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1. Introduction. We consider quasilinear hyperbolic systems of differential-
functional equations in the Schauder canonical form

(1) % Ay y, (5. 3) [‘l—” + 3 oulx, v, 26, 9), (V) (x, ) a—au—)] -
i=1 ox k=1 Vi

= fi{x, y, 20x, ), (V2) (%, ) »

(x,y)e D, =1, x R", i = 1, ..., n, with initial data
(2) z(x,y) = y(x,y) for (x,y)eD? =12 x R"™,
where I, = [0,¢], I?! = [-1.0], 120, y=(y;,...p)€R™ m=1, z/x,y) =

Il

(21, ), -5 2%, 9))s (V2) (x, ) = ((V12) (x, ), - (Vi2) (%, ), 9(2, )
= (11(%, ¥), - nlx, )

In this paper we shall consider the existence and uniqueness for local generalized
solutions of problem (1), (2) in the sense “almost everywhere” (that is, the solution
possesses partial derivatives a.e. and satisfies system (1) a.e.).

Generalized solutions of quasilinear eqi]ations were first investigated by Hopf
[11]. In papers [5], [6], [10], [11], [14] and [16] by a solution of quasilinear
equations a function satisfying a certain integral identity is understood. This kind
of definition made it possible to get a global solution of initial problems by dif-
ference or small parameter methods.

Generalized solutions of nonlinear partial differential equations of the first order
in the class of Lipschitz continuous functions were considered by Kruzkov [15].

If the functions ¢;, and f; in (1) do not depend on the last variable then system (1)
reduces to a quasilinear hyperbolic system in the “second canonical”” form which has
been studied in a large number of papers by various authors. We refer here in particular
to the papers by L. Cesari [7], [8], P. Bassanini [1]—[3] and M. Cinquini-Cibrario
[9]. Quasilinear hyperbolic systems in the “first canonical” form (see book [17]
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with rich bibliography) are particular cases of system (1) A system of differential
equations with a retarded argument (cf. [13]) and a few kinds of integrodifferential
systems (cf. for instance P. Bassanini, M. C. Salvatori [4]) can be obtained from
system (1) by specializing the operator V (see Section 6).

Nonlinear hyperbolic differential-functional equations in the C! class were con-
sidered by Z. Kamont [12].

The method used in this paper is based on the Banach fixed point theorem and it
is close to that used in [7] (see also [1]).

2. Preliminaries and assumptions. We denote by ||y||,,, = max |yk] the norm of y
1<k=m

in R™ and by “z

, = max |z;| the norm of z in R". If B =_[l;,»j], i=1,..,n,j=

1<izn
=1,...,m, is an n x m matrix then B; = (b, ..., b,,). Let @ denote the interval
[-9,Q]" = R", Q> 0, and let a, be a given positive constant.

Let J denote the class of all continuous functions y: D? — R" for which there are
constants w, 4, 0 < w < Q, 4 2 0, such that for all (x, y), (x, j) € D? we have

”'))(X, y)"n = , ”Y(X, y) - Y(xa y)”n é A”y - .)_}”m -

For every ye J let us consider the set K, of all continuous bounded functions
z: D, = (I? UI,) x R™ — R" satisfying the following conditions:

(i) z(x, y) = ¥(x, y) for (x, y)e D?;

(ii) there are a constant Q > 0 and a function p:I,, > R, = [0, o), p € L,[0, a,],
such that for all (x, y), (x, 7), (X, y) € D, we have

I, 9l = 2,

lz(x, y) = 2(x, P = QY = 7]

J-i u(t) de

x

l2x, ¥) = =% y)||. <

>

where the constant Q and the function u will be defined by (4), (5).

Note that K, is a closed (convex) subset of the Banach space (C(D,) n L,(D,))"
with the norm |z|, = sup [z(x, y)|..

