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INTRODUCTION

Our approach to integration enables us to extend the theory to an interesting
theory of integration with respect to operator valued polymeasures separately
countably additive in the strong operator topology, whose development we will
start in Part IX. In this preparatory paper we deduce some basic properties of vector
and operator valued polymeasures and their semivariations, needed later. However,
note that the important problem on existence of control polymeasures is not solved
in general, see Section 3. The theory of set functions of several variables, poly-
measures, doubtless exploits results and ideas of the theory of measures, nonetheless it
cannot be reduced to the latter.

To the author’s best knowledge, except papers on bimeasures, see References,
there are no published papers dealing with polymeasures of higher dimensions.
Nevertheless, the notion of an operator valued polymeasure is known, see the end
of p. 164 in [31]. Complex valued bimeasures and the related Morse-Transue integral
have already found important applications in the structure theory of harmonizable
stochastic processes, see [39], [3] and [28]. In Part XI which is under preparation
we will clarify the notion of the strict Morse-Transue integral from [3]. Extensions
of polymeasures are treated in [14].

1. POLYMEASURES

Let us first set down some basic notations. In the following, d (dimension) will
be a fixed positive integer, X;, i = 1,...,d, and Y will be given Banach spaces over
the same scalar field K of real or complex numbers. By (X, ..., X,; Y) we denote
the Banach space of all separately linear and continuous mappings U: X, x ...

. % X; - Y with the norm |Ulyw = sup {|U(xy, ..., x,)|, x;e X, [x| S 1, i=
=1, ..., d},see [38]. The elements of V(X ,, ..., X,; Y) are called d-linear operators.
By the projective tensor product X; ® ... ® X, we mean the completion of the
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algebraic tensor product of the spaces X;, i = 1, ..., d under the greatest cross norm

N N
inf Y [xO] .o 5P, z=YxP®@... 0.
z r=1 r=1
There is a “natural” isometric isomorphism between the space LV(X/, ..., X,; Y)
and the space L(X;®"...®" X, Y) given by the equality U(x,,...,x,) =
=U(x, ®"...®" x,). Cleartly I9(K,...,K;Y) =Y, and [(X,,....,X;;Y) =
= I9(X,, ..., Xg; L7*(X4, 415 .., Xy, Y)) for any positive integer d; < d in the
sense of an isometric isomorphism.

In the following T, i = 1, ..., d will be non empty sets. By #;, 2; and &; we denote
a ring, a d-ring and a o-ring of subsets of T}, respectively. For T & 0 and &/ < 27,
by o(s#), 8(¢) and o(</) we denote the smallest ring, d-ring and o-ring containing &,
respectively. We note that () is countable whenever & is countable, see [25,
Th. 5C]. In accordance with [9], by definition Z; @ ... ® Z; = §(2?; X ... x P,).
It is easy to verify that 6(2; @ ... ® 2,) = o(?;) ® ... @ o(2,).

We say that a set function defined on £; x ... x %, has locally a property P if
its restriction to (4; N %;) x ... x (4,0 #,;) has the property P for each
(Ag, .y A)E Ry X ... X Ry

Definition 1. We say that a set function y: #; X ... x #; - Y is a vector d-
polymeasure if it is separately countably additive, i.e., if:

1) y(-, 45, ..., A)): #, - Y is a countably additive vector measure for each

(A, ..., A)ERy X ... X Ry,

d) y(4y, ..., Aa=y, *): R, — Y is a countably additive vector measure for each

(Ay, ooy Ag—y) Ry X 0. X Ry_y. ‘

If the countable addtivities in 1) — d) are uniform, then we say that y is a uniform
vector d-polymeasure.

If Y = K, then y is called a scalar d-polymeasure.

We say that I'' &, x ... x &, > LY(X,,...,X;; Y) is an operator valued d-
polymeasure separately countably additive in the strong operator topology (in the
uniform operator topology) if I'(...) (X1, ..., Xz): %; X ... X &, — Y is a vector
d-polymeasure for each (xy,...,X%;)€X; x ...x X, (if I''®y x ... X By
- I9(X,,...,X,; Y) is a vector d-polymeasure).

2-polymeasures are called bimeasures and for them we sometimes write f and B
instead of y and I'.

Let us introduce some types of polymeasures. If I''?, ®@...Q £, —
- L(X; ®"...®"X,,Y) is an operator valued measure countably additive in
the strong operator topology (in the uniform operator topology), then its restriction
to Py x...x Py is an Xy, .., X;Y)=LX; ®"...®" X, Y) valued d-
polymeasure of the same type. On the other hand, most vector valued polymeasures
are not restrictions of vector valued measures on product o-rings. (Note, however,
that each vector valued d-polymeasure, being finitely additive on a semiring
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Ry X ... X %y, has a unique finitely additive extension to the ring o(%#; x ... x &,).)
Probably the first real valued bimeasure which is not a restriction of a measure on
a product g-algebra was constructed de facto by G. Fichtenholz in [23]. Namely,
" he constructed a Borel measurable function f:[a, b] x [¢, d] > R which is not
Lebesgue integrable on the rectangle [a, b] x [c, d] but for which the iterated
Lebesgue integrals [4,([4, f(x, ) dx) dy and [4,([4, f(x, y) dy dx exist and coincide
for each Borel sets 4, < [a, b] and 4, < [c, d]. Here the bimeasure B, f(4,, 4;) =
= [4,([4, f(x, y) dx) dy is of type B(4;, A5) = [4,u:(y, 4;) dus(y), which we call
the indirect product of measures p(y, *), y € Y, with the measure p,; see [13],
where such indirect products of operator valued measures were considered. Examples
of bimeasures which are indirect products of vector valued measures by non negative
measures are given in [ 30]. In particular, we note that the Dvoretzky-Rogers theorem,
see [4], implies that there are bimeasures f: 2V x 2¥ — R which are not restrictions
of measures on 2¥*¥ = 2" ® 2V, see Example 2 in [30]. Other two types of bimea-
sures were de facto introduced in the pioneering paper [41] of K. Ylinen. Namely,
in [41] K. Ylinen proved a Riesz type representation of a wide class of bilinear
operators on Co(T;) x Co(T;), T; and T, being locally compact Hausdorff, as
certain integrals with respect to separately regular vector Borel bimeasures. Hence
such bilinear operators, which, moreover, cannot be extended to weakly compact
linear operators on Co(T; x Ty), are represented by vector separately regular Borel
bimeasures which are not restrictions of regular vector Borel measures in the product
T; x T,. The second type of bimeasures introduced by K. Ylinen is the following
one: Let ca(¥,) denote the Banach space of countably additive scalar measures
on &, with the variation (= semivariation) norm. Then clearly any vector measure
t1: &1 — ca(&,)induces by the equality B(4;, 4,) = py(4,) (42), A, € &1, Ay € P,
a scalar bimeasure f: #; x &, — K. From the remarkable Theorem 4.4 in [41] we
know that each scalar bimeasure is of this type. More precisely, there is an isometric
isomorphism between scalar bimeasures f: %, x &, — K, the vector measures
py: &1 - ca(¥,), and the vector measures p,: &, — ca(¥), the norms being the
semivariations (for polymeasures the semivariation is defined in Definition 3 below).
(Actually K. Ylinen proved this result when &, and &, are c-algebras, but small
modifications of the proof yield the result for o-rings). From here we easily obtain
an isometric isomorphism between scalar d-polymeasures y: ¥ X ... X ¥£; > K,
and vector valued d — 1 polymeasures y': Py X ... X F,_1 — ca(¥,), see the
paragraph after Theorem 3 below. Another consequence of this result is the following
fact:

