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OPTIMAL STOPPING AND IMPULSIVE CONTROL 
OF ONE-DIMENSIONAL DIFFUSION PROCESSES 

ROBIN THOMAS, Praha 

(Received October 11, 1985) 

1. INTRODUCTION ^ 

In the optimal stopping time problem one looks for a stopping time в such that 
stopping at time 9 maximalizes the reward functional. There are two approaches to 
this problem. The first one, due to E. B. Dynkin, is based on the method of super-
harmonic majorants (cf. [7]). In [9] an analytical characterization of the reward 
function relying on this approach is given, it characterizes the reward function as 
a solution of the Stefan problem with free boundary. The Stefan problem seems not 
to be the right analytical tool, because the uniqueness of solution requires undesirable 
smoothness of the reward function. The second approach, the so-called method of 
penahzation, was used by A. Bensoussan and J. L. Lions [2] together with variational 
inequalities, which provide a suitable analytical characterization. Variational ine-
quahties are generalization of partial differential equations and they usually appear 
in problems of mathematical physics involving obstacles. Here we use basically the 
Dynkin's approach combined with the theory of variational inequahties. The ana­
lytical characterization is based on the observation that while the reward function 
is equal to the least supermedian majorant of the given function î , the solution of 
the variational inequahty equals the least supersolution which majorizes xj/. It remains 
to find suitable conditions under which the supermedian functions and supersolu­
tions coincide. This is done by lemma (5, 10). 

The impulsive control enables us to shift the trajectory in a random time by 
a random vector. It comes out that this type of control is closely related to the optimal 
stopping time problem (cf. [ l] and theorem (6, 3)). The analytical characterization is 
provided by quasivariational inequahties (cf. (7,3)) which are more general than 
variational inequahties and describe for instance the dam soak. 

Except of Section 3, where general Markov processes are considered, we work 
with diffusion processes in <^oc, ß} я R и { — oo, + со} determined by the second 
order ordinary differential operator 

Ä u[x) = a{x) w"(x) + b[x) u\x) 
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and boundary conditions 
Q, u{oc) - 7г,е̂ ^̂ > u\a) = 0 

Qßu{ß) + nßC^^P^uXß) = Ö, 

where a, b are continuous on (a, ß), a > 0 there and Q^, n^, Qß, Uß ^ 0. We impose 
no restriction on boundary behaviour of a, & and that is why we need the weighted 
Sobolev spaces. 

Section 2 contains preliminary material from analysis, in Section 3 the optimal 
stopping time problem is solved by means of probabiHty theory. Weighted Sobolev 
spaces are investigated in Section 4, Section 5 contains analytical characterization 
of the probabilistic solution found in Section 3. Sections 6 and 7 contain probabilistic 
solution of the impulsive control problem and its analytical characterization, respec­
tively. Lemma (5,10) is proved in Section 8 and a brief introduction to the theory of 
weak solutions of ordinary differential equations can be found there. 

I would like to express my thanks to Professor Petr Mandl for his kind guidance. 

2. PRELIMINARIES 

(2.1) Let Я be a real Hilbert space with scalar product [*, •] and norm || ' | | , let 
f e Я* and let <% •> be the duality between Я and Я*. Let с be a continuous and 
coercive bilinear form on Я , i.e. mapping H x H -^ R, linear in each variable and 
for which 

c{u, v) й const. ||w|| . \\v\\ 

const. IIM p s c{u, u) 

hold for every U,VEH. Let X с Я be a nonempty, closed convex set. The problem 
to find ueK such that 

c{u, t» — w) ^ <f, у — M> for any veK 

is called an (abstract) variational inequality. 

(2.2) Under the assumptions (2,1) the variational inequality has one and only 
one solution. 

Proof. See [5]. . 

(2.3) We shall derive an important property of the solution of (2,1) if the space Я 
is partially ordered (which is often the case with function spaces). Assume that 
a partial ordering ^ on Я is given such that (Я, ^ ) is a vector lattice (cf. [3]) and 
that for any v e H 

c{v^,v~) = 0, 

(2.4) An element v eKis called a supersolution if 

c{v, cp) ^ <f, (py for any (pe H , (p ^ 0 . 
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(2.5) Let the set К satisfy the following conditions: 
(i) If u,v EK then min (и, о) e К. 

(ii) If и еК, veH and v^O then и + veK. 
Then the solution и of (2,1) equals the greatest lower bound of all supersolutions 

from K. 

Proof. Setting V = и + <p in (2,1), where (/) ^ 0, we see that м is a supersolution. 
It remains to show that if w eiC is a supersolution then w ^ u. The element 

V = и — (w — u)~ = min (w, w) 

belongs to К by (i) and hence 

c(w, -{w - u)~) ^ <f, ~{w - i/)~> . 

Setting (p = (w — u)~ in the definition of a supersolution we get 

c{w, (w - u)~) ^ <f, (w - M)~> . 
Adding up 

0 ^ c{w — u,(w ~ u)~) = —c((w — u)~, (w — u)~) ^ 0 

by (2,3). Hence и -й w. щ 

(2.6) Let X ,̂ be closed convex sets such that К = C\K^ + 0. Let u^ (u respectively) 
be the solution of (2,1) with respect to the set K„ (K respectively). Then u„ -> и in H. 

