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1. INTRODUCTION

Let T be an abelian totally ordered group (o-grou p). The purpose of this paper is
to suggest a way of studying the homomorphisms from T to the real numbers R.
This set of homomorphisms forms a group with respect to pointwise addition and,
in general, a dual space of T will be a partially ordered subgroup of this group. The
usual definition of the partially ordered subgroup, which takes as its positive cone
the order-preserving homomorphisms (see [7], [11], [8]), has a major dawback:
it always leads to an archimedean dual space [11].

We will propose below a different definition for the dual space, a definition which,
for a non-archimedean base group, will yield a non-archimedean dual space. The
homomorphisms which we will single out to be positive will be those which are
locally order-preserving with respect to a fixed but arbitrary Banaschewski function.
This Banaschwski function will have a dual Banaschewski function, and hence we
will be able to form all higher dual spaces in the same way. At the very least, such
a construction should allow a homomorphism between two base groups to lift in
the usual way to a homomorphism between their dual spaces, and for our construc-
tion, this will indeed be the case. Furthermore, the evaluation map into the second
dual space will be a one-to-one homomorphism, and all the odd-numbered higher
dual spaces will be isomorphic as will all the even-numbered ones. These results will
not surprisingly have as an immediate consequence the well-known embedding
theorem of Hahn [5] and will also imply that the group of eventually constant
sequences has two dual spaces (arising from two different Banaschewski functions)
which are not isomorphic.

Now let T be an abelian o-group and let P (or if necessary Pr) denote its set of
convex subgroups. If S is a subgroup of T, let S¢ denote its divisible closure in T: §¢
is the subgroup of all x € T for which there exists a positive integer n such that nx € S.
Let D (or if necessary Dy) denote the set of all subgroups S of T such that S = S%
Clearly P < D.

N *) Some of this work was done while the author was visiting Simon Fraser University where
he was supported in part by NSERC grant A4044. The author wishes to thank the Department
of Mathematics and Statistics at Simon Fraser and, in particular, N.R. Reilly for their hospitality.
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The following generalizes a result of Banaschewski. He proved a similar result
for divisible groups (see below and [2], p. 431).

Proposition 1.1. For any abelian o-group T, there exists a function ©: P —» D
such that

(i) if P < Q, P, Q € P, then «(P) = 1(Q);

(ii) for all Pe P, T = (P @ o(P))".

Proof. Let & be the set of all functions ¢: P — D such that

(a) if P < Q, P, Q € P, then ¢(P) = ¢(Q), and

(b) P o(P) = {0} for all Pe P.
The function which takes all Pe P to {0} € D is clearly in @ and hence & # 0.
Define a binary relation < on @ by letting ¢ < y if and only if ¢(P) < y(P) for all
P e P. Clearly (®, <) is a partially ordered set to which we may apply Zorn’s Lemma,
and hence we may pick an element p in @ which is maximal with respect to <.
Because p € &, it suffices to show that T = (P + u(P))? for all Pe P. By way of
contradiction suppose that 0 < xe T\(U + p(U))* for some Ue P, and define
w*: P — D by letting p*(P) = u(P) if U = P and p*(P) = S if U = P, where S
is the subgroup of T generated by x and u(P). We claim that u* € @. It is easy to see
that u* satisfies (a). To see that u* satisfies (b), pick Pe P and z e P n p*(P). If
U < P, then z = 0 because pu € @. Suppose on the other hand that U 2 P. Then
we have y € u(U) and integers k and n such that nz = kx + y. Since ze U, kx =
= nz — ye U + p(U), and by our choice of x, k = 0. Then nz = y € p(U); hence
ze p(U) < p(P); hence z = 0. We conclude that p* satisfies (b) and hence that
p* e @. Clearly p < p*, a contradiction of our choice of p as maximal in (&, <).
Therefore T = (P + p(P))” for all P € P and Proposition 1.1 follows.

We call an abelian o-group T equipped with a function 7 satisfying conditions (1)
and (ii) of Proposition 1.1 a B-group. If the function satisfies (i) and the stronger

condition
(i) T=P@(P) forall PeP,

then we call T a strong B-group. Every divisible abelian o-group possesses a function
7: P — D with respect to which it is a strong f-group [2].

2. DEFINITION OF THE DUAL SPACE

In this section we give the definition of the dual space. It is based on the set of
archimedean subgroups of T which are generated by 7 as follows. For a g-group T,
let A (or if necessary Ay or A[T, t]) be the set of all subgroups A of T'such that there
exist P4, Q4 € Psuch that P, covers Q, in the lattice Pand 4 = P, n ©(Q,). Clearly
A < D, and each A€ A4 is archimedean. We may also characterize A as follows.
For any S < T, let {S) denote the convex subgroup of T generated by S (we ab-
breviate {{z}) by {z)); for 0 # z € T, let [z] denote the subgroup of T formed by all
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y € Tsuch that y < |z, i.e., such that ny < |z| for all integers n. Then 4 = {(x) n
nt([x])|0 < xeT}.

Proposition 2.1. For Ac A, T= (A ® Q, ® ©(P,))*, where P4 covers Q, in the
lattice P and A = P4 0 ©(Q,).

