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MaTU$§ HArRMINC, KoSice

(Received March 25, 1985)

E. Cech and B. Pospisil investigated the number of topologies fulfilling certain
conditions which can be defined on a set of a given cardinality (cf. [3], Thms. IV, V
and VI). In this paper an analogous question concerning the number of convergence
structures which can be defined on a given abelian lattice ordered group will be dealt
with.

Let G be an abelian lattice ordered group. We denote by L the set of all compatible
convergence structures which can be introduced on G (for definitions, cf. § 1 below).
Let D be the system of all orthogonal subsets of G. Put sup {card A: 4 € D} = b(G).
The following results will be proved:

(A) If b(G) = N, then card Lg = 2°™°.

(A") The estimate given in (A4) cannot be improved.

(B) If b(G) = n, n a positive integer, then there exists an integer k with 0
such that card Lg = 2%,

(C) Let n be a positive integer and let k be an integer such that 0 < k < n.
Then there exists a proper class {G(i): i €I} of nonisomorphic abelian lattice ordered
groups G(i) such that for each i el the relations b(G(i)) = n and card Lg;, = 2
are valid.
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Some further results on the sequential convergence on an abelian lattice ordered
group will also be established.

1. CONVERGENCE

In this section the notion of a compatible sequential convergence on an abelian
lattice ordered group will be introduced and it will be shown that it suffices to con-
sider positive sequences which converge to the neutral element of the given group.

Recall that an abelian lattice ordered group is a triple (G, +, <) such that

G is an abelian group with respect to +,
G is a lattice with respect to <, and
a < bimplies a + g < b + g whenever a, b, g are elements of G.



We use the following notation:

N — the set of all positive integers;

z — the set of all integers;

G — the underlying set of an abelian lattice ordered group;
GY — the set of sequences with elements belonging to G;

0 — the neutral element of a group;

G* — the positive cone of G;

(G*)V — the set of sequences with elements belonging to G*;
this set is viewed as an ordered semigroup with respect to the induced +
and < (see R + Sand R £ S below);

id(4) - the identical mapping on the set 4;

A x B — the cartesian product of the sets A and B;

u, v, w — denote monotone mappings of N into N;

S(n) denotes the n-th term of the sequence S;

Sou (S o u o v) denotes the subsequence of the sequence S whose n-th term is
S(u(n)) (S(u(v(n))), respectively);

const (g) denotes the constant sequence (g, g, g, --.);

< denotes the order on G or the induced pointwise order on G¥ or any other
order in the text;

A, V denote the lattice operations induced by <;

R + S denotes the sequence whose n-th term is R(n) + S(n);

S+g¢ denotes the sequence whose n-th term is S(n) +9g;

S <g means that S(n) < g for each neN.

The symbols R A S,RVv S, =S, S|, S—9g,S Ag,Svgand R XS are to be

understood analogously.

In the following definition the axioms (i)—(vi) define a FLUSH-convergence
structure for G, i.e., a convergence group (cf. P. Mikusifski [9], J. Novak [10]);
the remaining three axioms concern relations between the convergence and the order
on G.

1.1. Definition. Let (G, +, <) be an abelian lattice ordered group. A set & <
= G" x G is said to be a convergence on G, if the following nine axioms are
satisfied (Se G"):

(i) (S, s) e £ implies (S o u, s) € & for every subsequence S o u of S.

(ii) If for each u there exists v such that (S o u o v, s) € £, then (S, s) € Z.
(iii) (const (s), s) € & for each seG.
(iv) (S,a)e & and (S, b) e & imply a = b.
(v) (S,s5)e £ implies (—S, —s)e Z.
(vi) (R,r)e & and (S,s)e & imply (R + S, r + 5)e .
(vii) (R,r)e £ and (S, s)e £ imply (R A S, r A 5)e Z.
(viii) (R,r) e & and (S,s)e £ imply R v S, r v 5) e Z.
(ix) If (R, g) € £ and (T, g)e £ and R < S < T, then (S,9)e2.
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1.2. Example. Let G be an abelian tl-group (topological lattice ordered group),
cf. B. Smarda [11, 12], and let the convergence of sequences on G be induced by the
interval topology. Then the conditions (i)—(ix) are fulfilled.

Denote by L the set of all convergences on G.

1.3. Lemma. Let & € Lg. Then (S,s) e & if and only if (|S — s|,0)e £.

Proof. Since |[S—s|=(S—s)v —(S—s)and —|S—s| S S—-s =S -5
the assertion follows.

Lemma 1.3 above indicates that a convergence is determined by the system of its
positive sequences which converge to zero. For a more detailed discussion of this
situation cf. Theorem 1.6 below.

We denote by P(Z) the set of all S € (G*)" such that (S, 0) e £.

1.4. Lemma. Let % € L;. Then P(&) is a convex subsemigroup of (G*) and the

following conditions are fulfilled:
(1) P(2) is closed under taking subsequences.