(Y) Each scalar bimeasure p: &1 x &, — K is uniform.
The author is indebted to Hans Weber from Potenza for the following nice

Example of a Hilbert space valued bimeasure on Cartesian product of c-algebras
which is not a uniform bimeasure; Let Ty = N = {1,2,...}, 2, = 2", T, = [0, 1],
2, = %([0, 1]) = the Borel measurable subsets of [0, 1], Y = I*([0, 1]), and let e,
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n=1,2,... be an orthonormal base for Y. For A€ 2, and Be 2, put (4, B) =
= P/(x5), where P} is the projection operator of I*([0, 1]) into its subspace Sp({e:} ic4)-

We now deduce some basic properties of polymeasures. The Orlicz-Pettis theorem,
see any of the books [4], [5], [22] and [26], implies that a set function y: #; X ...

. X P, Y which is separately weakly countably additive is a vector d-poly-
measure. Moreover if Y does not contain an isomorphic copy of ¢, for example if Y
is weakly sequentially complete, see [2], then it is enough to suppose that y*y:
P, x ... x ;- K is a scalar d-polymeasure for each y* € Y*.

Similarly the Vitali-Hahn-Saks-Nikodym theorem, see [5], immediately yields
its generalization to polymeasures:

(VHSN)-Theorem for polymeasures. Let I',: 2, X ... x Py —> [P(X(, .., X5 Y),
n=1,2,... be an operator valued d-polymeasures separately countably additive
in the strong operator topology and let lim I'(Ay, ..., Ag) (x4, ..., x;) € Y exist

n>o -
for each (4, ..., A)) € Py x ... x P; and each (xq,...,x;) € Xy X ... X X,. Put
I(Ayg, .. A (x45 -0y xg) = im T(Ay, ..., 4g) (x4 ..., Xs). Then 't P x ...
n—oo

X Py L9X,,...,Xy;; Y), I is separately countably additive in the strong
operator topology, and the vector d-polymeasures I,(...)(Xy,...,%z): Py X ...

X Py Y, n=12,... are separately uniformly countably additive for each
(xgs s xg) €Xy X .o X X,

We now prove also the following (N — Nikodym) result:

(N) — Uniform boundedness theorem for polymeasures. Let I'y: &1 X ... X $y—
> INX,,...,X;;Y), D3 = an index set, be operator valued d-polymeasures
separately countably additive in the strong operator topology and let sup |I‘b(A1,

bed

vy Ag) (X1, ..., Xg)| < + 00 for each (Ay, ..., A)e Py x ... x ¥, and each
(%45 .-» X)) €Xy X ... X X, Then

sup sup |Ts(Ay, ..., Ag)|pw <+00.

e (A1,..0,4q)eFL 1% .. X P

Proof. We proceed by induction for d. For d = 1 the assertion follows from the
Nikodym uniform boundedness theorem for vector measures, see [5] or [22], and
from the uniform boundedness principle for operators. Suppose now the assertion
of the theorem holds for d — 1. Define I'y(4y, ..., Ag—y, *) (X1, +o0s Xg—y, *): Fa =
— L(X,, Y) by the equality I'y(Ay, ..., Ag—y, *) (%1, .-0r Xa1 *) (Ag) (%a) =
=Ty(Ag, .., Ag) (%15 ooy Xg)s (Agsovvs Agmy) €Py X oo X Py_y, and
(%45 -+»Xa—1) € Xy X ... X X,_;. Then by the induction hypothesis,
sup sup |Fb(A1, s Agogs ) (g s Xa- 1, *) (Ad) (xd)l =

bed (A1,.,4g=1)eP1X ... X P a1

= sup sup |Fb(“'9Ad) (..., xd) (Ah coey Ad—l) (xl, coey xd_1)| <+
e (41,00, 4a-1)EL 1% .. X Fad=1

for each (xy,...,x;)€X; X ... x X, and each A, %, Hence by Nikodym’s
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uniform boundedness theorem for vector measures we have
sup sup |Ty(Ay, -ees Ag) (X1 -0 xg)| < +00
bed (41,..., ADEL 1 X ... XFa
for each (xy,...,x)€X; X ... x X,.

It remains to apply the uniform boundedness principle for operators to obtain the
assertion of the theorem for d. Hence the theorem is valid for any positive integer d.
As an immediate consequence we have that any operator valued d-polymeasure
%y x..x %> LX,,...,X; Y) separately countably additive in the strong
operator topology is a bounded set function.
We will need

Lemma 1. Let a family of vector measures vy: & — Y, dDe 3, be uniformly
countably additive, let A,e &, n=1,2,..., and let A, — A, i.e., let liminf 4, =
= lim sup 4, = A. Then lim vy(A4,) = vy(4) uniformly with respect to d € 3.

n n—>o

Proof. For be 3 and Ee & put #(4) = sup |v(F)|. Then #: & — [0, + 0]
FcE,Fe?

is monotone, subadditive and bounded by (N). Further, the countable additivity
of v, implies that ¥, has Fatou property: E,e &, n=1,2,... and E, /7 E implies
(E,) 7 #(E); and that ¥, is exhaustive: if E,e€ &, n = 1, 2, ... are pairwise disjoint,
then ¥,(E,) - 0. These two properties imply that ¥, is continuous: E,e &, n =
=1,2,... and E,\0 implies ¥(E,) - 0. Hence ¥, is a subadditive submeasure
in the sense of Definition 1 in [16].

For E€ & put u(E) = sup %(E). Then the properties of %, imply that u: ¥ —

bed

- [0, + 0] is monotone, subadditive and has the Fatou property. Further, the
uniform countable additivity of the family v,, ® € J, implies that u is also exhaustive.

Hence u is continuous. Since E, — @ if and only if | E, 0, by monotonocity and
k=n

continuity of z we conclude that E, — @ implies u(E,) — 0.

Let e J and E, F € &. Then by additivity of v, and monotonocity of ¥, we have
the inequalities

[(E) = w(F)| = [W(E — F) = w(F — B)| 5 [n(E - F)] +
+ |w(F — E)| £ %(E — F) + #W(F — E) S 2%(EAF) S 2u(EAF),

for each de 3.