Proof. We first show that P, = (Q, ® A4)". We have ([3], p. 172)
Py=Pin(0@®1Q,) 2P, n(QuD1(Q) =0 ®A.
SinceP,eP< D,P, 2 (0, ® A)”. Conversely, if z € P, then there exists a positive

integer n such that nze P, n (Q, @ 1(Q,)) = Q4 ® 4, ie., ze(Q, ® A)*. Hence
P, = (Q 4 @ A)". Now let x € T. Then there exists a positive integer n such that
nxeP, ®t(Py) = (0, ® A @ (P,),
ie, nx = w + z, where zet(P,) and mwe Q, ® A for some positive integer m.
Then
mnx =mw + mzeQ, ® A D t(P,),

ie., xe(Q4 ® A @ t(P,))". This proves Proposition 2.1.

Proposition 2.1 says that any x € T has a multiple which may be written uniquely
as a sum of elements from 4, Q,, and 7(P,). We will be using this property, as well
as related ones, continually and hence we adopt the following notation. If xe T
and S§? = T for a subgroup S of T, then there exists a positive integer n such that
nxe S and we let m{x, S} denote the minimal such n. For Ve P, we abbreviate
m{x, V® t(V)} by m(x, V)and weleta,, €V and B, et(V) be such that
m(x, V)x = o,y + B.y. For Ae A, we abbreviate m{x, A ® Q, @ t(P,)} by
m(x, A) and we let x € A, q, 4€ Q4 and p, 4 €7(P4) be such that m(x, 4) x =
= X4 + gy 4 + Px.4 For a strong p-group, we have m(x, A) = 1 for all xe T and
A € A and the proofs in the sequel simplify accordingly (cf. [9]).

Define a binary relation < on 4 by letting A < B if and only if 4 = (B).Itis
easy to see that (A, g) is a totally ordered set. For a divisible group T, the following
result is due to Banaschewski ([2], page 433).

Proposition 2.2. For all 0 + x € T, the set S(x) = {A € A | x, * 0} is an inversely
well-ordered subset of (4, <).

Proof. Let 0 + x e Tand construct B[x]| < A4 inductively as follows. Let B[0] =
= <(x) nt([x]). If g, po; = O, let B[x] = {B[0]}. Suppose that for an ordinal a,
B[] has been defined and g, g,y F 0. Then let Bla + 1] = {q, sy N ©([qx.51a1])-
If g, pra+13=0, let B[x] ={B[B]|B < «}. Suppose 4 is a limit ordinal and
Qxp F 0 forall « < 2. Let V[A] = N,<; <B[a]). If o,y =0, let B[x] =
= {B[B] I B <Ay 1If % yia + 0, let B['l] = Oy O T([“x,vm])- If 9,301 =0,
let B[x] = {B[B]|B < 4}.

Let xe Tand 4 < B in 4. For notational convenience, let ¢ = q,,5- Then
m(x, A) [m(g, A) xp + g4 + quu + pys + m(q, A) p, 5] =
= m(xs A) m(qa A) m(x’ B) X = m(x, B) m(q, A) [XA + qx,A + px,A] .
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We have ¢4, x4€A4, q4.4,9,4€ 0, and Py Pra€7(Pa). Since A <B, B<
< 1(P,); thus xze(P,) and p,ze(P,). Therefore, by the directness of the
sum Q @ A4 ® t(P,), we must have

(1) m(x’ A) (qx,B)A = m(x’ B) m(qx,B’ A) X4
Similarly, if Ae 4 and A < P € P, then

(2) m(x, A) (o, p)4 = m(x, P) m(ar, p, A) X4

It is clear from the construction of B[x] and (1) and (2) above that B[x] = S(x).
Conversely, suppose that A e S(x), and let P = N{{B[«]> | 4 = <B[a])}. If P *
+ (B[«]) for somea, then P = V[ 1] for some limit ordinal 1. By (2) above, (e, y11)4 *
+ 0 because x4 + 0; hence o, ;) + 0 and 4 S <o, y;p>. Thus B[A] is defined
and A4 < B[1], ie, V[A] = P = (B[A]), a contradiction. Therefore, P = <{B[a]>
for some o. If A + B[a], we have 4 < B[«] because 4 < P = (B[«]>. Then
by (1) above, (qupry)s + 0 because x, + 0; hence q,pp, +0 and 4 <
S {4y prap- Thus Bl + 1] is defined and A < B[a + 1], ie., {(Bla]) =P <
< (B[a + 1]), a contradiction. Therefore, 4 = B[a] e B[x], and we conclude
that S(x) = B[x]. Since B[x] is inversely well-ordered by construction, S(x) is
inversely well-ordered. This proves Proposition 2.2.

Any group of homomorphisms f: T — R will be a partially ordered group with
respect to the following order [8]: 0 < fif and only if 0 < f(x) whenever 0 < xe T,
and g <X fif and only if 0 < f — g. The dual space is usually defined in just this
way: it is the group generated by all the homomorphisms f with 0 < f; as a directed
group, it will always be archimedean [11]. To defined a more order-theoretically
interesting dual space, we let F denote the finite subsets of 4 directed by inclusion,
and for any function f: T — R, we define the support of f to be the set

Supp (f) = {Aed|f|,+0}.
The dual space T* of T then consists of all the functions f: T — R satisfying the
following conditions:
(1) fis a group-homomorphism;
(1) forall Ae 4,0 X f| sorf| 4 Z0;
(1I1) Supp (f) is well-ordered;
(IV) for all xe T, f(x) = lim Y m(x, A)™"! f(x,4),
DeF AcD

where the limit is taken over the directed set F (see [6], pages 77—78, “Integration
Theory, Junior Grade”). Define a binary relation < on T* as follows:

0 < f if and only if 0 # f and 0 < f] . suppcys

g < fifandonlyif 0 < f — g.
Here A Supp (f) is the minimum element in the lattice Supp (f). Note that T*
depends upon 7 as well as T; therefore, to avoid confusion we will sometimes use
(T, ©)* instead of T*. Note also that if T is archimedean, then < and < coincide.

