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1. Preliminaries. All topological spaces considered in this paper are assumed to be
metric, and all mappings are continuous. Exceptions are made at a few places (e.g.
in § 3), where some other assumptions (which are explicitly stated there) are imposed
on the spaces.

A continuum is understood as a compact connected metric space. A continuum
that is locally connected and contains no simple closed curve is called a dendrite.
By a finite dendrite we mean a dendrite having finitely many end points. An arc A4,
with end points a and b, contained in a continuum X, is said to be free provided
AN { a, b} is an open subset of X. A connected set is called a graph provided it is
the union of a finite sets of points, called vertices, and of a finite number of free arcs,
called edges, so that both end points of each edge are vertices. All graphs considered
here are assumed to be equipped with a convex metric.

We denote by E(X) the set of all end points and by R(X) the set of all ramification
points of a space X, i.e., the sets of points of order 1 and of order greater than 2 in
the sense of the Menger-Urysohn theory of order (see e.g. [3], Chapetr I, 1, p. 99).
Observe that for every graph these sets are finite.

A continuum X is said to be the union of finitely many arcs if there are arcs
Ay, Ay, ..., A, in X such that X = (J{4;:ie€{1,2,...,n}}. Note that the union of
finitely many arcs need not be a graph: take the union of two arcs whose intersection
has infinitely many components. It may even look as the curve in the figure (see § 5).

2. Locally one-to-one mappings. Let two topological (not necessarily metric)
spaces X and Y be given. A mapping f: X — Y is said to be locally one-to-one
provided that each point x € X has an open neighborhood U = X such that the
partial mapping f|U: U - f(U) < Y is one-to-one.

The following statements are quite elementary. Their proofs are therefore omitted.

Statement 1. Let a locally one-to-one mapping f: X —» Y of a continuum X onto Y
be given and, for a point x € X, let U denote an open neighborhood of x in X as in
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the definition of the locally one-to-one mapping. Then for every closed set A = U
the partial mapping f| A: A - f(4) < Yis a homeomorphism.

Statement 2. Let two mappings f:X — Y and g: Y —> Z be locally one-to-one.
Then their composite gf: X — Z is locally one-to-one as well.

Proposition 1. Every image of a graph under a locally one-to-one mapping is the
union of finitely many arcs.

Indeed, observe that a graph can be expressed as a finite union of such arcs that
each of them is contained in an open set from the definition of a locally one-to-one
mapping. Using Statement 1 we get the conclusion.

The next proposition is a converse to Proposition 1.

Proposition 2. If a continuum is the union of finitely many arcs, then it is the
image of a finite dendrite under a locally one-to-one mapping.

Proof. Let a continuum be the union of a finite collection of arcs A4,, 4,, ..., 4,.
Obviously we can assume that no member of this collection is contained in the union
of the other ones and that 4;,; N (4; U ... U 4)) + Oforeveryje{1,2,...,n — 1}.
Put ¥, ={4;:j€{1,2, ..., n}}. We shall prove the proposition by induction with
respect to n. More precisely, we shall prove that
(*) for every natural number n there are a finite dendrite D, and a locally one-

to-one mapping f,: D, —» Y, of D, onto Y,.

If n = 1, the assertion obviously holds. So take a number n > 1 and let f,_,:
D,_, —»Y,_, be alocally one-to-one mapping of a finite dendrite D,_; onto the union
Y,_; of n — 1 arcs A4; contained in ¥,. Consider two cases.

Case 1. The intersection 4, N Y,_, is connected. Thus this intersection is an arc,
say y,ys3, and we can label the end points of 4, as y, and y, in such a way that
Y2 € y1y3 (and, consequently, y, € ¥,¥4)- Thus we have ¥, = Y, U y;¥, U y3¥a.
Take two points x, and x; in the dendrite D,_, such that f,_,(x,) = y, and
fu=1(x3) = y3. Define Dj, as the one-point union of D,_, and of an arc x,x, with x,
and x} identified, and let D, be the one-point union of D, and of an arc x3x, with x;
and xj identified. Extend f, - to a locally one-to-one mapping f,: D, — Y, in a natural
way: f, | Dy—y = fo-15 fa [ XX, and f, | X3X, are homeomorphisms onto y,y, and
Y3Y4, respectively.