Ifnow 4,€e ¥, n=1,2,... and 4, > A, then 4, A A — 0. Hence u(4, A 4) > 0
by continuity of u, and thus the above inequalities imply the assertion of the lemma.

Theorem 1. Let y: &3 X ... X $3— Y be a vector d-polymeasure, let A;,€ &,,
i=1..,dn=12... andlet A;, - A, for each i = 1,...,d. Then

]lm y(Al,ng! ceey Ad,ud) = ')’(Al, ceey Ad) .

B1,...sBg~> 0
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Proof. We prove the theorem by induction for d. For d = 1 the result is well
known, see for example Theorem 3.5 in [24], and also follows from Lemma 1.
Suppose now the assertion of the theorem holds for d — 1, d = 2. In the given
setting put v, ..o (E) = Y(Agmys s A1 maeys Ea)s Ea€Fyy Myyeoyhy_y =
=1,2,.... Then, by the separate countable additivity of 7y, for any multiindex
(ny, ..., n,_,) the set function v,,..,, ,:%s— Y is a countably additive vector
measure. We now show that the vector measures v,, ..., 1> B1s .00y Bg—g = 1,2, ...
are uniformly countably additive on &,, and this by Lemma 1 will imply the assertion
of the theorem for d. Suppose the vector measures v,,,...n, > Bys oy Bg—g = 1,2, ...
are not uniformly countably additive on &,;. Then they are clearly not uniformly
exhaustive in &%;. Hence there is an ¢ > 0, a sequence of pairwise disjoint sets
Ejne¥%4 k=1,2,..., and a sequence of multiindexes my = (ny ..., Bgmq)s
k = 1,2, ... such that |v,,(E, )| > ¢foreach k = 1,2,.... Take first a subsequence
{k;} = {k} such that {n,,} is either a constant sequence, or n;,, — +oo. Next
take a subsequence {k,,} < {k;} such that {n,,, .} is either a constant sequence,
or n, 4, , = +oo. Continuing in this way, finally take a subsequence {k,,.. 41} <
< {ky,...4—»} such that it is either a constant sequence, or tends to infinity. Then
by the induction hypothesis  lim mGl,....d—l(Ed)e Y exists for each E, e &,.

15000,d=1770

k
But then by (VHSN)-Theorem the vector measures Vi, i Fa> Yk g =

= 1,2,... are uniformly countably additive, equivalently, uniformly exhaustive,
a contradiction. Thus the theorem is valid for any positive integer d.

Definition 2. For a separately additive set function I': #; X ... X %; >
- I(X,,...,X; Y) we define its supremation I': R, , X ... X &y, [0, + 0]
by the equality :

I'(4y,...,A;) = sup {|[(By, ..., B)|cw, Bi€ ;0 R, i =1,...,d} .

We will use the same notation if 4; is replaced by T; for some i € {1, ..., d}.

We say that a d-tuple (A, ..., A)) € By 4 X ... X Ry ,is [-nullif [(4;, ..., 4;) =
= 0.

We say that a separately additive set function I';: %, X ... X %y - L£Y(X1, ...
..., X}; Y’) is absolutely continuous with respect to I" if I';(4y, ..., 4;) = 0 for each
r-null d-tuple (A4, ..., A)) € By, X ... X Ry ,. In that case we write I'y < I

Clearly, I'(44, ..., 4;) = sup L(Ayg, ..., Ag) (Xq, -y %)

x1[=1,...,]xa] S1

Theorem 2. Let y: &y X ... x #;— Y be a vector d-polymeasure. Then:

L 3Ty, ... Ty) < +00, and 7: Fy x ... x P4 [0, + ) is separately monotone
and separately subadditive,

2. § has the following Fatou property: A;,€ &y, i=1,...,d, n=1,2,... and
A;, 7 A; implies F(Aq s - Aap) 7 F(Ay, ..., Ag)- Hence by 1) 7 is separately
countably subaddtitive,
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3. 7 is continuous at (9, ..., 0) in the following sense: A,e&ni=1..,dn=
=12..and A;, > O foreachi=1,..,dimply Lm F(Ay,,-..., Aun) =
= 0. L T ng—* oo R

Proof. 1) follows from (N)-Theorem and the definitions, while 2) is an ‘easy
consequence of Theorem 1.

3) For each i =1,...,d let B;,e %;, n = 1,2,... be pairwise disjoint. Then
y(Bl'm, . Bl,,,d)—>0 asny,-..,ny3— o by Theorem 1. This property of y is called ex-
haustivity. But then evidently 7 is also exhaustive. Now it is easy to see that exhausti-
vity and the Fatou property of 7 imply its continuity from above at (9, ..., 0), i.e.,
if for each i =1,2,...,d, B;,e¥;, n=1,2,... and B,;,\0, then #(B;,,,...
s B,,,,,d) -0 as ny,...,n; > . Hence the continuity of j at ((2), .y @) im-
mediately follows from the fact that 4;,, — 0 if and only if lim sup 4;,,N0, by
virtue of the separate monotonocity of 7. ke

Corollary 1. Let I'' &y X ... x Py - [¥(X,,...,X,;; Y) be an operator valued
d-polymeasure separately countably additive in the strong operator topology. Then
I[(Ty, ..., T;) < +oo, I has the Fatou property, and I is separately monotone and
separately countably subadditive.

The next corollary is also immediate.

Corollary 2. Let T; = N = {1,2,...}, and let &; =2 for each i =1,...,d.
Then any vector d-polymeasure y: £y X ... X ¥, — Y is uniform.

Denote by S(#;, X)), i = 1,2, ..., d, the normed linear space of #-simple func-
tions f;: T; - X; with the sup norm |fi|z, = sup |f(t;)|. If X; = K, then we write
simply S(2,). fiels

Let I'' ?; X ... x 2, > [9(X,, ..., X,; Y) be an operator valued d-polymeasure
separately countably additive in the strong operator topology and let f; e S(?i, X)),
i=1,...,d, be of the form f; = Z Xi,jX4; 5, With x; ;,

Jji=1 It
disjoint A4;; € #;. Then the integral of the d-tuple of functions (F1s oo fi) e
€eS(2y, X,) x ... x S(?, X,) over the d-tuple of sets (4y, ..., 45) € a(P;) % ...