(In [9], we defined the dual space by choosing the functions f which satisfied (I),
(1), (IV), and

(1I)* Supp (f) is inversely well-ordered.
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The order on the dual space was then defined by using the maximum of the support
rather than the minimum. The proofs of the results in [9] parallel the proofs given
here. The reason we choose the functions with well-ordered support here is that
when we apply our construction to o-rings, we want convolution to be a well-defined
operation on the second dual. For this to be true, we need (III) instead of (III)* —
see [10].)

Clearly each A€ A is archimedean and hence order-isomorphic to a subgroup
of (R, +, <). Thus ([4], page 46) the set of real-valued group-homomorphisms of 4
which are either order-preserving or order-reversing forms a totally ordered group
with respect to < and pointwise addition. Hence if both f ] 4 and g] 4 are comparable
to 0 with respect to < then (f + g)! 4 1s also comparable to 0 with respect to <. It is
then easy to check that (T*, +) is a divisible abelian group. In particular, if f, g € T*,
then f — ge T* and either Supp (f — g) = 0 or Supp (f — g) + 0. In the latter
case, we have (f — g)|,supp(r—s) COMPparable to 0 with respect to < and hence
f — g comparable to 0 with respect to <. In the former case, for all x € T,

(f = ) (x) = im ¥ ~ g) (x) = lim £.0 = 0,

ie., f — g = 0. It is then easy to verify

Theorem 2.3. (T*, +, <) is a divisible abelian o-group.

3. STRUCTURE OF THE DUAL SPACE

If (T, 7) is a B-group, then according to Theorem 2.3, (T*, +, <) is a divisible
abelian o-group. We abbreviate Pr., the set of convex subgroups of T*, by P*
and Dy, the set of divisible subgroups of T*, by D*. We will establish a correspon-
dence between P* and P which wili enable us to make T* a f-group in a natural way.

We first define some functions which are present in all dual spaces. For 0 < be T,
the group (b) N t([b]) = Be A4 is archimedean and hence ([4], page 46) there
exists an order-preserving group-homomorphism h: B — R such that h(bg) =
= m(b, B). Define b*: T* — R by letting b"(y) = m(y, B)™* h(yp). It is routine
to show that for all x, y € G,

m(x, B) m(y, B) (x + y)z = m(x + y, B) [m(y, B) xz + m(x, B) y;]

and from this it follows that b* is a group-homomorphism. Then clearly b" € T".
We conclude that for all 0 < b e T, there exists 0 < b* € T* such that b*(b) = 1
and, for all 4 € 4 such that vS(b) + 4, b"IA = 0, where v S(b) is the maximum
element of the lattice S(b).

For Pe P and Ve P, let
P = {fe TA|f|A =0 forall P2 Ae A}, and
V,=1zeT|f(z) = 0 forall feV].
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Proposition 3.1. The function P — P* is an order-reversing bijection of P to P*
whose order-reversing inverse is V — V,.

Proof. (a) P* € P* and V, € P: It is easy to see that P* € P*, and that V; is a sub-
group of T. To see that ¥V, is convex, let we V; and suppose that 0 <y <win T.
If f(y) # 0 for some 0 < feV, then

ASupp (f) £ vS(y) £ vS(w) = ASupp (w*).

Thus nf = w* > 0 for some positive integer n and hence w”* e V. But w”(w) =
=1 # 0; thus we T\ V;, a contradiction. Therefore, f(y) = 0 for all fe 4, ie.
y € V4, and hence V, is convex. We conclude that V, € P.

(b) P*, = P: Let pe P*,. If pe T\ P, then p* € P", and since p*(p) = 1 + 0,
pe T\ P*,, a contradiction. We conclude that P*; < P. Conversely, let pe P.
If fe P*, then f(p,) = O for all A e S(p) and hence f(p) = lim ). f(p,) = 0. Thus
p € P, and we conclude that P*, 2 P.

(c) ;" =V:Let feV.If V; 2 A€ 4, then f(a) = 0 for all ae 4, ie. f|, = 0.
Hence fe V,* and we conclude that V < V,*. Conversely, let feV,*. Suppose
that fe T*\Vand let 0 < xe A Supp (f). If g€ ¥, then A Supp (9) > ASupp (f)
and hence g(x) = 0. Thus x € V;. But for all ¥, = ¥;*, by (a) and (b), and hence
f(x) = 0, a contradiction. Thus f € Vand we conclude that V 2 V,*.

By (a), (b) and (c), it suffices to show that both P — P* and V — V, reverse order.
Firstly suppose that P < Q in P. If fe Q", then whenever P 2 A€ 4, Q 2 A, and
hence f|4 = 0. Therefore P* 2 Q*. Secondly suppose that ¥'< Win P* and let
ze W, If fe V, then f(z) = 0 because also fe W. Hence z € ¥, and therefore V; 2
2 W,. This proves Proposition 3.1.

To give T* the structure of a f-group, we define for all Ve P*,

7 (V)= {feT"|fla=0 forall «(V;) 2 Ae4d}.

Theorem 3.2. (T*, +, <, ") is a strong p-group.