Proof. Let V еК. Then 

const. | |w„p й C%, U„) й C[U,^, v) + <f, U„ - V} ^ 

й const. ||u,|| . !|t;|l + llfll . ||t.„i| + llfll . ||t;l| 

from where it follows that the sequence {w„} is bounded. We claim that u^ -> и in H 
weakly. For if not then there would be a subsequence {м,,̂ } converging weakly to 
a w* Ф w. For any v еК and к natural 

c(w„ ,̂ v - и J ^ <f, V - u„^} , 
going to the hmit 

c(w*, V — M*) ^ <f, и — M*> . 

By (2,2) и = w*, a contradiction. To finish the proof let us write 

const. IIM — Un\\^^ ^ c(u — u^,u — u„) = 
= c(u, и — u^ — c(uj,, и ~ w,j) s c(u, и ~ u„) — <f, и — w„> -> 0 

from the weak convergence of {u^}. Hence w„ -> м in Я strongly, щ 

(2.7) If for any и E H Э. convex set X„ is given, then the problem to find a м e К„ 
such that 

c{u, у — w) ^ <!, ü — M> for any V EK^^ 

'S called an (abstract) quasivariational inequality. 
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(2,8) Let X, Y be complete separable metric spaces, Ä Я X x Y a Borel set 
such that for any x eX 

{yeY:{x,y)eA} 

is a nonempty a-compact set. Then there is a Borel measurable mapping (p: X -^ Y 
such that (x, (p{x)) eAfor any xeX. 

Proof. This assertion is known as Uniformization theorem, see [8]. î 

3. PROBABILISTIC SOLUTION OF THE OPTIMAL STOPPING PROBLEM 

(3,1) Let {Yf,P^, 0 be a (time homogeneous) Fellerian, strong Markov process 
with respect to J^^ = a^Y^: s S t) with continuous trajectories and with values in 
a metric space X. Here С is interpreted as the termination time (cf. [4]). Let 

/ be a bounded Borel function on X, 
ф a continuous upper bounded function on X and 
у > 0. 

We assume that the function 

'd5 

is continuous for any t > 0. 
We introduce the reward functional 

J JO) = E^ 

and the reward function 
Jo J 

u[x) = sup J J в) 

the sup being taken over all stopping times в. Our aim is to characterize the function и 
and to find an optimal stopping time. 

(3,2) We say that a Borel measurable function v: X -^ (-co, +oo> is super-
median, if V is lower bounded and 

vix) ^ E4V[Y,) e-^%<, + Г V ( F , ) e-^^ d Л 

holds for all X eX and all stopping times т. 

(3,3) (i) / / V is supermedian, then 

const > — 00 . v{x) ̂  E^ f f{Y,)e-''dt ^ 

(ii) / / V is lower semicontinuous, lower hounded and 

v[x) ^ £" <y,)e- '^4,<, + r V ( ^ s ) e - ^ M 5 l 

holds for any xsX and any t e (0, со), then v is supermedian. 
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(iii) ^f {^j}jej i^ ^ countable system of supermedian functions, then the function 
V = inf Уу is supermedian. 

J 

(iv) If {Vn} is an increasing sequence of supermedian functions, then the function 
V = lim t?„ is supermedian. 

n 

(v) / / V is supermedian and x is the first exit time from an open set V, then the 
function 

g{x) = £-Г<У,) e-^' 1,<, + ^ Л ^ ^ ) e"^' d f l 

IS supermedian. 
(vi) If V is supermedian, т the first exit time from an open set V and ji ^ т an 

arbitrary stopping time, then 

й E^ïviY^) е - ' " l,<ç + r'f{Y,) е - " а Л . 

Proof. Assertions (i), (iii) and (iv) are clear. To prove (ii) note that 

Jo 
is a supermartingale with lower semicontinuous, lower bounded trajectories. Thus 
(ii) follows from the standard lemma on stopping of supermartingales. To prove (v) 
let us choose xeX, t > 0 and let 

a = M{s ^ t:Y,фV} , a' = inf {s ^t - г:¥,фУ} . 

er is clearly a stopping time, we claim so is a'. Since 

0"' = Ö-' l,>^/2 + Ö-' hut/2 = '̂  h>t/2 + Ö-' hut/2 ^ ¥ 

and [r — T ^ s] e J^s for s ^ ^t, it can be verified by standard methods (cf. [10]) 
that a' is indeed a stopping time. We have 

E^ïg{Y,) е-" l,<ç + Г ' /(У,) е"'' dsl = 

= Ё-Ге-^ '1 , , с£^Ту(У, )е -^Ч,<с + Г /(У,) e - ^ M s l l + Е" Г^ f{Y,)e-y'ds = 

= £^rt)(y^) е-''^''-" l^<ç + I /(У,) e-^(^-'' ds 1 e'''^ + £^ f" /(У,) e"''* ds = 

+ 
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+ E^[v{Y,) е - ' ' 1 <ç 1,.J + £^ Г fiZ) e-'^ ds ^ 

^ £*Г<УО e-^^ l,<ç + Г 'ДУ») e-^^ dsl = ^(x) . 

Now (v) follows from (ii). 
To prove (vi) let us write 

+ 1 /(y,)e-''dH = 

= £-Ге-^''1,<с£''''Г<У,)е-'"1,<с + Г"'/(У,) e-^'drl + Г^ 'д^г) e-'"dfl й 

й E'L[Y^) е-У" 1,<с + r V ( y , ) е - " dЛ . « 

(3.4) Le? g be an arbitrary function on X, A Я X. We denote by Rf the least 
supermedian function which majorizes g on the set A. Its existence, for g and A 
which are of interest, is proved in (3,5). Set 

E = {xeZ:P^[C = 0] = 0} , 

F = {xeZ:P^[C = Oj = 1}. 