We denote by K the ggt of all functions z: D, - R" satisfying the following con-
ditions:

(i) =+, y): 1,, > R" is measurable for every y € R™;

(ii) z(x, *): R™ —> R" is continuous for a.e. x €1,;

(iii) |z(x, y)|l. £ @, (x, y) € D,.

Assumption H,. Suppose that

1° VK, K, j=1,..,1

2° there are constants q;, e; > 0, j = 1, ..., [, such that for all ze K, and a..

L3
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in I,, we have

. (V) (x, )] € ajlz(x, )] +e5, j=1-1,

[[Z(X, .):I] = Ssup "Z&&—‘f\/i’j)“v , XE lao 5
y.geR™ ly = 7llm

3° there are constants M; > 0, such that for all z,z € K,, y€ R" and a.e. xel,,
we have

©) 1(Vi2) (x, ») = (Vi2) (x. »)]|s = Mj|z - 2|
where | z||, = ng Iz, ¥)|lu Dy = (12 U 1) x R™

=11,

Remark. It follows from (3) that V; satisfies the following Volterra condition:
if z,ZeK, and z(t,y) = Z(t, y) for te[—1,x], yeR"™ then (V;z)(x,y) =
= (VJE) (x’ y)a _/ = 1, . l.

Assumption H,. Suppose that

1° the matrix function o(-, y, z, U) = [eu(-, ¥, 2, U)]: I, > R™, i=1,...,n,
k =1,...,m, is measurable for every (y,z, U)eR™ x Q x Q, where U =
= (ug, ..., u)); o

2° g(x, *): R™ x @ x Q' - R™ is continuous for a.e. x €I, ;

3° there are functions b, I: I, = R, b, 1€ L [0, a,], such that for all (y, z, U),
(7.2, 0)eR" x @ x @', i=1,..,nand ae. in I, we have
lei(x, v, 2, U)|n < b(x),

”Qi(x7 Y, z, U) - Qi(xa jj’ Z’ U)I m é

< (@l = 3l + I = 2+ 5 oy~ 71,
i=1,..,n U=(i,... ).

3. Bicharacteristics. Let K, be the set of all systems h = [hik], i=1,...,n,
k=1,...,m, of continuous functions hy:4, =1, x I, x R®™ - R, for which
there is p, 0 < p < 1, such that

h(x,x,y) =0, (x,y)eD,,

f b(1) dt

4
1 x, ¥) = hil & %, P)|w < Py = 7.0
for all (& x, ), (& x, ), (&, x, J) €4 i = 1, ...y m.
The function & is uniformly bounded in 4,, since

”h;(é’ X, y) - hi(E’ X, y)“m é

)

"hl(és X, y)”m = ”h!(f, X, Y) - hi<xa X, y)”m é Ba :J b(x) dx N i= 1, R (2
0
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We denote by K, the set of all systems g =[g,, i=1,...,n, k=1,...,m,]
defined by gik(éa X, )’) = hik(é) X, Y) + Yo i= 1, P (N k = 1, R (B
Thus, for all (¢, x, y), (&, x, J) € 4, we have
||g'(€’ X, y) - gil\'é! X, y)"m é (1 + p) ”y - ,)_)”m H i= 13 SR

Note that K, is a closed (convex) subset of the Banach space (C(4,) N L.,(4,))™
with the norm |||, = max sup ||h,(Z, x, y)|
1 da

Z<iZn
Further properties of h and g are reported in [7], [1].
Let us define constants

1 1 a
qg=Y(0q; +e¢), M=21Mj, LazJ'l(x)dx, A=[1-L(1+Q0+q)]".
=1 i= 0

Lemma 1. If Assumptions H, and H, are satisfied and a, 0 < a < a,, is suf-
ficiently small and such that ‘
L(1+p)(1+Q+q)<p and L{1+Q+4q)sk<l1,
then for every fixed z € K, the transformation T, = (T}, ..., T}): Ko — K, defined
by
(Tzlht) (é, X, }’) = - J\ Qi(ty gi(t9 X, y)’ Z(t’ gi/\t’ X, y))’ (VZ) (ta gi(ta X, }’))) dt
4
(&, x,y)€d,, i =1,..,n, has a unique fixed point h[z] e K,. Furthermore, for
all z,z e K, we have
lalz] = glZ]]la = |la[z] = h[Z][a < ALL(1 + M) |z — 2],
It means that z — h[z] (z —» g[z]) is a continuous map of K, into K, (K, = Ko).