Proof. By Theorem 2.3, T*" is a divisible abelian o-group and clearly z*: P* —
— D*. Thus it suffices to show that t* satisfies conditions (i) and (ii)* of § 1. Sup-
pose firstly that V = Win P* and let f € t*(W). By Proposition 3.1, ¥; 2 W, and hence
©(V;) < o(W,). Thus, if 7(V;) 2 A€ A, o(W,) 2 A as well, and hence f|, = 0. Thus,
fet*(V), and therefore t*(V) 2 ¢*(W). It remains to show that T* = V@ t"(V)
forallVe P*.

To see that T* = V + ¢"(V), let 0 < g € T*. For x € T, abbreviate m(x, V;) by
u(x), o,y by o, B.vs by B,, and define

9:(x) = u(x)"' g(x), and g,(x) = u(x)"* g(B,).
Then for x, ye T
9i(x + y) = 0> + )71 g(er,) = [0(x) u(y) u(x + y)]~! 9(u(x) () tesy) =
= L0 uy) e + 9017 glulx + 3) ) o, + p(x + ) 1) o] = g,(x) + 9,() -
618



Furthermore, ¢1|4 = 9|4 for all V; 2 A€ 4, and g,|, = 0 for all A€ A4 with Ve <
< (A>. Thus, Supp (g,) is well-ordered, and for all A€ 4, g,|, is comparable to 0
with respect to <. Finally, let x € T. For 4 € 4, we have the following. If V; < (A,
then
m(x, A)~' gy(x4) = 0 = p(x)"" m(o,, 4)7" g([2]) -
If A < V,, then
u(x) m(ay, A) [x4 + ge g + Pea] = p(x) m(a,, A) m(x, 4) x =
= m(x’ A) m(ax’ A) [‘xx + ﬂx] = m(x’ A) [[“X]A +y+ Z] >

where y € Q4 and z e t(P,). Therefore, by the directness of the sum 4 @ Q4 ®
® (P,), we must have u(x) m(x,, A) x4 = m(x, A) [«.],, and hence in this case
as well

(s, 4) 0,0c) = w(x)™ mlo ) ([,
Therefore,

lim } m(x, 4)™" g,(x,) = lim 3 u(x) ™" m(ae )~ 9([2]0) = u(x)™" 9() = 9.(x).

We conclude that g, € T*; similarly g, € T*. It is clear that g, € 7*(V’) and since
clearly g, cVi", g, €V by Proposition 3.1. Since g = g, + g5, ge V+ 1*(V);
therefore T* = V + 7*(V).

To see that the sum is direct, let fe Vn (V). Because fet*(V), f|4 = 0 for
all 7(V;) 2 A € A. By Proposition 3.1, V= V;*, and thus, because fe V, f|, =0
for all V; = A € A. We conclude that f = 0 and hence that T* = V@ (V). This
proves Theorem 3.2.

In cases where there is no ambiguity, we let A* abbreviate Ay., the archimedean
subgroups of T* distinguished by t*. For Aed (4 = P, 1(Q,)), we define
A*e A" by A" =(Q,)" nt*((P4)"). (That A* € A* follows from Proposition
3.1.) Note thatif 0 < ae A€ 4, then 0 < a* € A".

4. HOMOMORPHISMS OF p-GROUPS

In section we wish to investigate homomorphisms between f-groups. We will
define such homomorphisms (called f-homomorphisms) and show that they lift
in the usual way to homomorphisms between the corresponding dual spaces.

To be such a homomorphism, a function should preserve the group structure, the
order structure, and the structure arising from the Banaschewski function. Let
(T, 7) and (S, o) be -groups, and let I': (T; t) — (S, o). Then I'is a f-homomorphism
if I' satisfies the following conditions (cf. Example 6.10):

(i) I is a group-homomorphism;

(ii) I is dense: for all Q € Ps, Q = {I'(P)) for some P € Pr;

(iii) I is a Banaschewski homomorphism: for all P € Pr, I'(z(P)) < o(<I'(P))).

(iv) T is locally real: for all Ae Az, 0 < I'|, or I'|, < 0;
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Clearly, the composition of two f-homomorphisms is also a f-homomorphism.

Let I': (T, t) > (S, o) be a f-homomorphism. For each he S", we may define
a function I'*(h): T — R by letting I'*(h) (x) = h(I'(x)). This is the usual definition
of the dual map I'": $* — T* ([1], [7], [11]). We will show (Theorem 4.2) that I'*
is a well-defined f-homomorphism, after we first collect some elementary properties
of f-homomorphisms.

Proposition 4.1. Let I': (T, ©) — (S, o) be a f-homomorphism.
(1) If x < |y| in T, then I'(x) < |I'(y)| in S.
(2) T is one-to-one.
(3) For all 0 € Pg, I'"*(Q) € Py.
(4) The map P — (I'(P)) is an o-isomorphism of Py onto Ps.
(5) If A€ Ay, there exists a unique A* € Ag with I'(4) = A*.
(6) For all Be As, I'" '(B) € Ay.
(7) The map A — A* is an o-isomorphism of Ay onto As.
(8) Forall Ac Ay and 0 + xe T,
m(I(x), A*) I'(x,) m(x, A) I'(x)4¢
m(I'(x), A¥) I'(qx,4) = m(x, A) qrxy, 4+, and
m(I(x), A*) I'(py, 1) = m(X, A) Prexy,as -
Proof. (1) First suppose that ye A€ Ay, and note that I (y) % 0 because I'
is locally real and y # 0. If the conclusion is false, then I'(y) € <I'(x)). Furthermore,
yeA < r((x)) by hypothesis, and hence, since I' is a Banaschewski homomorphism

and <I'({x))> 2 I'(x)),
I(y) e I(x({x))) = o(KI'(Kx))>) < o(KI(x)D) .