Case 2. The intersection A, Y,_; is not connected. Then Y, = Y,_, U 4,
contains a simple closed curve C such that C\ Y,_, #+ 0. Takeapointce C\Y,_; =
< A, and let y, be the first (with respect to a fixed circular order on C) point of C
which is after ¢ and which belongs to Y, _,. Next, take a point y, € C\ 4, and let y;
be the last (with respect to the same order) point of C which is before y, and which
belongs to 4, (y; may coincide with y,). Denote by y; and y, the end points of A4,
Take a point xo € D,_; such that f,_;(x,) = y, and define D, as the one-point
union of D,_; and of a simple triod with the center x; and with end points xg, X1
and x,, where x, and x, are identified. Pick an interior point x, of the arc xox3
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and extend f,_, to a locally one-to-one mapping f,: Dn = Y, as follows: f, | D,y =
= foo1; fa | XoX2, [a | x,%; and f, ] x;X3%, are homeomorphisms onto the arcs
YoCY2, ¥2V3 and A, respectively, with f,(x;) = y;for i € {0, 1, 2, 3, 4}. The construc-
tion may even be simpler provided some of the considered subarcs of A4, are degener-
ate. Thus (x) is shown, and the proof is complete.

Combining Propositions 1 and 2 we get

Theorem 1. The following assertions are equivalent for a continuum X :
(i) X is the union of finitely many arcs;
(i) X is a locally one-to-one image of a finite dendrite;
(iii) X is a locally one-to-one image of a graph.

Corollary 1. The image of a continuum being the union of finitely many arcs
under a locally one-to-one mapping is the union of finitely many arcs as well.

Indeed, this follows from Theorem 1 and Statement 2, or by a straightforward
argument as in the proof of Proposition 1.

Remark that the class 4 of finite dendrites not only generates the class I' of the
unions of finitely many arcs (in the sense of Proposition 2), but it is even the smallest
one (in the sense of inclusion) generating I'. To prove this, note that if the image of
an element of I' under a locally one-to-one mapping is in 4, then the mapping is
(globally) one-to-one, i.e., it is a homeomorphism.

3. Local isometries, local expansions, local contractions. Relations between the
three kinds of mappings listed in the subtitle will be needed in a further part of the
paper. The relations are discussed in the present section, the whole contents of which
is due to A. Calka.

Let X and Y be topological (not necessarily metric) spaces, and let f: X — Y be
a mapping from X onto Y. If the spaces X and Y are metric with metrics dy and dy,
respectively, the mapping f is said to be (a) local isometry, (b) local expansion,
(¢) local contraction provided that for each point x € X there exist a neighborhood U
of x and a number M with (@) M =1, (b) M > 1, (c) 0 < M < 1, such that for
every two points y, z € U we have

() d(f(y): £(2) = M . dx(y, z) ,
(b) dl(f(y), f(2)) 2 M . dx(y, z),
(© dy(f(y), f(2)) £ M . dy(y, z),

respectively. Obviously, each local isometry or a local expansion is a locally one-to-
one mapping.
The following proposition is proved in [1].
Proposition 3. Let a continuous mapping f of a compact metrizable space X into
a compact metrizable space Y be given. Then the following assertions are equivalent:
(i) f is locally one-to-one;
(il) there exist metrics dy and dy on X and Y which are compatible with the topo-
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logies on X and Y, respectively, and such that f is a local isometry of (X, dy)
into (Y, dy);

(iii) for every metric dy on Y which is compatible with the topology there exists
a metric dy on X, compatible with the topology and such that f is a local
isometry of (X, dy) into (Y, dy).

Remark 1. The metric dy on X satisfying (iii) of Proposition 3 is determined
“locally uniquely”. Namely, if two such metrics dy and dy are given, then they are
locally identical in the sense that the identity mapping idy is a local isometry of
(X, dy) into (X, d¥) and of (X, dy) into (X, dy). For the proof see [1].

Proposition 3 remains true after replacing “f is a local isometry” by “f is a local
expansion”. To see this it is enough to multiply the metrics by adequate constants.
Thus as an immediate consequence of Proposition 3 we have

Statement 3. Let a locally one-to-one mapping f of a compact metrizable space X
into a compact metric space (Y, dy) be given. Then there exists a metric dy on X
which is compatible with the topology and such that f is a local expansion of (X, dx)
into (Y, dy). Moreover, for every number M > 1 the metric dy can be chosen so
that f is a local expansion with the coefficient M for all points x € X.