(IT) Let Se(G*)V. If for each u there exists v such that S o u o ve P(Z), then
SeP(2).

(1II) const (s) e P(Z) if and only if s = 0.

The proofis straightforward and will be omitted. The converse proposition is also
valid (see Theorem 1.6 below).

1.5. Lemma. Let P be a convex semigroup of (G*)" and let the conditions (I)—(III)
be fulfilled (with P(L) replaced by P). Let S € G" and s€ G. Then |S — s| € P if and
only if there exist Ae P and Be P such that S = A — B + s.

Proof. Assume that |S — s|e P. Weput A = (S —s) vOand B=(-S +5) v
vOThenA—B=(S—-5)vO0)—(—=(S=s5)v0)=(S—s)vO0)+
+{((S—s)A0)=S—sandthusS =4 — B +s.Since0<A=(S—s5)vO0<
S((S—=5s)v0)—((S—s)A0)=|S—s| and P is the convex semigroup of
(G*)¥ containing the sequence const(0), we have A4eP. Similarly, 0 < B =
=(-S+5)vOS(-S+s)vO) —((-S+s)A0)=|-S+s|=]|S -5,
therefore B € P.

Conversely, assume that S = 4 — B + s, where A and B are elements of P.
Then |S — s| = |4 — B| and the inequalities 0 < |[A-B|<|4+|-B|=4+B
together with the convexity of the semigroup P imply |S — s| e P.

1.6. Theorem. Let P, be a convex semigroup of (G*)V fulfilling the conditions
(I)—(11X). Then there exists &£, € Lg such that P(%) = P,. Moreover, if P(¥,) =
= P, for some ¥, € Lg, then £, = ¥,.

Proof. Put &, = {(S,5)e G" x G:|S — s| e P,}. We will verify that &, € L.
The verification of the conditions (ii), (iii) and (v) is simple; in view of Lemma 1.5
also (i) and (vi) are evident. It remains to show the validity of the conditions (iv),
(vii), (viii) and (ix).
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(iv): Let (S, a)e £, and (S, b)e Z,. Then |S — a| e P, and |S — b| € P,. The
triangle inequality (cf. [1]) implies 0 < |a —b| =]a — S+ S — b/ < [a — 8| +
+|S—b|=|S—a|+|S—b| Since P, is a convex semigroup, we have
const (|a — b|) € P, and the condition (III) gives |[a — b| = 0 and hence a = b.

(ix): Let (R,9)e %, and (T, 9)e £, and R < S < T. By Lemma 1.5 there exist
elements Ag, Br, Ay, By of Py suchthat R = Ay — By + gand T = Ay — By + ¢.
Denote Ag = Br + S — g and let Bg = Bg. Then evidently Bg € P; and in view of
the convexity of the semigroup P; and the relations 0 < Ay =By + R — g <
<Br+S—-—9g=A3<Bg+ T—g =B+ Ay — By < By + A, we obtain A ¢
€P,. So Ase Py, Bse P, and S = A5 — Bg + ¢, thus (S, g) e Z,.

(vii): Let (R,r)e £, and (S,s)e #,. Consider the relations —|R —r| —
S = (R 8~ sh = (R = v [5 ) + (R~ r| »

s D)2 =R VIS <) = (R =) A (IS ) < (R~ 1)

A (S — 5) £ R — r. In view of the definition of £, and by (v), (vi) and (ix) we have
((R = 7) A (S = 5),0) e £,. Hence (jii) and (vi) infer (R — r) +(S—5),0e2,.
Since R—7r)v(S—s)=(R-r)+E=5)—-(R-71)A(S—5), by ap-
plying (v) and (vi) we obtain (R — 7) v (S — 5),0) e &,.

We have

RAS)y—=(rArs)=RAS)+(-rv —s)=
=(RAS)—=r)v(RAS)—s=
=(R=1AS=-r)VR-—s)A(S=s)SR=-7r)v(S—ys)
and
RAS)=(ras)=R—=(rAs) A(S—(rnrs)=
=R+ (=rv =)AS+(=rv-s)=
=(R-nvR-sHPAr({(S=r)v(S—s)z=2R-1r)r(S—5).

Because of the convexity of #; we conclude that (R A S) — (r A 5),0)e Z,,
and by (iii) and (vi) we finally have (R A S, 7 A 5)€ Z.

(viii): Let (R,7)e &, and (S, s) € £,. By (vi) and (vii) we have (R + S, r + s)e
e and (RAS, rAs)eZ;. Since RvS=(R+S)—(RAaS)andrvs=
= (r + s) — (r A s), the conditions (v) and (vi)imply (R v S,7 v s)e &Z;.

We have verified that £, € L. Using this fact, it is easy to prove that P(%,) = Py;
we omit the proof.