Since {Yf, P^, 0 is assumed Fellerian, the set E is open in X. By 0 — 1 law (cf. [10]) 
E\j F = X. Moreover и '^ \j/ on E and it is easily seen that it is sufficient for the 
function Ф to be defined on E, the values of ф on F are irrelevant, 

(3.5) / / g is lower semicontinuous on E, then Rg exists and is lower semicon-
tinuous on E, 

Proof. Put 

V,, = supE-L_,(7 , )e-^4,<ç + r V ( î ; ) e - ^ ^ d 5 l . 

Clearly ÎIQ ^ i?i ^ ... , denote v = lim i?„. The functions v^ are lower semicon­
tinuous and hence v is lower semicontinuous. For t > 0 

vlx) 1 £ ^ k - i ( y , ) e-^' l,<ç + r V ( y . ) e-"^ dsl 
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and by passing to the limit 

v\ (x) ^ E^ïv{Y,)c-yn,,ç + rV( î^ . )e~^Msl . 

By (3,3ii) V is supermedian. 
Let z be a supermedian function satisfying z ^ g = VQ on E. Assuming z ^ y^.j 

on E we get 

z{x) ^ E4z{Y,)c-yn,^ç + r V ( î ' . ) e - ^ M 5 l ^ 

è £-L-i(7,)e-^4,<ç + rV(F,)e-^M5l 

hence z ^ v„ and by going to the limit z '^ v. This proves v = Rg on E. щ 

(3,6) (i) It holds 
u{x) = Rf{x) 

and в = inf{t: ¥^ф{и > ф}} is an optimal stopping time, i.e. u(x) = /ДО), 
(ii) If r ^ ё is a stopping time, then 

Proof. If V is supermedian and v ^ ф on E, then for any stopping time в 

v{x) ^ E^ïv{Ye)c-''4e.^ + Г^f{Y,) с-" dtl è 

è Е4Ф{Г,) е-"" l,<j + J ^^f{Y,) e- '̂ dt]. 

Hence г; ̂  M and thus « ^ Я|. By (3,5) i? | is lower semicontinuous on E and hence 
each of the sets {Кф — s > ф] is open in E. For e > 0 we define 

в, = тГ{пУ,ф{К^~а>ф}} 
and 

t;,(x) = £-ГА^(ГО О-У'^ 1,̂ <С + p^'fiY,) е-"' dЛ. 

We claim that 
(1) il/(x) ^ v,{x) + 8 for X e £ . 

Suppose (l) fails and put 
ß = sup {ф{х) - t̂ fi(̂ :)) > 8 . 

лгеЕ 

In fact 
i5=: 8ир{ф{х) -^a{x)), 

the sup being taken over En {R^ - s > Ф}, since 0̂  = 0 P '̂-a.s. for xeEn 
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n {R^ — S S Ф]- Thus we can choose XQG E n {R^ — в > ф) such that 

Ф{^о) - ^̂ г(̂ о) > ß - S^ 

On the other hand Ü̂  + j5 is supermedian by (3,3v) and majorizes ф on E, hence 

ЯЦхо) й v^xo) + ß< ф{хо) + 8 < i^^(xo), 

a contradiction, which proves (1). 
By (1) i;̂  + e is a supermedian majorant oîф опЕ and hence 

u{x) S K{x) й Vs{x) + 8 = £- ÏRtiYe:) 0-''' 4<ç + 

+ Г ' V ( ^ t ) e-^' drl + 8 ^ E^ r ^ ( 7 j e-̂ ^̂  le^^, + 
ГОгЛС - I 

+ /(y,) e"^' dM + 28 ^ w(x) + 2e . 

From the continuity of trajectories follows 9^/^ 9. Letting e -> 0+ we get (i). 
To prove (ii) let т ^ Ö be a stopping time, we have 

R'^{x) ̂  £^U|(y,) e-^^ 1,<, + r'fiYt) ^''' ^Л ^ 

^ E^riA(Y,)e-^^ 1,<, + r V l l ^ O e - ^ ' d t l = u{x) = Rl{x) 

by(3 ,3vi ) . H 

4. WEIGHTED SOBOLEV SPACES 

(4Д) Let — o o ^ a < 0 < j ^ ^ +oo and let us consider a second order ordinary 
differential operator 

Lu{x) — a{x) u"{x) + b{x) u\x) — y u{x) , 

where a, b are continuous in (a, ß) and a is positive there. Put 

Jo«( is) 
We note that 

Lu{x) = a{x) e-̂ ^̂ >[ê (̂ > и'{х)У ~ у u{x) . 

(4,2) Let us introduce weighted Sobolev spaces corresponding to the differential 
operator L. If w, v are locally absolutely continuous functions in (a, ß), then u\ v' 
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exist almost everywhere and we may define 

(u,v) = u{x) v[x) —-- dx 
Ja Ф) 

rß rß QB(X) 

[и, v] = w'(x) v\x) ê "̂"̂  dx + 7 u(x) v{x) dx 
J« Ja Ф) 

provided the integrals make sense. Put 

W = [v:v is locally absolutely continuous in (a, ß) and [v, v] < 00}. 