Similarly, we have

Statement 4. Let a locally one-to-one mapping f of a compact metrizable space X
into a compact metric space (Y, dy) be given. Then there exists a metric dy on X
which is compatible with the topology and such that f is a local contraction of
(X, dy) into (Y, dy). Moreover, for every number M with 0 < M < 1 the metric dx

can be chosen so that f is a local contraction with the coefficient M for all points
xeX.

In fact, by (iii) of Proposition 3 there exists a metric dy on X compatible with the
topology and such that f is a local isometry of (X, d¥) into (Y, dy). For a fixed
number M with 0 < M < 1 define a metric dy on X by putting dy(a, b) =
= dy(a, b)/M for all a, b € X and note that dy satisfies the assertion.

4. Applications. It follows from Proposition 3 that distinguishing between the
three kinds of locally one-to-one mappings (i.e. between local expansions, local
isometries and local contractions) is not interesting from the topological point of
view: all their topological properties are the same. Therefore, using Proposition 3
and Statement 3 we see that Theorem 1 can be reformulated in the following way
which gives several characterizations of continua that are unions of finitely many
arcs in terms of various kinds of mappings. Namely, we have

Theorem 2. The following assertions are equivalent for a continuum X:
1. X is the union of a finite family of arcs;
II. X is the image of a finite dendrite under either (i) a locally one-to-one mapping,
or (i) a local isometry, or (iii) a local expansion;
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III. X is the image of a graph under either (i) a locally one-to-one mapping,
or (ii) a local isometry, or (iii) a local expansion.
Note that we cannot add “or (iv) a local contraction” in Parts II and III of the
above theorem: see Remark 2 below (in § 5).

As an application of Statement 3 to Propositions 4 and 5 of [2] we obtain the
following assertions.

Statement 5. If a space Y is the image of a space X under a locally one-to-one
mapping, then card E(Y) < card E(X); in particular, if X is a graph, then the set
E(Y) of end points of the curve Y is finite.

Statement 6. A graph is the image of an arc (of a simple closed curve) under
a locally one-to-one mapping if and only if it has at most two (it has none, respec-
tively) end points.

To see that Statement 6 cannot be generalized to continua which are the unions
of finitely many arcs, consider the union of S = {(t7* cos t, 1 sin #): t € [2n, + 0)}
and of the arc [0, 1] x {0} (the union of S and of the arc [—1/3x, 1/2x] x {0},
respectively). Observe that the inverse set of the point (0, 0) should consist of at
least two (of at least one) end points.

5. Construction of an example. A continuum is said to be a regular curve in the
sense of the theory of order provided each its point has arbitrarily small neigh-
borhoods whose boundaries are finite sets. If a point p of a continuum has arbitrarily
small neighbourhoods with finite boundaries and, moreover, the cardinality of these
boundaries tends to infinity when diameters of the neighborhoods tend to zero,
then p is said to be of order w.

It is known that each connected union of finitely many arcs is a regular curve
([3], p. 179), whence we have by Proposition 2

Corollary 2. Every image of a graph under a locally one-to-one mapping is
a regular curve.

Remark 2. The inverse is not true, as can be seen from Statement 5: the one-
point union of countably many arcs with diameters tending to zero is a regular curve
and has countably many end points, so it is not the image of a graph under a locally
one-to-one mapping. Note also that this gives an example of a continuum which is
the image of an arc under a local contraction, but (in view of Theorem 2) it is not the
image of a graph under a locally one-to-one mapping.

K. Menger in [3], p. 179 gives an example of a curve that is the union of two arcs
and contains a point of order w. A modification of his example leads to a curve which
is the image of the interval [0, 1] under a local expansion, it is the union of two arcs,
and contains a point of order w (see [2], Proposition 3, p. 78). Further modification
shows that this result can be strengthened as follows.

Proposition 4. There exists a continuum such that:
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1) it is the image of the closed unit interval under a local expansion;

2) it is the union of two arcs;

3) it lies in the plane;

4) the set of all its ramification points consists of three countable subsets: of points
of order 3, of order 4 and of order w;

5) it has only one end point.