For completing the proof of the theorem is suffices to show that if &, € Lg and
P(&£,) = Py, then &, = &,. But (S,s)e &, implies |S — s|e P(&,) and in ac-
cordance with P(#,) = P; = P(¥,) we have (S, s) € £;. The converse implication
is also true and thus &, = Z,.

1.7. Lemma. Let £ € Lg, (R,r)e &, (S,s)e £ and R < S. Thenr < s.

Proof. The condition (vii) implies (R A S, r A s)e &. Since R A S = R, the
relation (R, r A s) € & is valid. But also (R, r) € &, thus by (iv) we have r A s = r
and hence r < s.
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1.8. Lemma. Let ¥ € L; and (R,0)e &£. Let pe G such that p > 0. Then the
set {neN: |R(n)| = p} is finite.

Proof. By way of contradiction, assume that there exists # such that |R ° u] = p.
Then we have 0 < const (p) < |Rou| and from (i), (iii), Lemma 1.3 and (ix) we
infer that (const(p), 0)e . Since (const(p), p) e &, the condition (iv) implies
p=0.

2. SPECIAL CONVERGENCES

Denote dc(G) = {(S,s)e GY x G: S(n) = s for all but finitely many neN].
Then dc(G) is the well-known discrete convergence on G; it is easy to see that the
following lemma is valid.

2.1. Lemma. dc(G) € Lg, and if & € Lg, then dc(G) = £. So, dc(G) is the smallest
element of the set L; partially ordered by the inclusion.

Let us recall the definition of the order convergence on a lattice ordered group G
(cf. [5]); we denote it by oc(G):

2.2. Definition. (S, s) € oc(G) if (S, s) € G¥x G and there are Re GN and Te G"
such that the following conditions are fulfilled:
(a) R(n) < R(n + 1) for each neNj;
(b) sup{R(n):neN} =s;
(c) T(n) = T(n + 1) for each neN;
(d) inf{T(n): ne N} =s;
e) R<SET

The order convergence on a lattice ordered group G was studied by C. J. Everett
and S. Ulam in [4]; it is clear from their results that oc(G) fulfils the conditions (i) and
(iii) — (ix). Thus oc(G) is a convergence on G in the sense of Definition 1.1 if and only
if the condition (ii) is fulfilled. We shall see (cf. Lemma 3.6 below) that if G is an
abelian linearly ordered group, then oc(G) € L.

Since the condition (ii) was not applied in the proofs of Lemmas 1.3 and 1.8, the
same lemmas concerning oc(G) are valid. We will apply them below (see § 3).

2.3. Lemma. (S, s) € oc(G) if and only if (|S — s, 0) € oc(G).

2.4. Lemma. Let (S, 0) € oc(G) and let pe G be such that p > 0. Then the set
{neN:|S(n)| 2 p} is finite.

3. LINEARLY ORDERED GROUPS
The aim of this section is to prove that an arbitrary abelian linearly ordered group G
has at most two convergences, namely dc(G) and oc(G).

Let (G, +, <) be an abelian linearly ordered group.
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3.1. Lemma. Let # € Lg, Se€ P(¥) and ne N. Then inf {S(i): ie Nand i = n} =
= 0.

Proof. For i € N, define u(i) = n + i — 1. Since S e P(¥), we have Sou = 0.
Let ¢ be a lower bound of this set, i.e., S o u = c¢. In view of linearity, either ¢ > 0
or ¢ £ 0 holds. But if ¢ > 0, then from 0 < ¢ £ S o u and from the properties of
P(Z) (cf. Lemma 1.4) we get ¢ = 0. Thus inf {S(i): ieN and i 2 n} = 0.

3.2. Lemma. Let £ €L and Se P(Z). Then inf {sup {S(i): ie N and i = n}:
neN} = 0.

Proof. First we show that whenever ne N then sup {S(i):ie N and i = n}
exists. If {S(i): ie Nand i = n} = {0}, thensup {S(i):ie Nand i = n} = 0 = S(n).
On the other hand, if there exists no € N such that ny = n and S(no) + 0 (i.e.
S(no) > 0), then the set {i e N: S(i) = S(n,)} is finite (cf. Lemma 1.8) and hence
sup {S(i):ie N and i = n} = max {S(i): ie N and i = n} = S(j) for some jeN.
Since {sup {S(i):ieN and i = n}:neN} < {S(n):ne N}, the suprema of the
final segments of S exist. Next, we shall show that the infimum of these suprema is
zero. Consider the set {n € N: S(n) # 0}. Clearly, if it is finite, then the assertion of
the lemma is valid. Assume that the set is infinite. By Lemma 1.8, for each element
p € G, p > 0, there are infinitely many members of the sequence S belonging to the
open interval from zero to p. Since S € P(Z), the relation 0 < sup {S(i): i e N and
i n} is valid for each n e N. By way of contradiction we shall prove that there
exists no strictly positive lower bound of all these suprema. So, assume that for
some c € G, ¢ > 0, we have ¢ < sup {S(i): ieNandi = n} forall neN. By Lemma
1.8, there is m € N such that 0 < S(m) < c¢. Apply Lemma 1.8 again, with p = S(m).
Then the set of all those members of the sequence S which are not contained in the
closed interval from zero to S(m) is finite. Hence there exists k € N such that
sup {S(i):ie N and i = k} < S(m). For each ne N we have sup {S(i): ie N and
i 2 n} = c, thus S(m) 2 c, a contradiction.