W is clearly a linear space and [•, •] is a scalar product on W. Let us denote | | ' | | 
the norm induced by this scalar product. Let ^ denote the set of all infinitely 
differentiable functions with compact support contained in (a, ß). We define WQ 
as the closure of ^ in the topology of [W, || • ||). 

(4.3) We remark that [•, •] is the bilinear form corresponding to the differential 
operator L, that is 

[u, v\ = —(Lu, v) for V E WQ and и e W such that u' 

is locally absolutely continuous. 

Proof. For i; e ^ it is seen by integrating by parts, the general case follows from 
the density of ^, щ 

(4.4) For any interval <x, j> ^ (a, ß) the space W [^ <(x, уУ formed by restrictions 
of functions from W io <x, j ) is equal to the classical Sobolev space W^'^{x,y). 
Equality here means that the sets are equal and their norms are equivalent. 

(4.5) (i) W is a Hilbert space. 
(ii) For V e Wand x, у e (a, ß) 

\v{x) - v{y)\ й .-ва) d^ 
1/2 

holds. 
(iii) If V e W and hm v{x) == lim v(x) = 0, then v GWQ. 

Proof. Assertion (i) follows from (4,4) and from the completeness of L2(e^/fl), 
L2(e^). By Schwarz inequality 

\v[x)-v{y)\ = \ï\'(i)d^ 
iJy 

-ВЮ d^ 
1/2 

Jy 

2 QBU) ^^ 
1/2 

which gives (ii). Assertion (iii) will be proved under additional assumption that 
— 00 < a < ß < +00. The general case follows by transformation of the scale. 
Let V EW Ы such that ü(a + ) = v{ß—) = О, extend i ; to<( —cx),+oo>by letting 
v[x) = 0 for X ^ (a, ß). We may assume without loss of generahty that ( — 2, 2) я 
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(a, ß) and that v'{0) exists and is finite. Now we define for e < 1 

r v[x — s) f o r X G < — 0 0 , —8> 

v{x + s) for X 6 <e, oo> 
^e(^) = 

v{2s) - v{-2s) ^ _^ vj2±±j>{^ ^^^ x e < - e , e > . 
2г 2 

The function i;̂  belongs to Pfand its support is contained in (a, ß). By (4,4) v^ e WQ. 
Using (ii) we get 

+ c o n s t . £ < r K2e)-.(-_2e)|%Bc.)d^ 
J-J 2e I 

^ const ê ^̂ ^ dx + const. e ^ const. г 

and by continuity in L2 of functions from L2 follows 

< 

Г \ü\x) ~ ф ) Р e^(-) dx + f " ' \v{x) - v,{x)\' ~ а х й 
Ja Ja Ф ) 

Г |Î ; ' (^) - vXx - е)Р е̂ ^̂ > dx + { \v[x) - v{x - г)^ — dx -> О , 
Ja Ja 4 ^ ) 

Now it is easily seen that v^-y v'm WQ. The proof is thus complete, щ 

(4,6) Let Jf e~^^^^ dx < 00. Then 
(0 ^0 G ^oiP^^ ßy> i-^' there exists a constant К such that for any v GWQ 

holds V e ^o(^oc, ß} and 

sup |u(x)| й K\\v\\ . 
xeiot,ß> 

(ii) Wo = {v€ W: v{x+) = v{ß-) = 0}. 

/ / moreover 
rß QBM 

dx < 00 

then 

(iii) WQ ^<a, ß}. 

Proof. Assertions (i) and (ii) follow easily from (4,5). From (4.5ii) we have 

11/2 

Kx)| й 
J (I 

e-«^^> dx \\v\\ + \viy)\ й const ||i;|| + \v{y)\ 
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Multiplying by Q^^yya{y) and integrating with respect to y we get 

rß QB(y) Cß çfiiy) Cß сВ(у) 
Н^)\ \ -^ày ^ const ||г;|| - ~ dy + \v[y)\ -y-dy S 

г ICß pßCy) 11/21 
^ const 

and (iii) follows, щ 

(4,7) For every ve W there exists a constant such that 

const \\v\\ 

(•X 

e-*^^> dj; 
0 

+ 1 
1/2 

v[x) й const 

holds for all x e (a, ß). 

Proof. It follows from (4,5ii). щ 

5. ANALYTICAL CHARACTERIZATION OF THE PROBABILISTIC SOLUTION 

The purpose of this section is to prove theorem (5,11). 

(5Д) Consider a second order ordinary differential operator 

(2) Ä u(x) = a{x) u'\x) + b(x) u'{x) 

in <a, ßy, where a, b and В are as in (4Д), and boundary conditions 

(3) Q^ u(a) - 7г,е̂ ^̂ > w'(a) = 0 

(4) Qßu{ß) + nß^'^P^uXß) = 0. 

We say that a stochastic process is determined by the operator (2) and boundary 
conditions (3), (4) if (2) is its infinitesimal generator in the space {i? e ^<(a, ß}: v 
satisfies (3), (4)}. Let us recall briefly several known facts (see e.g. [6]). 

(5,2) If 
rß QB(X) Cß QB(X) Cß 

dx < 4- 00 , e ^̂ ""̂  dx < + oo 
Ja Ф ) Ja 

then the boundaries a, ß are called regular. If, in addition, 

Qß^O, Tiß^O, Qß + пр> О 

then operator (2) and boundary conditions (3), (4) determine a Fellerian strong 
Markov process Y — (Y^, P"", C) in X = <a, ß}. If in particular 

^a = 71^ = 0 , 
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then the trajectory vanishes after reaching the boundaries and E = (a, ß). If 

Qoc = Qß = ^^ 

then the trajectory is reflected by the boundaries. In this case С = + oo. 