. x 0(2,) is defined by the equality

€ X;, and with pairwise

ry ra
I(Al ..... Aa) (fl’ “‘7fd) dF = Z ves Z F(Al (@) Al,jx’ ey Ad N Ad,j.i) (xl’jl, ceey xd’jd)‘

Jji=1  ja=1
If there is no danger of confusion we write [ 4, (f;) dI', XS(2;, X;) and Xo(%;).
Clearly, for a fixed (f;) e XS(2;, X;) the mapping [., (f;) dI': Xo(2;) » Y is
a vector d-polymeasure absolutely continuous with respect to I', and for a fixed
(4)) € Xo(2,) the mapping [ 4, (*) dI': XS(2;, X;) —» Y is separately linear. Note
that the finiteness of the semivariation I on (4,) is just the requirement of continuity
of this mapping. Note also that

Jcan (f) AT = fup (fi - x4,) AT for each (f;) e XS(2,, X;) and (4;) e Xo(2)) .
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Definition 3. Let I': | x ... x 23> X, ...,X; Y) be an operator valued
d-polymeasure separately couyntably additive in the strong operator topology.
Then we define:

a) its semivariation [': (?,) x ... x o(?;) = [0, + 0] by the equality

P(Ay, ... A) = sup {|[u, (f) dI|, fieS(@uX) and |fi|r, €1, i=1,..,d}
hence (A, ..., A,) is the LO(S(?y, X,), ..., S(?4, X,); Y) norm of the mapping

fean (+) dr.

b) its scalar semivariation ”F" o(?y) x ... x o(2,) > [0, + 0] by the equality

IT) (4y, ... 40) = sup {[fuy (f) Al |ewr»  fieS(2), |filr S 1, i=1,...d}
(f fi= Z a,,i xA”‘ with pairwise disjoint A;; € P, i =1, ..., then

fean () dF = Z Z Ay, oo g,-T(Ag 0 Ay iy Ay Ay ).

Jj1=1 fd‘—

¢) its variation o(I'. (...)): 6(2)) x ... x o(2,) > [0, + 0] by the equality

U(F, (Al’ ceey Ad)) = Sup Z ...jzllr(Al,jl, ey Ad,ja)‘L(‘) ) A,-,j‘GAi N gi
Ji=1 a=

are pairwise disjoint, j; = 1,...,r,r; = 1,2,...,and i = 1,...,d}.

d) for P-measurable functions fi: T; - X;, or f;: T; > [0, +00), and sets A; €
€ {0(2,), T.} we define the multiple L,-gauge F[(fi, ..., fs), (A4, ..., Ag)] by the
equality F[(fy, ..., f2), (44, ..., A5)] = sup {”<Ao (95 dFl g€ S(ﬂ’,, X)),
lg{)] = If(t)lforeach teT,i=1,.

Obviously I'(4;) < |I'|| (4) < P(4) = v(F, (Ai)) for each (4,) e Xo(#,), and

(T, (4;)) = 0 for each I'-null d-tuple (4;) € Xa(2;). Further, for any (4,) € Xa(#,),

I(4;) = F[(x4,), (45)]. We have

Theorem 3. Let us have the notions from Definition 3. Then
1) o(T, (+)): Xa(2;) > [0, + 0] is a d-polymeasure;
2) F[(). (4)] = sup (). (4], and
||F” ()= sup |y*1(-) (x)]| (49);

Iy*=1,]x=1
3) FLU). (A)] < +0 i and only if Y*F((7),(4)] < +e0 for each y* e ¥*;
4) |r] (4) < 4°. T(4;) ($2°. I'(4)) in the real case). Hence |I'| is finite valued
on P, X ... X P,
5) The set functions |[I'|, [, and F[(f;), (*)]: 6(2,) x ... x 6(2;) > [0, + ] are
separately monotone and separately countably subadditive.

6) Let a;eK, and let g;: T, > X; (or g;: T; - [0, + ) lffg T, - [0, + o)) be
P; measurable i =1,...,d. Then [[(a;f}), (4)] = |ay| - ... . |ad|. P[(£), (4))],
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f[(fi + g3), (Ai)] = f[(fi), (Ai)] P[(9), (A)], and P[(g). (4)] <
< I[(f), (4)] if Igil s Ifil Sor e:ch |;(g=)1,(),]d (@) (4]
) i )] inf ] D(4) S PLOD, (4] S Uil Wil P4

Hence we have a Tschebyscheff type inequality
P({tie A |fi(ti)| Za;>0}) = M
a;.....

1 A
8) In the (VHSN)-Theorem we have the inequalities:
Ir] (4) < liminf |T,| (4;) < limsup |[I,] (4) < +o

(similarly for I,
I'(4;) < liminf F,(4,),

and similarly for o(T, (4;)) and F[(f),(4,)] for any (A;) € Xo(2;) and any
P -measurable functions fi: T > X, (or [0, +0)), i = 1,...,d.

Let us denote by pm(XS;, L¥(X;; Y)) the linear space of all operator valued
d-polymeasures I': X#; — [¥)(X,; Y) which are separately countably additive in
the strong operator topology. Clearly I' - |[I'|| (T;) defines a norm in which
pm(X&;, LY(X;; Y)) is complete. By pmbsv(X#;, L¥(X; Y)) (by
pmbv(X¥;, [9(X ; Y))) we denote the linear subspace of pm(X#,;, [¥(X;; Y))
whose elements have bounded semivariation (variation). These spaces are also com-
plete in the norms I' —» [(T;) and I - o(T, (T;)), respectively.

Let us note that there'is an isometric isomorphism between the space pm(¥, x ...

X Py P(FPgpq X . X P, Y)), 1=d; <d, and the subspace of
pm(#; X ... X P, Y) whose elements in the coordinates i = 1, ..., d, are sepa-
rately countably additive uniformly with respect to (Ay, 4y, ..., Ag) € Layuy X ...

. X &y

All these facts, together with those listed in Theorem 3 above, easily follow from
definitions, or are analogues (with similar proofs) of the case d = 1, and so we omit
their proofs.

We also note that [(f,), (*)] = F[(|£:(), (*)]-

Theorem 4. Let I' be as in Definition 3. Then its multiple L,-gauge ['[(+), (4,)],
(A4;) € Xo(2,) has the following Fatou property:

P[(fin): (4)] 7 FL(f), (4)]
whenever f;,:T;— [0, +©), n=1,2,... are P,-measurable, and f,,/f,
i=1,..,d.