Then I'(y) = 0, a contradiction, and therefore, the conclusion holds for all ye
€ Ae Ar. Now let y be any non-zero element of T, and let 4 =V S(y). Then y =
=y + 4,4 where y,e Ae Ay and q,, < |y, Since x < |y, x < |y,|, and
hence by the argument above, I'(x) < |I'(y,)|- But also by the argument above,
I'(q,,4) < |I(v4)|, and hence, since I'(y) = I'(y4) + I'(qy,4), We must have <I'(y,)> =
= (I'(y)>. Therefore, I'(x) < |I(y)|. (Cf. Example 6.11.)

(2) Let 0 < ye T. If {y) is archimedean, then {y) € 4y, and since I' is locally
real, I'(y) + 0. Otherwise, apply (1).

(3) Since I'is dense, there exists Pe Py such that {I'(P)) = Q. Clearly I'"*(Q) =2 P.
If P  [x], then by (1), I'(P) = [I'(x)], thus Q < [I'(x)], and hence x € T~ I'"(Q).
Therefore, I'"'(Q) < P.

(4) The map is one-to-one by (1) and onto by (3). Both the map and its inverse
are clearly order-preserving.

(5) Let P,, Q € P, be such that P, covers Q, in Py and A = P, 7(Q,). By
(4), <I(P4)> covers (I'(Q,)> in Pg and hence A* = {I'(P,)> n o(<I'(Q4)>) € 4s.
Since I' is a Banaschewski homomorphism, I'(4) S 4*. The uniqueness of A* is
clear.

I
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(6) Let P, Qg€ Ps be such that Py covers Qp in Ps and B = Py o(Q5). By (3)
and (4), I'"*(Pp) covers I'"*(Qp) in P and hence A =TI""(Pg) n 1(I' *(Qs))€ Ay
Since I' is a Banaschewski homomorphism, 4 = I''!(B). Let 0 < ae A4, 0 < xe€
e I''(B), and denote m(x, A) x — x, by x*. Suppose that x* % 0 so that by (2)
both I'(a) and I'(x*) are non-zero elements of B. If p, 4 + 0, then |p, 4 > a,
hence |I'(p, )| > I'(a) by (1), and hence, since x* = g, 4 + Ps 4, |[(x*)| > I'(a).
This is impossible, and therefore p, 4 = 0. Furthermore, a > g, 4 and hence by (1),
|I'(a)| » I(q.,4) = I'(x*). This is a contradiction and we conclude that x* = 0.
Then m(x, A) x = x, € A and hence x € A. Therefore 4 2 I'"*(B).

(7) By (5), the map is well-defined. By (6), the map is onto. Clearly, for all B € 4,
[F~*(B)]* = B, and thus the map is one-to-one. It is clear from (4) that both the
map and its inverse are order-preserving.

(8) (a) I'(x,) € A*: I'(4) = A* by assumption. (b) I'(q,,4) € Q4s: For any 0 <
<ae€A,q,, < |a|, and hence I'(q, 4) < |[(a)| by (1). (¢) I'(ps,4) € 6(P4.): Since I'
is a Banaschewski homomorphism, I'(p, 4) € I'(x(P,4)) < ¢(<I'(P,)>), and as in (6),
P, = <I'(P,)). We also have

m(F(x), A*) [r(xA) + F(qx,A) + F(P.‘,A)] =
= m(F(x), A*) m(x’ A) P(x) = m(x, A) [F(X)A‘ + qriy,a t+ Pr(x),m] .

The equations then follow from (a), (b), (c), and the directness of the sum A* @
® 04 @ 0o(Py).

Theorem 4.2. If I':(T,t) - (S, o) is a p-homomorphism, then I'* is a well-
defined p-homomorphism from S* to T*.

Proof. We will show that I'* is well-defined by showing that for any he S*,
r~(h): T— R satisfies the conditions of the definition of T* in §2. (I) Clearly
r*(h) is a group-homomorphism. (II) Let A € Ar. Since I' is locally real, I'*(h)|,
is comparable to 0 with respect to =< by Proposition 4.1 (5). (III) Since I is locally
real, the map A — A* takes Supp (I'*(h)) onto Supp (h); by Proposition 4.1 (8),
it is an order-isomorphism. Hence, since Supp (k) is well-ordered, Supp (I'*(h)) is
well-ordered. (IV) Let T denote the finite subsets of 4, and S the finite subsets of 4.
Then by Proposition 4.1 (7) and (8), for any x € T,

lim Y m(x, A)"' I'*(h) (x,) =

= tim 3 [, 4) m(1(9), 4%)] 1 KGn(r(), 4°) F(5) =
= tim 3 [, 4) m(r(9), A9] HGn(s, ) F(9)) =
= Egsln; m(I'(x), B)™* h(I'(x)s) = h([(x)) = T'*(h) (x) .

We conclude that I'* is a well-defined function from S* to T*. It remains to show
that I' is a f~homomorphism.
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(i) Clearly I'* is a group-homomorphism.

(ii) Let We Py, and let V = (I'(W;)) € Ps. Note that 4 = W, if and only if
A* < V. If ge V*, then g| s = O for all 4A* = ¥, and hence I"‘(g)|A = 0 for all
A S W, ie., I'*(g9) e Wy*. By Proposition 3.1, W;* = W, and hence <I'*(V*)) <
€ W. Conversely, let we W, let M = ASupp (w), and let 0 + z e M*. Note that
since W= W,* by Proposition 3.1, W, c (M) and hence z" e V". But
Supp (I'*(z*)) = {M}, as in (III) above, and hence we (I'*(z*)) = I'"(V")>.
Thus <I'*(V")> = W, and therefore I'* is dense.