(5,3) If 
r - Г ê  

— 00 < e ^̂""̂  dj; dx < + 00 , 
}<. Jo ^' ' 

1-0 B(x) Л0 /•/? B(x) (*x 
Î — e-̂ ^^> dydx=\ ^ — 

J a a[^)jx J o 4 ^ ) J o 

^^y^ d>̂  dx = + 00 , 

then a, ß are called ex/r boundaries. In this case necessarily 

^a = 71̂3 = 0 , ^̂  > 0 , ^^ > 0 

and under this assumption operator (2) and boundary conditions (3), (4) determine 
a Fellerian strong Markov process Y = (7^, P ^ C) in X = <a, Д>. 

(5,4) If 

Ja Jx « M 
dj; dx = 

(y) 
dy dx = + 00 , 

0 ^{y) 
then the boundaries a, ß are called inaccessible. In this case necessarily Q^ = Qß = 
— '^a — ^ß — ^ (i-^- no boundary conditions). The operator (2) determines a Fellerian 
strong Markov process (7,, P"", C) in Z = (a, j5), the boundaries are not reached. 

(5.5) We have considered only those cases when the boundaries are of the same 
type. But it is easily seen how the results can be adapted to those cases when the 
boundaries are of different type. 

(5.6) We shall define a Hilbert space V and a continuous bihnear form c(u, v) 
on F now. 

a) If the boundaries are either regular or exit and n^ = Пр = 0 then put V = WQ, 
c(w, v) = [w, v]. By (4,6) VQ ^o<a, ß> and V = [v e W: < a + ) = v{ß-) = 0}. 

b) If the boundaries are regular and n^ > 0, Пр > 0, then we may assume n^ = 
= Ttß = 1. Put V = W, c(u, v) = [w, u] + Q^ w(a) v[(x) + Qß u{ß) v[ß). The bilinear 
form c(w, v) is continuous by (4,6iii) and clearly coercive. By (4,6iii) F Q ^<a, ßy. 

c) If the boundaries are inaccessible we set F = PFQ and c{u, v) — \u,v\. In this 
case F Ç ^(a, ß) only. 

To the reader unfamihar with the notion of a weak solution of ordinary differen­
tial equation we recommend paragraphs (8,1) and (8,2) as a brief introduction. 

(5.7) Every v e Vis continuous on X, 

(5.8) Assume (3,1) and moreover that 
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Consider the following problem: To find и EK = {v e V: v '^ ф} such that 

c(u, V — u) "^ (f, V ~ u) for any v еК . 

This is a variational inequahty. If ф has a majorant in V, then X is a nonempty 
closed convex subset of Fand by (2,2) the problem has a unique solution. We are 
going to show that this solution coincides with Rf. 

(5,9) Under additional regularity assumptions on м, the problem (5,8) has the 
following interpretation: 

и is bounded, Q^ м(а) — я̂ е̂ "̂"̂  м'(а) ^ О, 
Lu g - / a.e., (Q, u[a) - 7c«ê ("> u\a)) (w(a) - ф{а)) = 0, 

и^ф, Qß u{ß) + 7Где«̂ >̂ u'iß) ^ 0, 

{Lu + / ) (w - lA) = О a.e., {Qß u{ß) + тг.е^^ )̂ иЩ {u[ß) - lA(iS)) = 0. 

We will not make this precise, because it is not needed in the sequel. However, this 
formulation is mor instructive than (5,8). 

(5Д0) From now on by a supersolution we shall always mean supersolution with 
respect to the variational inequahty (5,8) and by a supermedian function a super-
median function with respect to the Markov process described in this Section, 

(i) / / V is a supersolution, then it is supermedian. 
(ii) Every supermedian function is continuous on E. 

(iii) / / V is supermedian and has a majorant in F, then v is a supersolution. 

Proof. We postpone the proof until Section 8. ^ 

(5Д1) If Ф has a majorant in V, then the reward function и of the problem (3,1) 
coincides with the solution of the problem (5,8). 

Proof. It follows from (2,5), (3,6i) and (5,10). щ 

6. PROBABILISTIC SOLUTION OF THE IMPULSIVE CONTROL PROBLEM 

(6Д) Let У = (7„ P\ C) be the Markov process from (5,2), (5,3) or (5,4). Let 
/ be a non-positive bounded Borel function on X, 
у a positive constant, 
к a negative constant, 
d: X X Z -> < —00, /c> a continuous function. 

In case (5,6c) we assume moreover that d[x, y) -^ —oo for у -^ oc+ or у -^ ß—. The 
function d is interpreted as the reward of the jump from x to y. Let us assume that 
the process У is defined on the space Q of all left-continuous trajectories with right 
hand Umits which have only finitely many discontinuities on every bounded interval 
and let us denote by J^^ the cr-algebra of events up to time t on this space. If в is 
a stopping time then WQ denotes the trajectory t h^ œ[t + в). Impulsive control 
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is a sequence 
С = {01, Fi(x, 0)), 62, F2(x, a>),...} , 

where {ö j is a nondecreasing sequence of J^^-stopping times and F^hc, со) are 
J^0.-measurable distribution functions of probability measures with support con­
tained in X. A stochastic process (7^ P^, Q is called a controlled process (by impulsive 
control C) if for any ^ > 0, any x eX and any bounded Borel function t; on Z 

holds P"" — a.s., where 
9,+ i(co,J = 0,^i - 0 , , 
00 = 0, 
FQ = distribution function with unit jump at x. 