The proof of this lemma is similar to that of Lemma 1 [13] (cf. also [7]); we omit
the details.

4. Further assumptions and lemmas. If D = [d;;], i,j=1,...,n, is an n x n
matrix then |D|| = max |d;].
1=ijsn

Assumption H;. Suppose that

1°A=[A;]:I,, x R" x Q- R™, i,j = 1,..., n, is continuous;

2°detA =% > 0inl, x R™ x Q for some constant x;

3° there are constants H > 0, C = 0 and a function p:I,, » R,, pe L,[0, ao)s
such that for all (x, y, z), (x, 7, 2), (X, y, z) € I,, x R™ x Q we have

|Alx,y,2)| s H,
[4(x, v, 2) = A(x. 7,2)] = €[y = 3l + |2 = 2].1,
JA(x. y.2) = A%, 3. 2)| < j pl1) dt

X

We denote by o;; the cofactor of 4;; in the matrix A4 = [4;;] divided by det 4,

)
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ora;; = (A7");;. Sincedet A = 4 > 0, relations 3° of Assumption H, yield analogous
relations for the matrix o = [«;;]. Thus, there are constants H', C’ and a function

p':l,,—> Ry, p'eL0,a,], such that for all (x,y,z), (x, 7 2), (X, y,2)el,, %
X R™ x Q we have

o, . 2)| < H',

lx, v, 2) = alx, 3. 2) = CLy = 7l + |z = 2[l]

J' p(0) di].
Assumption H,. Suppose that

1° f(', v, 2, U) = (fi(+,y,2,U),....f,(*, y,2,U)):I,, > R" is measurable for
every (y,z,U)e R" x Q@ x QY

2° f(x,*): R™ x @ x Q' - R" is continuous for a.e. xel,;

3° there are functions n, [,:I,; — R, n, I € L;[0. a,], such that for all (y, z, U),
(7,2, U)eR™ x @ x Q'and a.e. in I,, we have

I£(x, », z, U] £ n(x),

Wi a ) = S5 52 O S K T = 5l + 2 = 2l 3 oy - ],

where U = (y, ..., 1,);

"a(x, Vs :) - d{f, Y, Z)' é

4° the vector function y: D® — R" belongs to J.
Now we consider the transformation F defined by

_ [0, p) + [44(x, p) + 4a(x, y) + 45(x, y)] alx, y, 2(x, ), (x,y)€ D,,
(F2) (x, ) = {v\(x, y), (x,y)e D?,

where o = [a;;], i,j =1,...,n, 4; = (4y;,...,4,;), j = 1,2,3, and

Aa(x, y) = L £t a4t %, ¥), 2(t, 948, %, ), (V2) (6, 91, x, y))) di,

4fx.3) = T Au(0. 90, %), 20, 00, % ) [1(0. 80, . ) -

— (0, g4(x, x, y))] ,

A(xy) = j ¥ (@4t 0.t ). 20, 01,5 DI (2t 00t %, ) -

ok=
=20, 9(x, x, y))]dt, s=1,...,n, (x,y)eD,,
and g = g[z] is defined in Section 3 by the fixed points of T}, z € K,

Lemma 2. If Assumptions H, —H, are satisfied then for sufficiently small a,
0 < a £ ay, the transformation F maps K, into itself.
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Proof. By using the estimates (cf. [7])
J [dA(2, g1, x, y), (1, g1, x, ¥)))/dt], dt £ P, + mC(1 + nQ) B, + nC0,,
0

ldz(t, g{t, x, y)de], < u(t) + mQ b(1),
I2(2, 9,1, x, ) — %0, 9(x, x, )|, < 0, + OB,, s=1,...,n,
where