3.3. Lemma. Let £ € L; and Te P(%). Then either Te P(dc(G)) or there exists
decreasing subsequence Tow of T.

Proof. If T¢ P(dc(G)), then there is u such that T(u(n)) > O for each neN.
By Lemma 1.8, the set {n € N: T(u(n)) = p} is finite for each pe G, p > 0, and the
assertion follows by induction.

34. Lemma. Let &,, &, € L such that £, # dc(G). Then &y < &,.

Proof. In view of Lemma 1.3 and Theorem 1.6 it suffices to prove that P(#;) =
< P(¥,). Let S € P(%,). We shall show that for each u thereis v such that Sou o v e
€ P(#,) and thus S € P(&Z,). For an arbitrary u we have Soue P(%,). If Scue
€ P(dc(G)), then Lemma 2.1 implies S o u o id(N) € P(Z,). On the other hand, if
S o u ¢ P(dc(G)), then there is a subsequence S o u o #; of the sequence S such that
Souocuyn) >0 for each neN. The assumption £, #+ dc(G) and Lemma 2.1
imply that there is Te P(Z,) such that T'¢ P(dc(G)). By Lemma 3.3 there exists w
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such that To w is a decreasing subsequence of T. Since To w € P(&,), there is n; e N
such that Souou,(n) < Tow(l), by Lemma 1.8. The relation inf{Tow(n):
neN} =0 (cf. Lemma 3.1) implies that there is m, € N such that T w(m,) <
< Sououy(ng). By induction we obtain mappings v, and u, such that Souo
oty oty < Towov, and, since Te P(¥,), we have Sououyou,eP(Z,). So,
to complete the proof, it suffices to take v = u o u,.

3.5. Lemma. Let S € (G*)V. If for each u there exists v such that (Souov,0)e
€ oc(G), then (S, 0) € oc(G).

Proof. Denote M, = {n € N: S(n) > 0}. If M, is the empty set, then (S, 0) e
€ oc(G). If M, is a finite non-empty set, then put T(i) = max {S(n): ne N} for
ieN, i < max M, and T(i) = 0 for i > max M,. The sequence T is non-increasing
and such that S < T and inf {T(n): n € N} = 0; thus (S, 0) € oc(G). Now, let M,
be an infinite set. Then there is u such that S o u > 0. By the assumption of the lemma
and by Lemma 2.4 there is v such that S - u - v is a decreasing sequence. By the same
assumptions the sets M; = {ne N: Sou - v(1) < S(n)} and My, = {neN:Souo
ov(k + 1) < S(n) < Souov(k)}, keN, are non-empty and finite. Denote m, =
= max M, for each k € N and define T(i) = max {S(n):ne M,} forieN, i < m,,
and T(i) = max {S(n):ne M,,,} for ieN, my + ...+ m <i<m + ...
... + m + my, .. Then T is a non-increasing sequence such that S < T and
inf {T(i): ie N} = 0. Thus (8, 0) € oc(G).

3.6. Lemma. oc(G) € Lg.

Proof. In view of the results of C. J. Everett and S. Ulam [4], it suffices to prove
the condition (ii) of Definition 1.1 (cf. §2). Assume that (S,s)e G x G and for
each u there is v such that (S o u o v, 5) € oc(G). Consequently, applying Lemmas 2.3,
3.5 and again 2.3 we get (S, s) € oc(G).

3.7. Lemma. If & € Lg, then & < oc(G).

Proof. Let Se P(Z). Then by Lemma 3.2 we have 0 < S < T and inf {T(n):
neN} = 0 where T(n) = sup {S(i): ie N and i = n}. Hence S € P(oc(G)) by De-
finition 2.2 and therefore £ < oc(G) by Theorem 1.6.

3.8. Lemma. Let £ € L; and & + dc(G). Then £ = oc(G).

Proof. In view of Lemmas 3.6 and 3.4 we have oc(G) = Z. But, in view of Lemma
3.7, also & < oc(G).

Lemmas 2.1, 3.6 and 3.8 yield the following result.