Let us note that (cf. [4]) 
C(a)e,) = с и - Ö,. 

The impulsive control С is called admissible if 

^ ^ e - ^ ^ a , , < ç - ^ 0 . 

To an admissible control we assign the reward functional 

J/C) = Ê^ Г J U{Y,„ y) F/^dy, CO) e-^"' 1«,<̂  + {'f{Y,) e"'" аЛ . 

J^C) is well defined with the possible value —00. Our aim is to characterize the 
reward function 

u(x) = sup Jx{C) , 

the sup being taken over all admissible controls, and to find an optimal impulsive 
control. 

(6,2) Let us denote, for x eX, 

M v{x) — sup [viy) + d{x, y)] F{dy) , 

where the sup is taken over all probability distribution functions F concentrated 
on X. The operator M satisfies: 

(i) M is order preserving. 
(ii) / / v^ / V, then Mv^ -^ Mv pointwise. 

(Hi) If v is continuous and bounded on X, then there exists a Borel measurable 
mapping x\-^F^ such that 

Mv{x) [v[y) + d{x, 3;)] Fj^dy) 
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and F^ is a distribution function of a probability measure with support contained 
in X. 

(iv) Mv is continuous and upper bounded on E whenever v is continuous and 
upper bounded on E. 

Proof, (iii) follows from(2,8) and properties ofd. The other assertions are clear. ^ 

(6,3) There exists a least supermedian function и satisfying и ^ Mu on E. 
This function is continuous and bounded on E and it is the only continuous and 
bounded function on E which satisfies и = i?j^„. Moreover 

u{x) = sup JjC) 
с 

and there exists an optimal impulsive control, i.e. an admissible impulsive control 
С such that u{x) = Jj^C). 

Proof. Let us define 

j e " ' ' d ^ 
Jo 

and 
• \ > 

«« = ^Mu.-. {n = 1 ,2 , . . . ) . 

From (3,3i) follows м̂  ^ MQ. We claim that 

Mo ^ Ml ^ . . . ^ 0 . 

Indeed, all м„ are clearly nonpositive and assuming M^_I ^ м„ we have from(6,2i) 

Since M„ is the least supermedian majorant of M M „ _ I , we have м„ ^ M„+I as claimed. 
We denote и = lim м„, и is supermedian by (3,3iv) and м ^ Ми by (6,2ii). We claim 
it is the desired function. Let z he з, supermedian function satisfying z ^ Mz on E. 
We may assume that z ^ 0 for we can take function min (z, 0) otherwise. By (3,3i) 
z ^ Mo, let us assume z ^ M^_I on E. By theorem (3,6i) which can be used according 
to (5,10ii) and (6,2iv) 

uXx) = sup £-Гмм„_1(У,) e-^^ l,^^ + Г'fiY,) e"^^ d r l (xeE) 

and hence by Mu^^^ ^ Mz 

u„{x) й sup E^ \Mz{Ye) e"^^ 1,<^ + f ' f{Y) e"^^ d r i {x e E) . 

Again by (3,6i) the right hand side equals the least supermedian majorant of Mz. 
Since z is a supermedian majorant of Mz it follows м„ ^ z and by a limit passage 
и S z on E. This shows that и is the least supermedian function satisfying и ^ Mu 
on E. Letting w -> oo in the definition of м„ one obtains м = R^^^. The continuity 
of M follows from (5,10ii), the boundedness from Мо ^ м ^ 0. 

285 



Let now w be a continuous bounded function on E satisfying и = JR^„ and let 
С = {Oi, Fi(x, со)} be an admissible impulsive control. We have by supermedianity 
of и and the fact и ^ Mu 

Integrating, using the definition of a controlled process and the definition of M we get 

и J of л с J 

for f = о, 1,... . Adding up for f = 0, 1, ..., n ~ 1 

u(x) è f ^^ rp (y , , , y) F,{dy, (o) e-^"' l«,<ç + Г ' / ( F , ) e"^' ёЛ + 

letting и -+ 00 and using the admissibility of С we obtain 
M(X) ^ Л^С) . 

For the converse inequality let us define an optimal impulsive control. Put 
^0 = 0 , 

ö,.+ i = inf {f è ê,: м(У,) = MM(7,)} , 

Pi+ i(y, со) = Руе^^Ху) (see (6,2iii)), 

Theorem (3,6i) yields for i = 0, 1,... 

u{y) e-^«' l,,<ç = E" Гмм(У«) e-^« 1<,<с + Г'f{Y,) e""' dfl e"^«' l^.^^, 

where 9 = inf {( ^ 0: и;̂ У,) = Мм(У,)}. Integrating and using the definition of 
a controlled process we get for j = 0, 1, •.. 

<: + E^uiy) e-^«' Pldy, CO) l,...ç = ^-Гм«(Ув,„)е-^«- 1,,̂ ^ 

Adding from 0 to n — 1 and using the definition of M one obtains 

'Of + l A Ç 

fiY,h ^'dt]. 

u{x) = ^ ^ Г | J<y , „ y)P/dy, со) е--"' 1,,,^ + r ' V ( F , ) e-^' df 

+ f«(j)^„(dy,û))e-^^'-l,,_,çj. 
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Using the boundedness of и and / and the fact that d{x, y) '^ к < Oitis easily seen 
that 

hence Ô is an admissible control. Letting и -> oo we get 
u{x) = J,{C) . 