Proof. Let (x, y) be a point in the plane R* equipped with a rectangular coordinate
system. Put p = (0, 0), ¢ = (1, 1), ao = (1, 0), and, for each ne {1, 2, ...}, put

a, = (2—"’ 0) and b, = (z-n’ 21—[(n+1)/2]) ,

where [] denotes the integral part of a real number . Denote by ab the straight
line segment joining a and b in the plane. Let A, = ga, U aya; and, for each ke
€{1,2,...}, let
Agi—1 = Az—1bap—1 U bap— 103 U byiaz;
and
Az = 33141 -
Putting
A=A,uU{4,:ne{l1,2,...}} u{p}

we see that A4 is an arc in the plane joining p with g. Let A* denote the image of 4
under the symmetry with respect to the line y = x. So the continuum

Q=40 4*
is the union of two arcs, and ord,Q = .
Now for every i €{1,2,...} we consider three transformations of the plane onto

itself: a homothetic transformation s;, a parallel displacement ¢; and the composite u;
of the two previous ones, defined consecutively as follows:

sx,y) =(x.27%, y.279,
t(x,y) =(x+27Ly+279,
u(x, y) = ti(sx, ),
where (x, y) € R%. We see that u; is a contraction with the ratio M = 27%

Put Y = {p} U U{u(Q): i€{1,2,...}} (see the figure). Note that p e cl(U{u/(Q):
ie{1,2,..}}) and up) = (27,27 = u;,,(q), whence u(Q) u;,4(Q) is just
a one-point set. This implies that Y is connected. Moreover, Y is the union of two
arcs, {p} uU{u(4):ie{1,2,...}} and {p} U U{u(4*):ie{1,2,...}}, each of
which joins the points p and g. Thus Yis a continuum satisfying 2) and 3). We show
that it satisfies all other conclusions of the proposition.

In fact, note that p is an end point, and the points u(p), where i € {1, 2,...}, are
of order w in Y. The other part of 4) can be easily seen from the construction.

To show 1) let X = pa,. Thus X is the unit segment containing the points g, for
each n e{l, 2, } and having a, as its midpoint. Define an auxiliary mapping
g: pa; — A from pa, onto A as follows: g(p) = p; 9(a1) = 4, 9(a,) = a,_, for each
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ne{2,3,...}; and we assume that g | @48+ 12 848,41 = A,y is a linear surjection
for each ne {1, 2, } Hence g(pal) = A. It is quite elementary to verify that g
is a local expansion with the constant M = 3/2.

Let h,: a,a,,, — pa,, where n € {1, 2, }, be a linear, order preserving mapping.
In particular, h,(a,4,) = p, h,(a,) = a1, and we see that h, expands a,a,,, to pa,
with ratio 2".

To define a local expansion f: X — Y from X onto Y we note that X = pa, U a,a,
and define f separately on each of these two segments. Since pa, = {p} U U{a,a,+:
ne{l,2,...}}, we can define f| pay: pa; = {p} U U{u,(4): ne{1,2,...}} putting
f(p) = p and f(c) = u,(g(h,(c))) for any point c € a,a,+, where ne{1,2,...}. The
reader can verify in a routine way that this definition is correct, f is continuous and
maps pa, onto the arc {p} U U{u,(4): n€{1, 2,...}}. Observe that, since h, expands
each interval a,a,,; 2"times while u, is a contraction of the plane with ratio 27", the
mapping f | pa, acts as g does; so we conclude that f | pa, is a local expansion with
the coefficient M = 3/2.
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Now we define f | a;a,. Given a point (x, 0) € a,a, (i.e., such that 1/2 < x < 1)
we put f((x, 0)) = [f((1 — x, 0))]*, where the asterisk denotes the symmetry a =
= (x,y) > a* = (y, x) with respect to the line y = x. So f|aja,: a;a, > {p} L
U U{uo(4*): ne{1,2,...}} is again a local expansion with the same coefficient
M = 3[2. Thus f: X - Yis well-defined.

To inspect local expansibility of the mapping f it is enough to state that both
partial mappings f | pa, and f ] a,a, are local expansions and to observe that for
the point a; we can choose an open interval U of length 1/6 with a, as its midpoint,
which satisfies the condition mentioned in the definition of a local expansion. So we
have shown f: X — Yis a local expansion, and M = 3/2 is the coefficient for each
point of X. The proof is complete.

Thanks are due to S. T. Czuba for his criticism and many helpful remarks on the
topic of this paper.
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