3.9. Theorem. Let G be an abelian linearly ordered group. Then L; =
= {dc(G), oc(G)}.

Recall that the sequence S € (G*)" is said to be coinitial in G* if inf {S(n): ne N} =
= 0 (cf. [7]). As a corollary we get the following result.
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3.10. Corollary. Let G be an abelian linearly ordered group. Then either
card L; = 1 or card L; = 2. Further, card Lz = 2 if and only if there is a de-
creasing coinitial sequence in G*.

4. DIRECT PRODUCTS

Let us recall the definition of the direct product of two lattice ordered groups.

4.1. Definition. We say that (G, +, <) is the direct product of lattice ordered
groups (H, + g, <g) and (K, +x, <) if the following three conditions are fulfilled:
(1) G=H x K.

(2) (hy, ky) + (h2, k) = (hy +p ha, kg +x k) for each hy, h, € H and ky, k, € K.
(3) (hy, ky) < (h3, k,) whenever hy <g h, and k; <gk, hold. |

The direct product of (H, +g, <g) and (K, +x, <g) will be denoted by H ® K.

Throughout this section let H and K be abelian lattice ordered groups and G =
= H ® K. Denote by ¢ the natural isomorphism between lattice ordered groups
HY ® K" and (H ® K)" defined as follows:

o((4, B)) (n) = (A(n), B(n)) whenever (4, B)e HY x K¥ (¢ maps a pair (4, B)
of sequences into the corresponding sequence of pairs (A(n), B(n)). We denote
o(M) = {@(m): me M} for M < H” x K.

4.2. Lemma. Let %yeL, and %yxeLy. Then P = @(P(Zy) x P(ZLy)) is
a convex semigroup of (G*) fulfilling conditions (I)—(III) of Lemma 1.4.

Proof. The inclusions P(%y) = (H*)¥ and P(Zg) = (K*)¥ imply that P <
< o((H*)Y x (K*)¥) = (G*)M. It is easy to verify that P is a convex semigroup
of (G*Y".

(I): Let Se P. Then there are 4 € P(Zy) and B € P(Z) such that S = ¢(4, B).
Then S ou = ¢(A o u, B o u) for each u and, since A o u € P(%y) and B - u € P(¥y),
we have SocueP.

(1I): Let Se(G*)", i.e., S = ¢(4, B) for some 4 e (H*)¥ and B e (K*)". Suppose
that for each u there exists v such that SocuoveP. Since Souov = @(Adouov,
Bouov), we have AcuocveP(%y) and Bouove P(Ly). Therefore A€ P(Zy)
and B e P(Z%), and thus Se P.

(III): Let const(s¢) = ¢ (const (sy), const(sg))eP. Hence const(sq) € P(Zy)
and const (sg) € P(Z%). Thus sy = 0y and sx = O and therefore sg = Og. The
converse implication is trivially true.

If & € Lg, then instead of (S, s) € & we write also s = £-lim S.

4.3. Lemma. Let &% € L;. Then the following two conditions are equivalent:
(1) (a, b) = ZL-lim ¢(4, B);
(2) (a, 0g) = Z-lim ¢(4, const (0)) and (0g, b) = Z-lim ¢(const (0y), B).

Proof. Assume that (1) holds. Since (a, b) = £-lim ¢(const (a), const (b)), we
have (a, b) = £-lim ¢(A A a, B A b). The inequalities (4 A a, B A b) < (4 A a,
const (b)) < (const (a), const (b)) imply that £-lim (A A a, const (b)) = (a, b).
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Similarly, we obtain #-lim ¢(4 v a, const (b)) = (a, b). Hence #-lim (4 + a,
const (2b)) = (2a, 2b). But Z-lim ¢(const (—a), const(—2b)) = (—a, —2b) and
thus Z-lim @(4, const (0g)) = (a, Ok). The identity (Og, b) = £-lim ¢(const (0y), B)
can be proved in the same way.

Conversely, assume that (2) holds. Then, adding (a, Og) and (Og, b), we get the
condition (1).

4.4. Lemma. Let ¥;€Lg. Then there are ¥ g€ Ly and Ly e Ly such that
O(P(Zn) x (P(Zx)) = P(Ls).

Proof. Define P, = {4 e (H*): Llim ¢(4, const (Og)) = 0} and P, =
= {Be(K*)": £slim ¢(const (0y), B) = Og}. Easily, P; is a convex semigroup
of (H*)" fulfilling the conditions (I)—(III); thus P, defines #y € Ly with P(Ly) =
=P,. Analogously, P, defines # € Ly such that P(Zx) = P,. Then ¢(P(%y) x
x P(Zy)) = ¢(P; x P,) and, by Lemma 4.3, we have ¢(P; x P;) = P(Z).