This completes the proof. ^ 

7. ANALYTICAL CHARACTERIZATION 

(7Д) Let the notation and assumptions be as in (5,6), (5,8) and (6,1) and let us 
assume that Mv is upper bounded for any veV. This requirement is clearly satisfied 
when F consists of bounded functions, which always happens in cases (5,6a), (5,6b) 
but only sometimes in case (5,6c). If V contains unbounded functions then the 
boundedness of Mv can be achieved by assuming 

d{x, y) %-^(^>d5 
0 

• 1 / 2 

+ 1 ] -^ - 0 0 

for j^ -> a+ and y -> ß— uniformly in x e (a, ß). This is a strengthening of d{x, y) -> 
-^ — 00 and its sufficiency follows from (4,7). 

(7.2) Consider the problem: 
To find ueV such that и ^ Mu and c(u, v — u) ^ (/, v — u) for any v e V, 

V ^ Mu. 
This is a quasivariational inequality in the sense of (2,7). 

(7.3) Assume (7,1). Then the problem (7,2) has a unique solution and this solution 
coincides with the reward function of the optimal impulsive control problem (6,l). 

Proof. The function и = R^^ from (6,3) satisfies u ^ 0 and hence has a majorant 
in V. Thus w is a solution of (7,2) by (2,5) and (5,10). Conversely, if м is a solution 
of (7,2), then и = R^^^ by (2,5) and (5,10). The function Mu is upper bounded by 
assumption (7,1), hence it follows that и is bounded. Since и is continuous on E 
by (5,7) we may use (6,3) to establish u{x) = inf Jx{C). This shows also the uniqueness 
of solution of (7,2). Щ 

8. APPENDIX 

(8,1) Let G Я X be open in X, veV, let f e L2{Q^ I a) be bounded and let с be as 
in (5,6). Suppose that 

c{v, (p) = (/, <p) for any <peV, supp cp я G . 
Then 

(i) v' is locally absolutely continuous in G and a{x) v'\x) + b[x) v'(x) — y v[x) = 
= —f{x) ci-e. in G, 
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(ii) if осе G then v satisfies (З) of (5,1), if ß e G then v satisfies (4) о/(5Д). 

Proof. Let us choose <x, y> ^ G n (a, ß) arbitrarily. Since a{C) > const > 0 
in {x, УУ there exists a function w with w' absolutely continuous in <x, y ) such that 

a{è) w\^) + b{i) wXO ~ У Ч« ) = - Л О a-e. in <x, >;> , 

v{^) = w{i) for f G X \ ( x , j ; ) . 

Multiplying the a.e. equation by <p{0 (e^^^7^(0)' where <peV, supp ^ e <x, ;;>, 
integrating and using (4,3) we get 

(/. <p) = {-Lw,<p) = [w, ф] = c(w, <p) . 
Hence 

c(t; - w, ^ ) = 0 for any <peV, supp <p я <x, y> . 

Taking ^ = Ü — w we see that 

c{ü — w, V — w) == 0 . 

Hence V = w and (i) is proved. The assertion (ii) is clear in cases (5,6a) and (5,6c). 
Let (5,6b) hold and a e G, choose <peV with supp <p Ç <a, O) and ^(a) = 1. Then 
by(i) 

0 = c{v, <p) - (/, <p) = - \ ' b'''' Am' <pi^ ^^ -^ 

rß ^Bi^) rß pB(^) 

+ у v{i) <p{^)-- d^ - / ( 0 cp{^) —г d^ -
Ja «(0 Ja 4Q 

- ê ^̂ ^ ü'(a) (p(a) + ^^ v{oc) (p{(x) = Q^ v[a) - n^ ê ^̂ > i;'(a) . 

Hence V satisfies (3), the assertion concerning ß is analogical, и ' 

(8.2) The problem: 
To find и e V such that 

c{u, v) == (/, г;) for any veV 

is equivalent to the following one: 

To find и bounded with first derivative locally absolutely continuous such that 

Lu = —f a.e. and и satisfies (3), (4) . 

Proof. This is a special case of the following technical lemma, в 
(8.3) Let G ^ X be open in X, let v e V be bounded and let f e L2(e^/a) be 

bounded. Consider the following problems: 

r w bounded with w' locally absolutely continuous in G 
a{x) w\x) + b{x) w\x) — y w{x) = ~f{x) a.e. in G 

(5) \ Q^ w(a) - n^ e^^«>w'(a) =0 if aeG 
Qßw{ß) + nßC^^P^w'(ß) = 0 if ßeG 
w{x) = v[x) for xeX\G 
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a n d 
. V { w еК = {z eV: z{x) = v(x) for XGX\G} 
^ ^ (̂  c(w, z — w) ^ (f, z — w) for any ZGK . 

They both have a unique solution and these solutions coincide. 