(iii) Let Ve Pg.. Let W= <I'*(V)) and note that V, = <I'(W,)). We wish to
show that I'*(¢*(V)) < t*(W). Let 0 + fe o*(V) and let ©(W;) 2 A€ Ar. Since T
is a Banaschewski homomorphism, 4* < a(<I'(W;)») = o(V,) so that f|,. = 0 and
hence I'*(f)|4 = 0. Thus I'*(f)et*(W), and therefore I'* is a Banaschewski
homomorphism.

(iv) Let D € 4., and let A € Ay be such that {A*} = Supp (d) for all 0 + d e D.
As above, Supp (I'*(d)) = {4} for all 0 + d e D. Suppose that 0 < I'| .. Then for
all 0 <deD, 0<TI"(d)|,, and hence 0 < I'*(d). Similarly, if rl, <0, then
r~(d) < Oforall0 < d e D. Since I' is locally real, these are the only two possibilities.
Therefore, 0 < F"ID or F'\ID < 0, i.e., I'* is locally real. This proves Theorem 4.2.

Finally we note some special properties of a f-homomorphism I' which lift to its
dual map I'".

Theorem 4.3. Let I': (T, t) — (S, 0) be a p-homomorphism.

(1) If I preserves order, then I'* also preserves order.

(2) If T is onto, then I'* is also onto.

Proof. (1) We noted in the proof of Theorem 4.2 that for h € S*, the map 4 — A*
is an order-isomorphism of Supp (I'*(h)) onto Supp (k). Therefore, since I preserves
order and is locally real, 0 < I"" ()| xsupp(r~ nyy €Xactly when 0 < |, supocn-

(2) By Proposition 4.1(2), I'is a f-isomorphism: from this, it follows easily that I'*
is onto.

In view of Proposition 4.1 (2), we call an order-preserving f-homomorphism an
0-p-monomorphism (The “one-to-one n-homomorphisms” of [9] correspond to
the o-f-monomorphisms here.) Not every f-homomorphism is an o--monomorphism
(cf. Example 6.11).

5. THE SECOND DUAL

In this section we show that the evaluation map into the second dual is an o-f-
monomorphism. As a consequence we are able to show that all odd-numbered dual
spaces are o-fi-isomorphic as are all even-numbered dual spaces.

For any f-group T, T" is also a -group by Theorem 3.2, an hence we may form
the -group T**. For x € T, let E(x): T" — R be defined by letting Z(x) (f) = f(x)
for all f € T*. We will show that Z(x) € T *. Clearly, 5(x) is a group-homomorphism
and it is easy to see that for A" € A", E(x)| 4. is comparable to 0 with respect to =<.
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It is also clear that Supp (Z(x)) = {4" 4" |A4eS(x)}. By Proposition 2.2, S(x) is
inversely well-ordered, and hence by Proposition 3.1, Supp (&(x)) is well-ordered.
Furthermore, T* is a strong p-group (Theorem 3.2) and hence m(f, A*) = 1 for
all fe T" and A* € A*. Thus for xe T, fe T*, and 4 € A, we have

far(x) = m(x, A)—lfA"(xA + g at Pra) = m(x, A)_‘fu(x,q) =

=m(x, A)" [fan + dpan + Proar] (X4) = m(x, A)~* f(x,),
and hence

im Y E(x) (far) = im Y fya(x) = lim Y m(x, 4)™* f(x4) = f(x) = E(x) (f) .

Therefore, Z(x) e T"*, i.e. Z, the evaluation map [7], is a well-defined map from T
to T"*.

—
=)

Theorem 5.1. The evaluation map Z: T— T"" is a well-defined o-f-mono-
morphism.

Proof. We showed above that =E is well-defined, and it is clear that = is a group-
homomorphism. For 0 < xe T, ASupp(Z(x)) = (vS(x))*, and if 0< fe
€ (v S(x))*, then (by the computation above)

E(x) (f) = f(x) = m(x, v S(x))"" fxys) > 0,

—

ie.,, 5(x) > 0. Therefore = is order-preserving and one-to-one (cf. Proposition
4.1 (2)), and hence locally real. Since E(V4;) < V for all Ve P**, E is dense; since
E(z(P)) = t**(P**)for all P € P, E is a Banaschewski homomorphism. This proves
Theorem 5.1.

That Z need not always be onto will be shown in § 6 (Example 6.9).

Theorem 5.2. The function E*: T*""* — T" is an o-f-isomorphism.

Proof. By Theorems 5.1 and 4.3, £* is an o-f-monomorphism; in particular,
E"* is one-to-one by Proposition 4.1 (2). Let Y be the evaluation map from T* to
T"""~.We will show that Z* is onto by showing that Z* - Y'is the identity function
on T". If xe Tand fe T", then

g8(X() (x) = Y() (E(x)) = Z(x) () = /(%) -

Thus Z* o Y(f) = f and hence Z* is onto. This proves Theorem 5.2.
For n 2 1, let T*™ denote the n™ dual space of T.

Corollary 5.3. For all n > 1, T"®""Y s o-f-isomorphic to T", and T*Z*"
is o-f-isomorphic to T"".