4.5. Theorem. If G = H @ K, then card L; = card Ly . card Lg.

Proof. Define a mapping ¢ from Ly x Lg into Lg; in the following way: for
FuyeLly and Lyely let {( Ly, Lx) = L, where L is defined by P(¥) =
= @o(P(Zy) x P(Zx)). In view of Lemma 4.2 and Theorem 1.6, & is well defined.
It is easy to see that ¢ is an injective mapping and Lemma 4.4 implies that each
element of L; has its counterimage in Ly x Lg. Thus £ is a bijection between
Ly x Ly and L; and the proof is complete.

5. LEX-EXTENSIONS

Throughout this section let G and H be abelian lattice ordered groups such that
H =+ {0} and let C be a linearly ordered group. Let us recall the notion of a lex-
extension (cf. [2]).

5.1. Definition. G is said to be a lex-extension of H by means of C, in symbols
G = lexc H, if the following conditions are fulfilled:

(A) H is an l-ideal of G;

(B) the factor group G/H equipped with the induced operation and order is
linearly ordered group C;

(C) if ge G* and h e H, then g ¢ H implies g > h.

5.2. Lemma. Let G = lexc H and £ € L. Let P,(¥£) = {Se(G*)": for each u
there is v such that S o u o v e P(%)}. Then P,(%£) is a convex subsemigroup of (G*)¥
fulfilling the conditions (I)—(III).

Proof. If R,SeP,(¥), then R + Se(G*)". Since Re P,(#) then for an
arbitrary u there is v, such that R - u o v, € P(&). Similarly, S € P,(%) infers the
existence of v, such that S o u o vy o v, € P(Z). Then, due to the properties of P(%),
the relation Rott o 0y 0 0, + Sout vy 0 v, € P(Z) holds. So, for a given u we have
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found v = v, 00, such that (R + S)ouove P(¥), ie, R + SePy(¥). Thus
Py(2) is a subsemigroup of (G*)¥. The convexity of Py(#) can be proved anal-
ogously. Finally, the properties (I)—(III) of P,(%) are implied by the corresponding
properties of P(Z); we omit the obvious proof.

It is easy to verify that P,(%) = {S e (G*): for some n € N, the sequence S(n),
S(n + 1), ..., S(n + i), ... belongs to P(Z£)}.

The proof of the following lemma is straightforward and is omitted.

5.3. Lemma. Let G =lexc H and & €Lg. Let P)(Z) = P(£)n(H*)Y. Then
P,(%) is a convex subsemigroup of (H*)¥ fulfilling the conditions (I)— (III).

5.4. Theorem. If G = lexc H with H # {0}, then card L; = card Ly.

Proof. For & e L; denote by &(&) the element of Ly defined by P,(&) (cf.
Lemma 5.3 and Theorem 1.6). We shall show that & is a bijection between Lg and Ly.
According to Lemma 5.3, ¢ is a mapping from L; into Ly. If & € Ly, then the con-
vergence defined by P,(#) (cf. Lemma 5.2) is a counterimage of % with respect
to &; thus & is surjective. To complete the proof we need to show that £ is also
injective. So, let ¥ and A" be elements of L. Since H =+ 0, it is easy to see that
S e P(£) if and only if there is a final segment of S belonging to P,(%). Then the
relation &(%) = &() implies & = .

6. FINITE CASE

Now we will describe the cardinality of Lg in case when G is of finite breadth.

6.1. Definition. A subset A of G will be said to be orthogonal if a > 0 for each
a€ A, and a,; A a, = 0 for each pair of distinct elements a,, a, € 4.

6.2. Definition. An abelian lattice ordered group G is said to be of breadth n,
in symbols b(G) = n, if G contains an orthogonal subset with n elements but no
orthogonal subset with n + 1 elements.

6.3. Lemma. Let C be an abelian linearly ordered group and let G be an abelian
lattice ordered group of breadth n. Then b(lex; G) = n.

Proof. We have b(G) = n, and hence there is an orthogonal subset {ay, 4, ..., a,}
of G. The inclusion G < lex; G and the strict positivity of the elements a4, a,, ..., a,
in lex¢ G are obvious. Since G is a convex subset of lex¢ G, a4, a,, ..., a, are pairwise
disjoint elements in the lexc G as well. It suffices to show that there is no orthogonal
subset of lex; G with n + 1 elements. By way of contradiction, let {by, b,, ..., b}
be such a set. Since b(G) = n there is ke {1,2,...,n + 1} such that b, ¢ G. But if
b;eG,ie{l,2,...,n + 1}, then we have b, > b, (cf. Def. 5.1 (C)), and therefore
by A b;="b;%0. Thus b;¢G for each ie{1,2,...,n+ 1}. Since n +1 22,
there exist b; and b,. From b, ¢ G, b, ¢ G and a, € G we infer that b; > a, and
b, > a,. Then by A b, = a; > 0, a contradiction.
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6.4. Lemma. Let G and H be abelian lattice ordered groups such that b(G) =m
and b(H) = n. Then b(G @ H) = m + n.