Proof. The uniqueness of (5) is proved in [6], the uniqueness of (6) follows from 
(2,2). If w is the solution of (6), then, by (8,1), it satisfies (5) possibly except of the 
boundedness. Thus it remains to show w is bounded. It is sufficient to prove the 
boundedness of w in case (5,6c) only, since in the other cases every function from V 
is bounded. It is also sufficient to show the boundedness of w on (a, 0), so assume 
without loss of generality that (a, 0) ^ Q. Now we have to require familiarity with 
[6, Chapter I I ] . It is shown there that the general solution of (5) is of the form 

w(x) = c+u+(x) + c_w_(x) + WQ{X) , 

where c+, c_ are constants, w_ and WQ are bounded on (a, 0) and u+ satisfies 
Л0 Л0 B(s) 

i4x)^y\ u4s)---^dse-^^yUy 
JxJy Ф) 

(see [6, Chapter II, formula (17)]). Using the definition of an inaccessible boundary 
it easily follows that u+ does not satisfy (4,7). Hence c+ = 0 and w is bounded 
by results of [6]. Щ 

(8.4) If V is a supersolution, then it is supermedian. 

Proof. If ü is a bounded supersolution, then v is continuous by (5,7). We denote 
w = R^ and G = {w > v}. The set G is open in E by (3,5). From (3,6ii) follows that 
for any xeX and any U ^ G open in G 

w{x) = £"Tw(7,)e-^M,<^ + Г ' / (7 , )e -^ 'dr~ | , 
L Jo J 

where т is the first exit time from U. This is known to imply (cf. [4, Chapter 15]) 
that w satisfies (5). By (6) 

c(w, Ü — w) ^ (/, Î; — w) 

and using the fact that y is a supersolution we get 

Ijw — u p ^ c{w ~ V, w — v) s 0, 

Hence w = V and v is supermedian. If v is not bounded we take functions >v„: = 
= RLn^Rv=^' m 

(8.5) / / V is supermedian, then it is continuous on E, 

Proof. See [4, Chapter 15]. щ 
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(8,6) If Î; is supermedian and has a majorant in F, then it is a supersolution. 

Proof. By (2,2) there exists one and only one function w e F such that 

w ^ ü and c(w, z — w) ^ {f, z — w) for any zeV, z ^ v . 

The function w is continuous by (5,7), let us denote G = {w > v}. Since v has 
a majorant in Fit is continuous on the whole X, hence G is open in X. If cp e Fand 
supp <p я G, then for e small enough w + ecp > v, hence 

c(w, ф) = ( / , cp) . 

This identity holds for all functions from the closure of {(p e V: supp ф ^ G}, 
hence (6) by (4,5iii). From (5) follows by well-known methods 

w{x) = E4W{Y;) e-^^ l,<ç + Г /(7,) e-̂ ^ dt^ , 

where т is the first exit time from G. We have for x e G 

0 > v{x) - w{x) ^ E%{v - w) (7,) e"̂ ^ l,<ç] = 0, 

a contradiction, which shows v = w and thus i; is a supersolution by (2,5). щ 

This completes the proof of (5,10). 
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LIST OF SYMBOLS 

A, L . . . second order ordinary differential operators ... (4Д), (5,1) 
a, b . . . coefficients of A, L.,. (4,1) 
в . . . ( 4 Д ) 
С . . . impulsive control 
с . . . continuous coercive bilinear form ... (2,1), (5,6) 
^(a, ß) . . . the space of continuous functions on (a, ß) 

^<a, ßy . . . the space of continuous function on (a, ß) with one-sided limits 
at a, ß 

^Q{(X, ßy . . . the space of continuous functions v on (a, ^) with v[a + ) — 
= v[ß-~) = 0 

d . . . (6,1) 

^ . . . the set of all infinitely differentiable functions with support con­
tained in (a, ß) 

E . . . (3,4) 
E"" . . . expectation with respect to P"̂  
Fi{x, ai) . . . #'ö.-measurab1e distribution function 
f . . . continuous Hnear form on Я ... (2,1) 
/ . . . bounded Borel function on X 
J^j . . . nondecreasing system of d-algebras 
Я, [ • , • ] , II* ||, <•, •> . . . Hubert space with scalar product, norm and duahty 

pairing . . . (2,1) 
Я* . . . the space of continuous linear forms on Я 
J^ . . . reward functional . . . (3,1), (6,1) 
K,Kj^ . . . nonempty closed convex subsets of a Hubert space 
к . . . negative constant 
L2(w) . . . 1̂ 2 space with weight w, i.e. 

[v: Jf |i?(x)|^ w{x) ex < oo} with norm ^ ( J f lt;(x)|^ w(x) ax) 

M . . . (6,2) 
R . . . the set of real numbers 
< . . . ( 3 , 4 ) 
supp V . . . support of the function v, i.e. the closure of [x: v[x) Ф 0} 
(w, D), [W, Ü] ... (4,2) 
V,W,Wo . . . weighted Sobolev spaces (4,2), (5,6) 
W^'^ ,.. classical Sobolev space of square integrable absolutely continuous 

functions with first derivative square integrable 
X . . . metric space in Section 3, otherwise either Z = <a, ĵ > or X = (a, ß) 
У = (7p P"", C) • • • Fellerian, strong Markov process with continuous trajectories . . . 

. . . (ЗД), (5,2), (5,3), (5,4) 
(7p P"̂ , ^) . . . controlled process .. . (6,1) 
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y 
Ф 
0, т, (J, а' 

Öa» ^aî ОД» ^ß 

сОе 

G 

interval in ^ u { — ос, + oo} 
positive constant 
continuous bounded function on X 
stopping times 
coefficients in boundary conditions ... 
the trajectory t н-> co[t + Ö) ... (6Д) 
the characteristic function of the set A 
imbedding of function spaces ... (4,6) 
end of proof 
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