bounded variations.

Theorem 3. Let Y be a reflexive Banach space, and let yo: &y X ... X By — Y
be a vector d-polymeasure such that the scalar d-polymeasure y*y, can be extended
to a d-polymeasure on 6(#,) x ... x o(R,) for each y* € Y*. Then there is a unique
vector d-polymeasure y: (%) % ... x o(R,) > Y which extends y,.

Proof. Let (4;)e Xo(2;) be fixed, and for y*e Y* put y(4;) (y*) = y,+(4)),
where y,. is the unique extension of y*y,. By Lemma 4 in [2], y(4,): Y* > K is
clearly linear. Since for each y* e Y* the range of the scalar d-polymeasure 7y« is
bounded on Xa(2,), see the Nikodym theorem (N) in [2], the uniform boundedness
principle for operators implies that the set {yo(R;), (R;) € X#;} embedded in Y** is
bounded, see Theorem II.3.20 in [5]. Hence there is a constant C > 0 such that
[7o(R:) (y*)| £ C. |y*| for each (R;) € X, and each y* € Y*. But then by Lemma 4
in [2] we have the inequality [y(4;) (y*)| = |r,+(4:)| < C. |y*| for each (4;) € Xo(;)
and each y*e Y*. Thus y(4;) € Y** = Y. Now the separate countable additivity
of y follows from the Orlicz-Pettis theorem, see the beginning of Section 1 in [2].
The theorem is proved.

Since polymeasures with bounded variations (the variation of a polymeasure was
introduced in Definition 3 in [2]) are evidently uniform, using Theorem 2 we obtain

Corollary 1. Let Y be a reflexive Banach space, and let yo: By X ... X Ry —> Y
be a vector d-polymeasure such that the variatton v(y*y,,(...)) is a bounded d-
polymeasure on Ry X ... X R, for each y* € Y*. Then there is a unique vector
d-polymeasure y: 6(#,) % ... x o(R,) - Y which extends y,.

Using Corollary 1 of Theorem 2 we also obtain

Corollary 2. Let Y be a reflexive Banach space. Then a vector bimeasure Bo: B, X
X R, — Y can be uniquely extended to a vector bimeasure B: 6(#,) x o(®,) > Y
if and only if for each y* € Y* the scalar bimeasure y*By: £, x R, — K is separa-
tely uniformly exhaustive.

It is an interesting open problem whether Theorem 3 remains valid if Y is a Banach
space not containing an isomorphic copy of the space c,.

We shall say that a set function v,: # — Y, is (6 — &) — absolutely continuous
with respect to a set function v: # — Yif |v,(4)| < & whenever 4 € 2 and ¥(4) < 4,
where 7(4) = sup {|v(B)|, Be An #}. For countably additive vector measures
on a o-ring the (§ — ¢)-absolute continuity coincides with the (we may say (0 — 0) —)
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absolute continuity of Definition 2 in [2], see [3]. The next theorem is a generaliza-
tion of Theorem 12 from [3].

Theorem 4. Let y: (%) x ... X o(®,) > Y be a vector d-polymeasure and let
i o(®R) - [0, +o0), i =1,...,d, be countably additive measures. Then 7y is
separately (6 — ¢)-absolutely continuous with respect to the polymeasure Ay % ...

. X Ag on o(Ry) x ... x a(R,) if and only if its restriction to By x ... X &,
is separately (8 — €)-absolutely continuous with respect to the restriction A, X ...

CX At Ry X X By~ [0, +00).

Proof. The necessity implication is trivial. Conversely, let y: Ry X ... x Z; - Y
be separately (8 — ¢)-absolutely continuous with respect to A; X ... X A;: Zy X ...

. %X Ry = [0, + ). According to Theorem 12 in [3], y(*, R,, ..., R)): o(%#,) > Y
is (6 — ¢)-absolutely continuous with respect to ,: ¢(#,) — [0, + ) on o(%,) for
each (R,,...,R))€®, x ... x #;. Hence if N;eo(#,) and 1,(N,) =0, then
P(Ny, Ry, ..., Ry) = O for each (Ry, ..., R) € #5 % ... X &, Now let (4, ..., 4,) €
e o(A,) x ... x o(R,). Since p(Ny,...):0(R,) x ... x o(#,) > Y is a vector
(d — 1)-polymeasure, by Lemma 4 in [2] there are 4;,e %, i =2,...,d, n =
= 1,2, ... such that

YNy, Asy ooy A) = lim y(Ny, Ay s ooy Ag,) = 0.

Hence y(+, 4, ..., 4): 6(#;) — Y is (0 — 0); hence equivalently (6 — ¢)-absolutely
continuous with respect to 1,: 6(%,) — [0, + ) on o(%,) for each (4,, ..., 4,) €
eo(#,) x ... x o(2,). By symmetry in coordinates, analogous assertions hold for
i =2,...,d. The theorem is proved.