Proof. Let {(a;, b;):j €I} be an orthogonal subset of G ® H. In this set there
are at most m elements with a; # 0g. Otherwise, we could easily construct an ortho-
gonal subset of G with m + 1 elements, which contradicts b(G) = m. Similarly,
there are at most n elements of {(a;, b;): j €I} with b; % Og. Thus each orthogonal
subset of G ® H can contain at most m + n elements. Now, let {91, oy eons gm}
be an orthogonal subset of G and let {hy, h,, ..., h,} be an orthogonal subset of H.
It is easy to verify that {(g, 0g), (925 On); - -+, (gm> On)s (Ogs R1), (O, h2), ..., (Og, h,)}
is an orthogonal subset of G ® H with m 4 n elements.

Note that if G = {0g}, then card L = 1.

6.5. Theorem. Let G be an abelian lattice ordered group of breadth n, neN.
Then there is ke N U {0} such that k < n and card L; = 2*.

Proof. If n = 1, then G is a linearly ordered group and, in view of Theorem 3.9,
there is ke {0, 1} such that card L; = 2*. Suppose n = 2. By induction, assume
that for each abelian lattice ordered group H with b(H) < n there is m e N u {0}
such that m < b(H) and card L, = 2. In view of [2], there are lattice ordered
groups K, H(1), H(2), ..., H(r) (reN), and a linearly ordered group C such that

G = lexc K,

K=H(1)® H2)® ... ® H(r) and

b(H(j)) < n for each je{1,2,...,r}.

Clearly, K # 0; because, by Lemma 6.3, b(K) = n = 2. By Lemmas 6.3 and 6.4
we get n = b(G) = b(lexc K) = b(K) = b(H(1) ® H(2) ® ... ® H(r)) = b(H(1)) +
+ b(H(2)) + ... + b(H(r)). By induction, there are k(1), k(2), ..., k(r) e N u {0}
such that k(j) < b(H(j)) and card Ly;, = 2*0 for each j € {1, 2, ..., r}. If we denote
k = k(1) + k(2) + ... + k(r), then k < n. By Theorems 5.4 and 4.5, card L =
= card Ly = card Ly(y) . card Ly, . ... . card Ly, = 280 2K®) | 2+ = 2%,

A question arises whether, for ne N and ke N U {0} such that k < n, there
exists an abelian lattice ordered group of breadth n with 2* convergences. The
answer is affirmative and we prove a bit more in the following theorem. For the
terminology cf. L. Fuchs [5] and T. Jech [8].

6.6. Theorem. If ne N and ke N U {0} such that k < n, then the system of
abelian lattice ordered groups of breadth n with 2* convergences is a proper class.

Proof. For a given ordinal number o we can construct an abelian lattice ordered
group G such that b(G) = n, card L; = 2* and card G = 2, in the following way:
Put H(«) = Z%. Then H(«) can be viewed as a linearly ordered group with respect
to the lexicographic order and the pointwise operation induced by the order and
the obvious operation of the additive linearly ordered group Z of integers. For
H(x) we have b(H(«)) =1, card Ly, = 1 and card H(a) = 2™ There are two
possibilities: either k = n or k < n. If k = n, denote by G(«) the lexicographic
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product H(x) with Q (the group of rationals with the obvious additive operation and
the obvious order) and put

G=G)®Gx)®...® Ga).
n-copies
If k < n, denote

G=(0®0®..®Q0R(ZRZR...QZ) @ H(»).
k-copies (n — k — 1)-copies

In both cases we obtain a lattice ordered group G such that card G = 2%, b(G) = n
and card L; = 2*. These equalities are implied by Lemmas 6.3, 6.4, Theorems 5.4,
4.5 and by the properties of H(cx). The construction is complete. The system of car-
dinals {2%: « is an ordinal} is a proper class. It is easy to see that all lattice ordered
groups G with b(G) = n and card L = 2* constructed as above form a proper
class as well.

7. INFINITE CASE

In the preceding section we have investigated the class of lattice ordered groups of
finite breadth. Now we will consider the infinite case.

7.1. Lemma. Let G be a lattice ordered group such that for each ne N there is
an orthogonal subset of G with n elements. Then G has an infinite orthogonal subset.

Proof. Assume, by way of contradiction, that there is an orthogonal subset of G
with n elements whenever n € N and that all orthogonal subsets of G are finite. Then,
by P. Conrad [2] (p. 3.26, Corollary IV, and p. 3.33, Remarks a) and d)), there is
k € N such that G is of breadth k. Therefore there is no orthogonal subset of G with
k + 1 elements, a contradiction.