Proof. For d = 1 we already have this result, see Lemma 1 in Part V = [11].
So let d > 1. If we prove the theorem in the special case when f;, = f; for each
i=2,..,dand each n = 1,2, ..., then the general case will follow easily by using
the assertion 6 of Theorem 3. Hence let us consider this special case. Suppose
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F[(f), (4)] < +oo (the case = + oo may be treated similarly), and let & > 0. By
the definition of the multiple L,-gauge there are u; € S(#;, X;), i = 1,...,d such
that

lu| < |fi], and |[fe,(us) dr| 2 F[(f). (4)] —¢.
Put

(pl,n(tl) — Ifl,n(tl)‘ A ]ul(tl)l if ul(tl) + 0’
|us(2,)]

and put @, ,(t;) = 0if u,(t;) =0, t;€ Ty, n=1,2,.... Then ¢,,: T; - [0, 1],
n=1,2,... are #-measurable and @, , 7 xy,, where U; = {t; € T; u,(t;) + 0} €
€ o(P,). Further, for E;ea(?,)n Ay put p(E,) = [z, a5, 4 (4:) . Then
py:06(2,) N A; > Yis a countably additive vector measure. Hence [z, ¢4, du; —

- u;(Uy N E,) uniformly with respect to E1 € o(#2,) N A; by Theorem 17 in Part
II = [8]. In particular,

”Ax Pin dﬂxl g |#1(U1 2 A1)| = l:ul(Al)| = ”(,4,) (ui) dFl 2 F[(fi)’ (Ai)] —&.
Now, according to Theorem 9 in Part V = [11],

”,4, Pin d.uxl = ”(A‘) (Oy,- U1, g, ..., uy) dF] =

hS F[(‘Pl,n U Uy ey ud)’ (Ai)] < F[(fl,n,fl: -”’fd)’ (Ai)] .
Hence lim I'[(fy , f2, - fa) (4:)] = F[(f)), (4)], which we wanted to show. The

n—o

theorem is proved.

Corollary 1. The set functions [, |I'|: Xo(2)) - [0, + 0] have the Fatou
property.

Corollary 2. The set functions ||, I, and F[(f)),(*)]: Xo(2,) - [0, + 0]
(fi: T; > [0, + ) P-measurable, i = 1, ..., d) are continuous at (9, ..., 0) if and
only if they are exhaustive (for these notions see the proof of Lemma 1).

Corollary 3. Let f;: T; > X, (or to [0, + 0)) be ?-measurable and let A; € o(P)),
i=1,...,d. Then F[(f),(4;)] = 0 if and only if P(4,n S;) = 0, where S;, =
= {t;e T; ft;) * 0}. (A = {ti€ A, |f((t;)| > 1/n} 7 4,00 S}).

Now similarly as the *-Theorem in Part I = [7] and Theorem 5 in Part IT = [8]
we have

Theorem 5. Let Y contain no isomorphic copy of ¢, for example let Y be a weakly
sequentially complete Banach space, see pp. 160—161 in [2], or [5], and let I’
be as in Definition 3. Then:

1) If [ is finite valued on X2,, then I': X2, — [0, + o0) is continuous at (9, ..., 9)
from above, and

2) If f: T, - X (or to [0, + o0)) are 2 -measurable, i = 1, .... d, and I'[(f)), (4))] <
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< +oo for each (4;) € Xa(2;), then F[(f;), (T})] < + o0, and the set function
F[(f), (+)]: Xa(2;) - [0, + ) is continuous at (9, ..., 9).
Using the Saks decomposition of submeasures, see Theorem 8 in [16], we easily
obtain the following generalization of Corollary of Theorem 5 in Part IT = [8]

Theorem 6. Let I' be as in Definition 3, let fi: T; - X; (or to [0, + 0)) be 2;-
measurable, and let T[(f), (*)]: Xo(2;) > [0, + 0] be separately continuous,
i.e., let it be a separately subadditive submeasure in the sense of Definition 1
in [16]. Then F[(f),(T)] < +oo. (If S;,={t:ie T, f(t) 0}, i=1,...,d,
then L[(f), (T)] = L[(£). (S;:)]).

Corollary. The set of those operator valued d-polymeasures in
pmbsv(XS;, [9(X; Y)) whose semivariation I is separately continuous on X% is
a closed linear subspace in pmbsv(XZ,;, [P(X; Y)), containing
pmbv(X&,, V(X ; Y)).

2. UNIFORM POLYMEASURES

First we note that the set of all uniform polymeasures y: X% ; = Y, which we denote
by upm(X#;, Y), is clearly a closed linear subspace of pm(X%;, Y). We now deduce
some pleasant properties of uniform polymeasures. For the proof of the next theorem
we need two preparatory results. The next lemma may be proved in just the same
way as Lemma 1.

Lemma 2. Let a family vy: & — [O, +oo), D €3, of subadditive submeasures in
the sense of Definition 1 in [16] be uniformly exhaustive, let A,e ¥, n = 1,2,...,
and let A, —» A. Then lim vy(4,) = v, uniformly with respect tod e 3.

n— o

The following fact is evident.

Lemma 3. Let v,: Z — [0, +o00], n =1,2,... be monotone and continuous from
above at 0, and let lim v,(A) = v(4)€[0, + ] exist for each AeR. Then v,, n =

n—*oo
= 1,2, ... are uniformly continuous from above at Q if and only if v is continuous
from above at 9.

Now, similarly as Theorem 1, using Lemma 2 instead of Lemma 1 and Lemma 3
instead of (VHSN)-Theorem, we can prove

Theorem 7. Let y: &y X ... X &3 — Ybea locally uniform vector d-polymeasure,
let A;,€%, i=1,...,d, n=12,..., and let A, —> A; for each i = 1,... d.
Then

lim (A, Agpg) = H(As -0 4g)
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In particular, 7: %y x ... x £4—> [0, +0) is a separately subadditive sub-
measure in the sense of Definition 1 in [16].

We now apply this theorem to obtain (for d = 1 see [25, § 17, Exercise 3]

Theorem 8. (Exhaustion of locally uniform vector d-polymeasures). Let y: &, X

. X P4 Y be a locally uniform vector d-polymeasure. Then there are sets
Q¥ i=1,..,d such that y(Ay,...,4)) = y(4; 0 Qy, ..., 4.0 Q;) and
F(Ags ..., A)) = 7(A; 0 Qy, ..., A4 Q,) for each (A,)e X, In particular, y is
a uniform vector d-polymeasure, and ¥(Ty, ..., T;) = 7(Qy, ..., Q) < + 0.

Proof. For any (4,), (Q;) € X¥;, obviously
Ap X ... x Ag— Q] X ... x Q= ,
= [(A1 - Q;)U(Axf‘ Q'l)] X . X [(Aa - Q;)U(Adn Q.':)] - Qi x..xQ;c
(2 —c(4; - 0) x ... x (44— Q)v
€)) —UQ; x (42— Q) x...x(4;— Q)u...u(4; — Q) x ...

- X (Aa-1 = Qi-1) X QiU

@+1)—0Qix...x Qi x(4—Q)u...u(4y — Q) x Q5 x ... x Q.
1st step. We take (Q7) € X, so that y(QO) = ¥(T). (If (Q;,) e X¥y,n = 1,2,.

are such that 7(Q;,) 7 7(T;), then Q) = U Q,” i=1,...,d, have the reqiured
property.)