Theorem 5. Let yo: #; X ... X &3 — Y be a vector d-polymeasure and suppose
that there are countably additive measures 1;: a(?/?i) - [0, +oo), i=1,...,d,
such that y, is separately (5 — ¢)-absolutely continuous with respect to A; X ...

X Agon Ry X ... x R,. Then there is a unique separately countably additive
extension y: (&) x ... x a(R,) = Y of vy, if and only if the following condition
holds:

(1) if A, e, i=1,...,d, n=1,2,..., and g4 () converges a.e.
i — (A2 6(@;) - [0, +00)) on T; for each i = 1, ..., d then
lim  y(Ay,, ..., Ag,,) € Y exists.

Ny,..a,ig—> 00

In that case Ay X ... x A,1is a control d-polymeasure for y in the sense of Definition
4in[2].

Proof. Let (Ry,...,R;_1) € #; X ... x &,_,. Since by assumption
Yo(Rys ..oy Ry—y, .): B4 —> Y is (8 — ¢)-absolutely continuous with respect to the
bounded measure 1,: #; — [0, + o). by Kluvének’s theorem on extension, see [8]
or Section L5 in [1], there is a unique countably additive extension
Ya(Rys --os Ry—y) (\): 6(#,) > Y of 9o(Ry, ..., Ry_y, .): &y — Y. According to Theo-

91



rem 12 in [3], see Theorem 4 and its proof, this extension is (5 — ¢)-absolutely

continuous with respect to A,: o(%,) - [0, + ®). By symmetry in coordinates,
analogous assertions hold if d is replaced by any i = 1, ..., (d — 1)_

Suppose (1) and let (4, ..., 4;) € (#;) X ... x 6(®,). Due to Theorem D in
§ 13 and Theorem D in §22 in [7] there are 4, , e, i=1,....,d, n=1,2,...
such that z,, (.) - %a(-) A4, ae. on T, for each i = 1, ..., d. Hence by (1) we may
unambigously define y(Ay,..., 4) = lim  yo(4y,, ..., 4z,,) (If 4;, e, i=

Ny yeen,ig= 0O
=1,...d,n=1,2,...,and x4, ()= 24(.) A ae. on T, then Yarin(-) = 2al)
A; a.e.on T;, where A, = A;, for n odd and = 4, for n even.)

Clearly y extends 7y, so it remains to show that y js separately countably additive.
Since our assumptions are symmetric with respect to the coordinates, it is enough
to prove that y(4;, ..., As—y, .): 6(#;) > Y is countably additive for each
(Agy ..oy Agmq) € () % ... X o(Ry- ).

Let (Ay, ..., As—1) € o(2#;) x ... x o(%R,_,) be fixed. Then for each A4, € o(Z,),
YAy, oy A = Tim yo(Ag s oees Ag,,) =

nyyene,lla= 0

= lim 1im yo(Aq nps - s Aay

Ry,ee,ig—1—>00 Bg—> 0

= lim  y(Ay s Agg ) (),

Riyeiyig—1—>00
since yuq,.,(-) = xa(-) 45 a.e. on Ty, and since Y(A; s --o» Ag—1mg_,) ()1 0(Z) > Y
is (6 — ¢)-absolutely continuous with respect to 4,. Consequently, since y4(4; ,, ---
s Ag—g ) () 6(R) > Y, ny, .. my_y = 1,2,... are countably additive vector
measures, the countable additivity of y(A4y, ..., 441, .): 6(#,) - Y follows from the
(VHSN) — theorem, see Theorem 1.4.8 in [1]. Hence the sufficiency is proved.
Conversely, let y: o(#,) % ... x o(#,) > Y be the unique separately countably
additive extension of y,. First we show that 4; x ... x A, is a control d-polymeasure
for y on 6(#,) x ... x o(%,). By symmetry in the coordinates it is enough to deduce
that A4, € o(2,) and A(4,) = 0 implies y(4,, ..., A;) = 0 for each (Ay, ..., 44_;) €
€o(R,) x ... X o(%y_,). Hence let A, be such and let (4, ..., 4;_,) be fixed.
According to Lemma 4 in [2] there are 4;,€%;, i=1,...,d -1, n=1,2,...
such that p(Ay, ..., Ag) = im p(Ay m -oos Ay g Ag)- But y(Ay .oy Ay Ag) =

= YAy -+ Aa—1 ) (4;) = 0 for each n = 1,2, ... by the (0 — 0)-absolute con-
tinuity of y,(4; , --.» Ag—1.,) (.): () = Y with respect to 1,, which was proved
at the beginning of the proof. Now using this control d-polymeasure for y we im-
mediately obtain condition (1) as a direct consequence of Theorem 1 jn [2]. The
theorem is proved.