6. EXAMPLES
For a totally ordered set 4, the product [[,R of copies of the real numbers R
over 4 contains two lexicographically ordered o-groups. The o-group ] [4R is the

group consisting of all functions in [[,R with well-ordered support. The elements
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of y[]4R are ordered according to their values on the minimum elements in their
supports. The o-group xHAR is the group of all functions in [],R with inversely
well-ordered support. The elements of x[[4R are ordered according to their values
on the maximum elements in their supports. The corresponding sums are denoted
by D4R and x) 4R.

We turn these o-groups into B-groups in the following ways. If P is a convex
subgroup of y[]4R, then there exists N(P) < 4 such that 6 € N(P) whenever § <
< ne N(P) and such that

P ={fen[I4R|fs =0 forall e N(P)} .
Define
v(P) = {fen[lsR|fs =0 forall e A\ N(P)}.

Clearly (v]]4R, v) is a strong B-group, and the corresponding definition for yY ,R
makes (v).4R, v) also a strong f-group. If Q is a convex subgroup of y[]4R, then
there exists X(Q) < 4 such that 8 € X(Q) whenever § > 7 € X(Q) and such that

Q = {fexILiR|fs = 0 for all 5&X(Q)} .

Define similarly to the previous case

2Q) = {fex[IuR|f5 =0 forall se 4\ X(Q)} .

Clearly (x] TR, x) is a strong B-group, and the corresponding definition for x24R
makes (XZAR, x) also a strong B-group. Included in the examples below are charac-
terizations of the first and second dual spaces of the sums and products of R defined
above.

Proposition 6.1. For any p-group T, there exists an o-B-monomorphism
Ty R— T,

Proof. For each A€ A, let i;: A — R be a one-to-one, order-preserving group-
homomorphism (see [4], page 46). For de ) R and xe T, let I'(d)(x) =
= Y scadais(x4)-

Example 6.2. (x][,R)" is o-B-isomorphic to yY ,R. As above, the function
I: 3y R - (x][4R)", defined by letting I'(d) (x) = Y44 dyxs for de Y 4R and
x € | [4R, is an o-B-monomorphism. To see that I is onto, let f e (] [,R)"*. For
de 4, let € e x[[4R be such that (¢?), = 1 if n = & and (¢’), = O otherwise. For
A e A[x[ 4R, x], let a € 4 be such that e* € A. Suppose that f(e’) + 0 for an infinite
number of J € 4, and let z € x][,R be such that z; = 1/(¢%) if f(¢’) + 0 and z; = 0
otherwise. Then f(z,) = 1 if f(¢") # 0 and f(z,) = O otherwise: hence lim Y. f(z,)
does not exist. This contradicts condition (iv) of the definition of the dual space,
and we conclude that f(¢’) = 0 for all but a finite number of 6 € 4. Hence fe

€ I'(yY_4R).

Proposition 6.3. For any p-group T, there exists an o--monomorphism I': T" —
= M LR
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Proof. For each A€ 4, let i;: A — R be as in the proof of Proposition 6.1. If
feT*, then f|, = r4iy for a unique r e R ([4], page 46). If we let I'(f), = r4,
then clearly I'(f) e y][4R and I' is a one-to-one, order-preserving group-homo-
morphism. It follows that I' is locally real, and it is easy to see that I" is a dense
Banaschewski homomorphism.

Note that Proposition 6.3, together with Theorem 5.1, shows that there always
exists a f-homomorphism from T to 4] ],R. This is essentially Hahn’s Theorem [5].
From the work of [2], it is not surprising that Hahn’s Theorem should follow in this
way.

Example 6.4. (yY ,R)" is o-B-isomorphic to y][4R. For fe(y) 4R)" and €’ as
in Example 6.2, define I': (Y ,R)" — y[[4R by letting I'(f), = f(e’). As in Proposi-
tion 6.3, I' is an o-B-monomorphism. For d € y[ [4R, let f: x24R — R be defined
by letting f(x) = Y 54 dsx; for all x € xy 4R. Clearly, fe(x) ,R)* and I'(f) = d.
Thus I' is also onto.

Let V denote the set 4 with the opposite order: y < d in V if and only if y = &
in A. Tt is straightforward to prove

Proposition 6.5. (x[[,R, x) is o-B-isomorphic to (y[[4R,v), and (x),R,x) is
o-B-isomorphic to (y) 4R, v).

Example 6.6. (y][4R)" is o-B-isomorphic to xy 4R. By Proposition 6.5 and Theo-
rem 4.3, (y] [4R, v)* is o--isomorphic to (x[ ], R, x)*; by Example 6.2, (x] [, R, x)"
is o-p-isomorphic to (yY R, v); by Proposition 6.5, (y> R, v) is o-B-isomorphic
to (xz 4R, %)

Example 6.7. (33 4R)" is o-p-isomorphic to x| [4R. Use Proposition 6.5, Theorem
4.3, and Example 6.4.

Proposition 6.8. The evaluation maps foryy 4R, yY 4R, x| 4R, and y[[4R are all
onto and hence o-B-isomorphisms.