7.2. Construction. Let D be an infinite orthogonal subset of G. By [8] (Lemma
23.9) there exists an almost (the intersections are finite) system .# of subsets of D
such that card Y = 2™ where Y = {M e : card M = R,}. Arrange each element
of Y into a one-to-one sequence; then Y may be viewed as a set of sequences, Y <
— (G+)N-

As in [6], we define for X < (G*)™:
0X = {Se(G*)": there exists R e X such that S = Rou for some u};

{(X> = {Se(G*)": there exist ne N and elements S,, S, ..., S, of X such that
S=8+S+...+8);
[X] = {Se(G*)": there exists Te X such that const(0) < S < T};
X* = {Se(G*)": for each u there exists v such that Sou - v e X}.
Now, we can establish the following results concerning Y.

7.3. Theorem. Let A = Y. Then [{8A)]* is a convex subsemigroup of (G*)¥
Sulfilling the conditions (I)—(III).
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Proof. According to [6], it suffices to prove that if const(s) belongs to [<64)]
then s = 0. Let const (s) be an element of [(5A4)], i.e., there is Te {(d4) such that
0 £ s £ T. Thus there are elements S;, S,, ..., S, of A4 and monotone mappings
uy, Uy, ...,u, of N into N such that T= S;ou; + Sy o + ... + S, ou, Since
every sequence belonging to Y is a one-to-one sequence, there is k€ N such that
S;ouyk) + S;ou,(1) whenever i,je{l1,2,...,n}. Then for each i,je{1,2,..., n}
we have S;ou,(k) A S;ou, (1) = 0. Consider T(1) = Sy ous(1) + ... + S, 0 u,(1)
and T(k) = Sy o uy(k) + ... + S, o u,(k). It is easy to express these elements in the
form T(1) = p;x; + ... + px,, T(k) = myy; + ... + mpy, where {r,q,p;, ...

ves Dps My, oeny mq} ceN,r<ngq=<nandxy,..., %, Y1, ..., ¥, are pairwise distinct
elements of the orthogonal subset D of G. From s < T(1) and s £ T(k) we have
s £ T(1) A T(k) = 0; hence s = 0.

7.4. Lemma. Let B be a subset of Y. If Se Y and S ¢ B, then S ¢ [{6B)]*.

Proof. By way of contradiction, let S € [(B)]*. Take u, an arbitrary monotone
mapping of N into N, u = id(N). Then there is w such that So.uowe[{(sB)].
Obviously, Souow + S. Since 4 is an almost disjoint system of subsets of D
(see 7.2) and SeY, we have Souow¢ Y. Thus Souow¢B.

As Socuowe [(5B)], there are elements S, S,,...,S, of B and monotone
mappings uy, s, ..., 4, of N into N such that Scuow <) S;ou;. Since S,S;,...,S,
i=1

are elements of Y, S has at most finitely many common members with S; for each
ie{l,2,...,n}. Therefore there exists ke N such that S(k) A S;ou; (k) =0 for

eachie {1, 2, ..., nk It is easy to express the sum Z S; o uy(k) in the form Z m;y;,
where {q, m,,...,m,} =N, ¢ =n and y,, ..., y, are pairwise dlstmct elements of
the set {S;ou;(k): ieN and i < n}. Then Sou ow(k) =S ouowk)A ZS ouy(k) =

= Souowlk) A Zm,yJ = Souowlk) A Vm,yJ V(SouoW(k) A myy;) =0,

which contrad1cts the fact that Sou o w(k) is a strlctly positive element of G (an
element of D).

7.5. Corollary. If B c Y, then B = Yn [{6B)]*.

Proof. If Se B, then S € Y and by virtue of the obvious inclusion B = [(53)]*
we obtain B = Y [{6B)]*. Conversely, if Se Yn [<6B>]*, then, by 7.4, we have
SeB.

7.6. Corollary. Let A and B be subsets of Y such that A + B. Then[{SA)]* +
+ [<8B>]*.

7.7. Theorem. Let G be an abelian lattice ordered group such that for each
neN, G is not of breadth n and G # {0}. Then card Lg = 22%°. Moreover, there is
an abelian lattice ordered group with precisely 22%°.convergences.
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Proof. There is an infinite orthogonal subset D in G. Construct Y in the same
way as in 7.2 and define a mapping ¢ of the system of all subsets of Yinto L; in the
following way: for A = Y, let ¢(A) be the convergence & € Lg for which P(¥) =
= [¢84)]* (cf. 7.3 and 1.6). According to Corollary 7.6, ¢ is injective. Thus
card Lg = card 2¥ = 22%°_ To complete the proof, we present an example of a known
abelian lattice ordered group with precisely 22 convergences. Let H be the multi-
plicative group of strictly positive rational numbers with a < b whenever na = b
forsomene N (i.e. H* = N). Then card (H*)¥ = X§° = 2% and thus there are 22"
subsets of (H*)Y. Hence card Ly < 22™ (cf. 1.6). On the other hand, the set of prime
numbers is an infinite orthogonal subset of H. Therefore H is of breadth n for no
n € N and because of the first part of the theorem we obtain card L, = 22%°,
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