sHd—-1 Ad,nd -

Let us note that for d = 1 condition (1) in the just proved theorem is a consequence
of the assumed (6 — ¢)-absolute continuity of y, with respect to A;. Whether the
analogue holds for d > 1 remains an open problem.
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Using Theorem 11 in [2] we immediately obtain the following

Corollary. Let each #;,i = 1,2, ..., d, be a countable ring. Then a vector d-poly-
measure yo: Ry X ... X By — Y can be uniquely extended to a vector d-poly-
measure y: o(#,) X ... x o(R;) = Y if and only if there are countably additive
measures ;2 a(#;) - [0, + ), i = 1,...,d, such that y, is separately (5 — ¢)-
absolutely continuous with respect to Ay X ... X A4 on Ry X ... X Ry, and (1)
of Theorem 5 holds.

Let us note that if it turns out that each vector d-polymeasure y: & X ... X &¥; —
— Y has a control d-polymeasure, see Section 3 in [2], then the above corollary will
be true for any rings %;, i = 1,...,d.

In some situations the following result may be useful.

Theorem 6. Let 1 < d, < d be a positive integer, let yy: S x ... X Py X
X Ry 41 X ... X By — Y be a vector d-polymeasure, and let there be countably
additive measures A;: 6(@;) - [O, +o), i=d;+1,...,d, such that yO(Al,
v Agyy ) Ryivq X ... X Ry~ Y s separately (5 — g)-absolutely continuous
with respect to g, 41 % ... X A for each (Ay, ..., Ag) €&y X ... x Py, Then y,
can be uniquely extended to a vector d-holymeasure y: ¥y x ... X &y X
X 0(Ry,11) X ... x o(Ry) = Y if and only if yo(Ay, ..., Agps...): Rayrq X .

. X Ry~ Y can be extended to a (d — d)-polymeasure y,_,(A;, ..., Ag):
0(Ra,41) % ... x o(R;) > Y for each (Ay,...,A;)e Sy x ... %,. (In that case
YAgs s A)) = Va—a(Ags s Ag) (Agy 415 s Ag) for each (Ay, ..., A)e Sy x ...

X Py % 0(Rg, 1) X ... X o(R,) by the uniqueness of extensions.)

Proof. The necessity is obvious. Conversely, suppose that the extensions
Vaca(Ags -oos Ag): 0(By,+1) X ... x o(By) > Y exist for each (A, ..., A,)e
€Yy x ... x &,,. Define y by the equality in the brackets above. We have to show
that y(..., Ay, 115 .. Ag): Ly X ... X P, — Y is separately countably additive for
each (Ag 11, .- A) €0(Ry 1) X ... X 0(Ry). Let A;eo(R), i=d; +1,...,d.
According to Theorem D in §13 in [7] there are 4,,e%;, i=d, +1,...,d,
n=1,2,... such that 1,(4;A 4,,) - 0. Hence y(Ay, ..., Ay, Ay, v 1 ---» Aap) =
- (A4, ..., A;) for each (Ay,...,A4;)e Py x ... x F#, by Theorem 12 in [2].
Since by assumption (..., Ay, 41 - Agn): L1 X ... X Py, > Y are vector d,-
polymeasures for each n = 1,2, ..., the (VHSN)-theorem for polymeasures, see the
beginning in [2], implies the required separate countable additivity of
Yooy Agys1s s Ag): &y X oo x Py, — Y. The theorem is proved.

Using Theorem 2 in [4], Theorem 10 and Corollary of Theorem 14 in [2] we easily
obtain our last

Theorem 7. Let T;, i = 1, ..., d, be locally compact Hausdorff topological spaces,
and let €;(%,,;) denote the class of compact (compact G;) subsets of T;. Then

1) for each separately regular vector Borel d-polymeasure
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y:0(%,) x ... x 6(%,) > Y and for each (A;) € Xa(%,) there is a d-tuple (B)) e
€ Xa(%,,;) such that y(4;) = y(B,);

2) each vector Baire d-holymeasure y,: Xo(%, ;) — Y, which has a control
d-polymeasure, can be uniquely extended to a separately regular vector Borel
d-polymeasure y: Xo(%;) —» Y, and

3) each uniform vector Baire d-polymeasure y,: Xo(%, ;) — Y can be uniquely
extended to a separately uniformly regular vector Borel d-polymeasure y: Xo(%;) —
- Y.

The analogues hold if (%) is replaced by o(%;,), i = 1, ..., d, where U, denotes
the class of all open subsets of T;.
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