2nd step. We take Q! € #;, i = 1,...,d so that Q} > Q foreach i = 1,...,d,
and %(T, — Q},...., T, — Qi) = 0. If ay = (T, — QF, ..., Ty — QF) > 0, then we
take 0%, e(T, — Q)N &;, i =1,...,d, so that ao = %(QY 1, ..., 03,4). If ay =
=T, — (U 00, ... Ty — (Q U QF,)) > O, then we take Qf, e (T; —
—(QuE)N)N, i=1,...,d, so that a; = 7(Q7 ,, ..., Q3 ,). Continuing in
this way we either arrive at a ky € N such that a, =0, or a; > 0 for each k =

=0,1,2,.... In the first case the sets Q} = U Q,k, where Q) = 07, i=1,...,d,
have the required properties. In the second case a, — 0 by Theorem 7, hence the
L]
sets Qf = {J Qfy, i = 1,...,d, have the required properties.
k=0

3rd step. We first apply the analogue of the 2nd step for the first term in (3) with
fixed Q) = Q] to obtain (Q3%,...,Q7")e ¥, x ... x ¥, such that Q7' > Q},
i=2,..,d and (x) - QL T, — Q3',..., T, — Q') = 0. It is important to
observe that for any sets Q) €%, Q; o 0, Qye¥,, Q5> Q>', ..., Qe Ly
Q; > Qi" we have 7(Qi, Ty = Q3. 2T - 0)=0 (0S70Q0T: — Q...

Qd) = ’?(Ql le TZ QZ’ . Qd) + y(Ql’ T2 Q2a cue
Q,,) = 0 (by the 2nd step) + 0 (by (*) and the monotonocity of 7)). Having
(Q,, ,...» Q") we apply the same argument to the second term in (3), and
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obtain (0%, Q3*, 032, ..., Q2'?). Proceeding in this way we arrive at the last
term in (3) with (@37, ..., Q3*~"). Hence, if Q7 = Q>*"', i =1,..., d, then for
Q;= Q% i=1,...,d, the value of 7 on all terms in (3) is equal to O for any (4;) €
e X&;.

Further steps (if d > 2). Similarly as above we obtain (Q3, ..., Q7) such that
0> Q},i=1,...,d, and j on all terms in (2), (3) and (4) with Q} = Q},i =1, ...
..., d, is equal to O for any (4;) e X¥,. Continuing in this way we finally obtain
sets Q91 > Q472 i=1,...,d, such that for Q; = Q!"', i=1,...,d,7 at all
terms on the right hand side, i.e., at all terms in (2),...,(d + 1), is equal to 0 for
any (4;) e X& .

The theorem is proved.

Corollary. Let each X;, i = 1,...,d, be a separable Banach space and let I':
L% o X Py I(X,, ..., X; Y) be an operator valued d-polymeasure such
that T(...) (Xgs ..., Xg): Py X ... X Py Y is a uniform (equivalently, a locally
uniform) vector d-polymeasure for each (x;)€ XX;. Then there are Q,e &;, i =
=1,...,d, such that [(Ay, ..., A)) = T(4; 0 Qy, ..., Ay Q) and ['(4, ..., A;) =
=T(4, 0 Qy, ..., A; 0 Q,) for each (4;) e XS,.

Proof. Let x;,, n =1,2,... be a dense sequence in X;, i = 1, ..., d. Since the
family (X155 -++» Xamg)s M5 ---» B = 1,2,... is countable, we may write it as a se-
quence (xj,,...,X;,), n =1,2,.... Now for each uniform vector d-polymeasure
Do) (X o X4 )t Py X oo X Py> Y, n=1,2,... take (Qy,,...,0,,) ac-

cording to the theorem, and put Q; = ) Q;,, i = 1,...,d. Then clearly (Q;) has
the required properties. n=1

It remains an open problem whether the preceding theorem remains valid for
arbitrary vector d-polymeasures.

Theorem 9. Let y: &, X ... X ¥4 — Y be a uniform vector d-polymeasure, and
let 1 <£dy <d. Let further A;,e ¥, n=12,...,i=1,...,dy, and let A;, -
— A; fori=1,...,d,. Then:

1) ’)-)(Al,n AAI’ TZ’ LR ’1:1) g 09 [EXE] ’7(T1’ AR T:h—la Adl,n AAdl’ ’I:il+1> ooy T:i) - 09»
2) hm y(Al,nx’ ey Adl,"dl’ Adl"'l’ ooy Ad) = ’Y(Al’ ey Ad)

uniformly with respect to (Ag 41, ..os Ag) € FLa41 X o.. X &y, and
3) the analogue of 2) holds for 3.

Proof. 1) is an immediate consequence of Theorems 7 and 8.

2) First we note that for an additive set function v: # — Y we have the inequalities:
[%(4) ~ ¥(B)| = WA — B) — (B — 4)| < (A — B)| + (B~ 4) < (4~ B) +
+ ¥#(B — A) < 2¥(A4 AB). Hence

Iy(Al,np sees Ad;,ndp Ad1+1a ooy Ad) - y(Al, seey Ad)‘ é
-S— l'}’(Al,nn (RS Adl,lldl’ Adx+l3 ceey Ad) - ?(Als A2,n2’ "')I +
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+ (A, 4y ys o) — YAy Ay, )| +
o S 25(Ay 0 AAL T, ., T)) + 2)7(T1, Ay, A, T3y o, Ty) + ..
Thus 2) follows from 1).

3) For a monotone and subadditive set function v: # — [0, 4+ ) we have the
inequality: |v(4) — v(B)| < v(4 AB). Using this inequality we obtain 3) as a con-
sequence of 1).

From Theorem 8 and Theorem IV.9.2 in [22], or Theorem 3.10 in [24], or Theorem
7 in [17] we immediately obtain

Theorem 10. Let y: &, X ... X &£;— Y be a uniform vector d-polymeasure.
Then there are countably additive measures A;: &; — [0, +0), i=1,...,d,
such that

1) 4(4) £ ¥4y, Ty, ..., T)) for each A e%,, and the vector measures
Yoy Agy ooy Ag): 1> Y, (Ay, .., A)E P2 X ... X Py, are uniformly abso-
lutely continuous with respect to A,

d) A4y = ¥(Ty, ..., Ty—y, A,) for each A, € &, and the vector measures
YAy o Agmg, ) Fa = Y, (Ay, ., Aym)) €Sy X ... X Py_y, are uniformly
absolutely continuous with respect to ;.

3. EXISTENCE OF CONTROL POLYMEASURES

Definition 4. We say that an operator valued d-polymeasure I': Z; X ... X $; —>
- (X, ..., X; Y) separately countably additive in the strong operator topology
has a control d-polymeasure, if there are countably additive measures 4;: Z; —
- [0, +oo), i=1,...,d, such that I' is absolutely continuous with respect to
Ay X ..o X lgon P X ... X Py

Note that in this definition we do not require the absolute continuity of 4; % ...