Proof. Let T denote any of the four f-groups x) 4R, xY 4R, x[[4R, or [ ]4R.
For each § € 4, let § € T* be defined by letting &(x) = x; for all x € T. Then (1) for
all A € A, there exists § € 4 such that, for all fe 4*, f = ré for some r e R. Also,
(2) for any Fe T**, F(r8) = r F(8) for all re R and J € 4. To see that (2) holds,
note that if F(8) = 0, then the equality obviously holds. If F(8) + 0, then define
Fy, F5: R - R by letting F,(r) = F(r8) and F,(r) = r F(8). These are both non-zero
order-preserving or order-reversing group-homomorphisms and hence by [4], page
46, F, = dF, for some 0 # d e R. Since F,(1) = F,(1),d = 1, and hence F; = F,,
i.e. (2) holds. Now let Fe T** and define z € [[,R by letting z; = F(8). If ze T,
then by (1) and (2) above, F(f) = Z(z) (f) for all fe A* € A*. Since both Fand Z(z)
are uniquely determined by their behaviour on the elements of 4*, we must have
E(z) = F. Thus, it suffices to show that ze T. If T = x][,R, then because F has
well-ordered support in A*, z has inversely well-ordered support in 4 (cf. Proposition
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3.1), and hence z € T. Similarly, if T = NHAR, then ze T. If T = xZAR’, then T *
is -o-p-isomorphic to (y] [4R)* by Example 6.4 and Theorem 4.3. By Example 6.6,
T"* is then o-p-isomorphic to »Y ,R. Thus F has finite support, and hence z e T.
If T= Y 4R, a similar argument using Theorem 4.3 and Examples 6.2 and 6.7
shows that z € T. Proposition 6.8 then follows from Theorem 5.1.

In spite of Proposition 6.8, the evaluation map is not always onto: By Theorem
5.1, an evaluation map &: T— T"" is always one-to-one, and by Theorem 2.3,
T"* is divisible. Therefore, if T is not divisible, then = cannot be onto. The next
example shows that the evaluation map need not be onto even if T is a divisible

p-group.

Example 6.9. Let @ denote the rational numbers and define (x[[,Q, +, <, %)
analogously to (x][4R, +, <, x). It is clear that (x[[,@, +, <, ) is a divisible
B-group and that (4] ],@)" is o--isomorphic to (x| [4#)". Thus, by Theorem 4.3,
(x]14@)" * is o-p-isomorphic to (x][ [sR)* * and hence, by Proposition 6.8, to x| [ ,R.
Therefore, if the evaluation map Z: x[[,@ — (] [,@)" * were onto, it would induce,
by Proposition 4.1 (5), an order-isomorphism from @ to R. Since such a function
cannot exist, we conclude that = cannot be onto.

The following example illustrates the dual relationship between local reality and
density: The dual of a non-dense map need not be locally real and the dual of a non-
locally real map need not be dense.

Example 6.10. Let 4 = {1,2} with the usual order. Define I': R —» x[[,R by
I'(r) = (0, 7). Clearly I' is a locally real Banaschewski homomorphism and a group-
homomorphism but is not dense. It is also clear (cf. Example 6.2) that I'": Y ;R — R
is defined by I'"*(r, s) = s. Thus I'* is a dense Banaschewski homomorphism and
a group-homomorphism but is not locally real. Furthermore, I'**: R — x[[sR
is defined by I'* *(r) = (0, r), and hence, as noted above, I'** is locally real but
not dense.

We claimed in § 4 that not every f-homomorphism is an o-f-monomorphism.
The following example shows that a f-homomorphism need be neither order-
preserving nor order-reversing.

Example 6.11. As in Example 6.10, let 4 = {1,2} with the usual order. Then
r:x][,R - x[[4R defined by I'(r,s) = (—r,s) is a p-homomorphism which is
neither order-preserving nor order-reversing.

Our final example shows that different Banaschewski functions on the same
o-group T may give rise not only to dual spaces which are different subgroups of the
group of homomorphisms from T into R but also to dual spaces which are not even
B-isomorphic.

Example 6.12. Let Z denote the integers, and let T denote the o-subgroup of
eventually constant sequences in x] [zR: T consists of all those x € x| [zR such that
for some N € Z, x, = x,, whenever m, n < N. For i€ Z, let ¢! denote the long constant
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determined by i:(cf), = 0 if n > i and (¢’), = 1 if n < i. For any xe T, let x' =
= X; — X;41. Note that x' = 0 for all but a finite number of i and x = Y ;. x'c’.
Let 7, denote the usual Banaschewski function on G (derived from the function yx
defined above for the entire product): For any convex subgroup P of G, x € ,(P)
if and only if x, = 0 whenever p, + 0 for some p € P. Let 7, denote the following
different Banaschewski function on T: For any convex subgroup P of T, y € 7,(P)
if and only if there exists N € Z such that (1) n < N whenever p, + 0 for some pe P
and (ii) y, = y,, whenever m, n < N. Each A4 € A[T, t,] is then of the form
{rc'| reR} for some i. If f: T— R is defined by letting f(x) = Y5, x, then
fe(Tt)" N(T, )", and hence (T; t,)* # (T, 1,)".

To see that (T, t;)" is not even B-isomorphic to (T, t,)*, suppose that
@: (T, t,)" = (T, ()" is a B-isomorphism and define ¥: (7, 1,) = (x).zR, x) by
letting ¥(x), = x". Clearly, ¥ is a f-isomorphism and hence by Theorem 4.3,

YA o @ (T o) = (T, )" = (x22R )"

is also a B-isomorphism. By Proposition 6.8, (x>.zR, x)*" is P-isomorphic to
(x2zR, x) and hence by Theorem 5.1, there exists a one-to-one f-homomorphism
Y: (T, t;) = (x2zR, x). By Proposition 4.1 (5), Y(x) zR) = x> 2R, a contradiction.
We conclude that the B-isomorphism @ cannot exist, and thus that (T, z,)* and
(T; 7,)" cannot be p-isomorphic.
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