. X A; with respect to I'. According to Theorem 10 each uniform vector d-poly-
measure y: ¥, X ... X ¥; = Y has a control d-polymeasure. The solution of the fol-
lowing problem is of great importance for the theory of integration with respect
to operator valued polymeasures, with which we will start in Part IX.

Problem. (Control polymeasure problem.) Does every vector d-polymeasure
PPy X ... Xx ¥4 Y have locally control d-polymeasures?

In this section we give important partial positive results concerning this problem.

Lemma 4. Let y,:0(%;) x ... x o(®,) > Y, k=1,2, be two vector d-poly-
measures, and let (A, ..., A) € 6(R,) % ... x o(®R,). Then there are (A, ...
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s Agn) €ERy X .o X By, n=1,2,... such that y(A,, ..., Ak)—hmyk(A, I

- Ay ) for both k = 1, 2. The analogue holds if o(%;) is replaced by 5(921)

Proof. Since y,(*, 4z, ..., 45):6(#,) > Y, k=1,2, are countably additive
vector measures, they have countably additive control measures 4, ,: a(.%l) -
- [0, + ), see the end of Introduction in Part I = [9]. Put 4, = A, ; + 4, ,.
By the well known result, see Theorem D in § 13 in [25], there is a sequence 4, ,, € %,
ny =1,2,... such that 4,(4; A 4,,,) - 0. Hence 7(4,,..., 4,) =
= lim y,(4, ,,, 4,, ..., 4;) for both k = 1,2 by the absolute continuity of

ni3—>oco
yk(', Ay, ..., A,,) with respect to A,. Similarly, let A, ,, be a control measure for
the vector measure y,(A; ,,, *, A3y ..., 4): 6(R,) > ¥, k=1,2,and n,; = 1,2,...,
and put

e 1 ),21,“‘}'}'22"1
= 12"l 1+(2'21m + '122711)(T2)

Then there is a sequence A4, ,, € #,, n, = 1,2, ... such that y (4, ,, 4,, ..., 4,) =
= lim y(A1,4,> A2 np> Ass ..., 43) for both k = 1,2 and each n; = 1,2,.... Con-

n2=*co
tinuing in this way we finally arrive at a sequence A4, ,, € %, n; = 1, 2, ... such that
(A1 s oo os Adm1ma > Ag) = lim y(A; 4, ..., Ag,,) for both k =1,2 and each
na—* o

ny,..,fgey =1,2,.... Hence p(A4y,..., 4, = lim Lim ... lim y(Ay,,,, ..., Agay)

ni— N2~  NHg—+®

for both k = 1, 2, and the assertion of the lemma is evident.
Finally, the case of 6(%;) is a corollary of the case of o(%;) just proved, since
obviously 6(2;) = U R;n o(2).

RieRy

Ay =

Corollary. If two vector d-polymeasures y:o(Ry) X ... x o(R) = Y (or y¢
5(R,) x ... x 8(R) > Y), k=1,2, are equal on Ry x ... X R,, then they are
identical.

Theorem 11. Let each &;, i = 1,...,d, be generated by a countable family of
sets. Then every vector d-polymeasure y: ¥y X ... x ;= Y has a control d-
polymeasure.

Proof. Without loss of generality, see Theorem C in § 5 in [25], we may suppose
that each &; is generated by a countable ring #;, i = 1,...,d. Put R, , = | R;€
RieR:

€Riy i=1,...,d. Then clearly &; = o(#;) =R,,no(®,), i =1,...,d. Since
(", Ry, ..., Ry): &3 — Yis a countably additive vector measure for each (R,, ..., R;) €
€Ry X ... X Ay, it has a control measure A, (g, . g, F1 — [0, +0). Since
Ry X ... X Ry is a countable family, we obtain a corresponding countable family
Ay =1,2,... of control measures. For 4; € &, define

— < l }“1 n(Al)
Aa(4y) = ; 21+ 4 ,(Ry,)
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If now N, e &#; and 4,(N,) = 0, then clearly ?(Ny, Ry, ..., R)) = 0 for each
(Ryy...,R) € R, x ... x B, Hence y(Ny, A, ..., A;) = 0 for each (A, ..., 4,) €
€, X ... Xx &¥; by Lemma 4. By symmetry in the coordinates there are similar
Aj’s for i = 2,...,d. Now clearly A; X ... X 4, is a control d-polymeasure for y.

Corollary. Let each 2;,i = 1,...,d, be generated by a countable family of sets.
Then each vector d-polymeasure y: 2, X ... x #y— Y has a control d-poly-
measure.

Proof. Without loss of generality we may suppose that £, is generated by a count-
able ring #;, i = 1, ...,d. For each i put R;, = |J R;, and take R;, €%, n =

RieRi o

=1,2,... so that R;,”R,,. Clearly 2, = §(®;) = U R;,n o(#;). According
n=1

to the previous theorem, for the restrictions y: (Ry, N (%) X ... X (Ry, 0
no(#,)) > Y, n=1,2,... there are control d-polymeasures 4, , X ... X A,. For

i=1,...,d and A;e Z; put
wa) = 3, 2 AulRian 4)
n=12"1 4+ ﬂ.,-',,(Ri,,,)
Then evidently 4; x ... X 4;: 2y x ... x 2, > [0,1] is a control d-polymeasure
for y.
We now give a few applications of control polymeasures.

Theorem 12. Let y: ¥y X ... x &£, > Y be a vector d-polymeasure, and let
Ay X ... X A4 be its control d-polymeasure. Let further A, A;, e ¥, i=1,...,d
and n=1,2,..., and let 2,(A;A4,,) > 0 asn— o for each i = 1, ...,d. Then

lim  y(4y,, ..., Aan) = Y(4y, ..., 4)) .

Proof. Suppose the contrary. Then there is an ¢ > 0 and integers npi=1,..d
and j=1,2,... such that n;; <n;;,; for each i =1,...,d and j=1,2,...,
and |Y(A1,n, o> Aama,) — YA, ... A7) > & for each j=1,2,.... Since
MAANA;,, ) = [r|ta — xA‘.’m_J di; » 0asj — oo for each i = 1, ..., d, there is
a subsequence {j,} < {j} and sets N;e &,, i = 1, ...,d, such that ,(N;) = 0 and
x‘i.n;,jk(ti) — x4,(t;) for t;€ T, — N, for each i = 1, ..., d. But then

VA1 o oo Aamg ;) = WAy ;= Ni)sooos Aing ;) (4, = Ny), ...
..., (A4 = Ng)) = ¥(4;, ..., 4;) by the absolute continuity of y with respect to
Ay X ... x Ayand by Theorem 1, a contradiction. The theorem is proved.

Theorem 13. Let y,:0(%#,) X ... X o(®,) > Y, k= 1,2,... be vector d-poly-
measures, and let (A, ..., A)) € 6(R,) x ... x o(®R,). Then there are A, e R,
i=1,...,d and n=1,2,...,such that

lim yk(Al,np ey Ad'”d) = 7k(A1’ ceey Ad)

for each k = 1,2, .... The analogue holds if o(;) is replaced by 6(%;).
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Proof. According to Theorem D in § 5 in [25] for each A;, i = 1,..., d, there is
a countable family of sets #; = 2, such that 4, € o(%}). Hence using also Theorem C
in § 5 in [25] we may suppose that each #;, i = 1,...,d, is countable. Now by
Theorem 11 for each of the vector d-polymeasures 7, k = 1, 2, ... there are control
d-polymeasures A, ;, X ... X Ay,. If we put

D S S T T PR R
S1251 + 4,(T)° e

and use Theorem D in § 13 in [25] and Theorem 12, we obtain the assertion of
the theorem. The case of §(#;) follows similarly as in Lemma 4.

s

Using the well known properties of regular Borel measures on locally compact
Hasudorff spaces, see [25] and [19], similarly as Theorem 13 we can prove

Theorem 14. Let T;, i = 1,...,d, be locally compact Hausdorff topological
spaces, and let y: 6(%,) x ... x 6(6;) > Y, k= 1,2,... be separately regular
Borel vector d-polymeasures. Then for each (Ay, ..., A)) € o(%,y) x ... x o(%,)
there are compact G, sets Co,;n€ 6o, i = 1,...,d, n = 1,2, ... such that

lim 'Vk(CO,i,np ey Co,d,"d) = yk(Al’ coey Ad)

foreach k =1,2,....

Corollary. If two separately regular Borel vector d-polymeasures y,: 6(€y) % ...

. x o(%,) » Y, k = 1,2, are equal on the products of compact Gs sets €y, X ...

. X b4, then they are identical.

Let us remark that in the preceding theorem and its corollary we may replace
o(%;) by (%), but also &, by %;, where %; denotes the family of all open subsets
of T; (then o(%,) is the o-algebra of all weakly Borel subsets of T; (recently often
called Borel), see [19]).

Let us now give further results on existence of control polymeasures. We shall
need

Definition 5. We say that a set function v: 2; x ... x 2, - [0, + 0] is o-finite,
if there are d-rings #; = #,, i = 1,...,d, such that 0(9’2) > 2, for each i, and
the restriction of v to 2] x ... x 2, is finite valued.

The next theorem may be proved in a way similar to the proof of Corollary of
Theorem 11.

Theorem 15. Let I': 21 % ... x #; - [9(X,...,X,; Y) be an operator valued
d-polymeasure separately countably additive in the strong operator topology,
let ;< P, i=1,...,d, be 5-rings such that o(?;) > P, for each i, and let T
have locally control d-polymeasures on #; X ... x P;. Then I has locally control
d-polymeasures on P, X ... X P,.

The following corollary is evident.
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Corollary. Let y:#; x ... x ;- Y be a vector d-polymeasure and let its
variation v(y,(...)) be o-finite on P, x ... x P,. Then y has locally control d-
polymeasures on P; x ... x P,.

Let us note that the previous theorem and the following two theorems are general-
izations of the assertions of Theorem 13 in Part ITI = [9].

Theorem 16. Let Y have a countable norming set, for example let Y be a separable
or be a dual of separable Banach space, see Definition 2.8.1 in [26], let y: Py x ...

. X @;— Y be a vector d-polymeasure, and let the scalar d-polymeasure y*y
have locally control d-polymeasures for each y* € Y*. Then y has locally control
d-polymeasures.

Proof. Let (Aj,...,A)€P; x ... x P, and let yyeY* n=12, ... be
a norming sequence for Y. By assumption for each n = 1, 2, ... there is a control
d-polymeasure A, X ... X Ag,i (A1 0 Py) x ... x (440 2) - [0, +0) for the
restriction yy: (4; N #y) x ... x (40 P;)> K. Fori=1,...,d and E;e 4;n
N 2, put

= 1 4.(E)
j’i Ei = B .
E) =2 2T 2in(A)
If NyeA;n 2, and A,(N,) =0, then clearly yfy(Ny, E, ..., E;) = 0 for each
n=12,... and each (E, ..., E))€(4,n P,) x ... x (4,1 P,). Hence
|¥(Ny, Es, ..., Ej)| = sup |yxy(Ny, Es, ..., E;)| = O for each (E,, ..., E;) e

(4N 2,) x ... x (4,10 2,). By symmetry in the coordinates, analogues hold
for i=2,..,d. Thus A; x ... x Az:(4;n2) x ... x (4,0 2)) - [0,1] is
a control d-polymeasure for the restriction y:(4; N 2y) X ... X (4340 P,) > Y.
Since (4;) € X 2; were arbitrary, the theorem is proved.

Using the result of K. Ylinen, see (Y) at the beginning, we immediately have

Corollary 1. Let Y have a countable norming set. Then any vector bimeasure
B: &#y x ¥, > Y has a control bimeasure.

Using Corollary of Theorem 15 we have

Corollary 2. Let Y have a countable norming set, let PPy X oo X Py~ Y be
a vector d-polymeasure and let v(y*y, (...)) be o-finite on Py x ... x P, for each
y* e Y*. Theny has locally control d-polymeasures.

Similarly as the preceding theorem one can prove

Theorem 17. Let each X;, i=1,...,d, be a separable Banach space, let I':
Py X .. x Py IDXy,...,X;; Y) be an operator valued d-polymeasure sepa-
rately countably additive in the strong operator topology, and suppose that
F(.)(xgs ooy Xg): Py X oo X Py—> Y has a control d-polymeasure for each
(x15.-» xs) €Xy x ... x Xy Then T has a control d-polymeasure.
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From this theorem and from the corollaries of Theorems 11 and 16 we immediately
have

Theorem 18. a) Let each #;, i = 1,...,d, be generated by a countable family
of sets, and let each X;, i =1,...,d, be a separable Banach space. Then any
operator valued d-polymeasure I': Py x ... x Py LD(X,,...,X; Y) separately
countably additive in the strong operator topology has a control d-polymeasure.

b) Let X, and X, be separable Banach spaces and let Y have a countable
norming set. Then every operator valued bimeasure B: ¥, x &, - L?(X, X, Y)
separately countably additive in the strong operator topology has a control
bimeasure.

Using the Fatou property of the supremation I', see Corollary 1 of Theorem 2,
similarly as Corollary of Theorem 11 we obtain our final.

Theorem 19. Let I': 2, % ... x 2, - L9(X,,...,X,;; Y) be an operator valued
d-polymeasure separately countably additive in the strong operator topology and
let T have locally control polymeasures on P, X ... x P,. Then its supremation '
(equivalently: scalar semivariation |I'|, semivariation I, variation (T, (...)))
has locally control d-polymeasures on o(2P,) X ... 6(2P,) in the sense of Definition 4.
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