Pa:J p(x) dx, 0,,=J u(x) dx, L,a='[ I(x) dx,
0

0 0
we get

a

[4,(x )], < j n(x) dx = N,

0

|42(x, y)], < nHAB,,
|43(x, y)||. £ n(P, + mC(1 + nQ) B, + nCO,) (6, + QB,) = S,, (x,y)eD,.
Hence ‘
[(Fz) (x, y)|l, £ @ + nH'(N, + nHAB, + S,) S 0 + (2 — 0) = Q,
provided a is assumed sufficiently small in order that
nH'(N, + nHAB, + S) £ Q — .

For any two points (x, y), (x, ¥) € D, we can evaluate the difference (Fz) (x, y) —
— (Fz) (x, y) term by term as follows:

1700, ) = %0, )]l = Ally = 7]m>
I[44(x. ¥) + Aax, ) + 45(x, »)] [, 3, 2(x, y)) = o, 5. 2(x, 7] <
< nC(1+ Q) (N, + nHAB, + S;) |y = ¥[m-
[[41(x, ) = 4s(x, §)] o(x, 7, 2(x, ) |0 £ nH'(L + p) (L + Q@ + @) |y = Fm>
I[42(x, y) = 4alx, P)] alx, 7, 2(x, 5[0 <
< n?H'[HAQ2 + p) + CA(1 + Q) (1 + p) B] |y = F|m>
I[45(x, y) = 4s(x, P)] oA, 5, 2(x, 7)) =
< n?H'[C(1 + Q) 0, + CO(1 + Q) (1 + p) B, +
+ C(1 + Q) (1 + p) (6, + mQB,) +
+ (P, + mC(1 + nQ) B, + nCO,) (Q(1 + p) + A |y = 7>
and finally
I(Fz) (x, y) = (F2) (x, )] < |
< [A(L + nHH'(2 + p)) + BiNa + BoPu + BsLia + BaBa + Bs0u] [y = F[lm

&
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where

By = nC(1 + Q),

B, = n*[C(1 + Q)(0, + 0B,) + H'(Q(1 + p) + 4)],

Bs=nH({1 + Q + q)(1 + p),

By = n*[C'AH{1 + Q) + mCC'(1 + Q)(1 + nQ) (6, + OB,) +
+ H'CA(l + Q)(1 + p) + (m + 1) H'CQ(1 + Q) (1 + p) +
+ mH'C(1 + nQ)(Q(1 + p) + 4)],

Bs = n*[nCC'(1 + Q) (6, + QB,) + H'C(1 + Q) (2 + p) + nH'C(Q(1 + p) + A)].

Let us choose the constant Q so that
4 Q> A(1 + n*HH'(2 + p)).
If we assume a sufficiently small so that
ﬁlNa + ﬁlpa + BSLla + ﬁ4Ba + B5Ga § Q - A(l + nZHH,(z + P)) >
then we have for all (x, y), (x, ) € D,
I(F2) (x, y) = (F2) (x. 5)[l = @[y = 5[ -
By using the estimate (cf. [5])
[94(& %, ») = gJ& % p)]|w = 2 J b(t) dt

5

we can evaluate the difference (F2) (x, y) — (Fz) (%, y) term by term as follows:
I[41(x, y) + 45(x, ¥) + A3(x, y)] [lx, y, 2{x, y)) = o, p, (%, Y] =
< nH’ [(1 L0+ gL rb(t) dat En(t) dat
I[4s(x, y) — 45(% y)] A, y, 2(%, y))!lnxé ]
F b(1) dt

< n{N, + nHAB, + S,) ( r pt) dt r,u(t) dt > ,
[[42(x, ) = 45(%, y)] ;(f, v, 2% Y <
< nH [(ea + 0B) J‘i(p(t) + mC(1 + n0) b{i) + nC u(t)) dtl +

+ C'

J’_

+ CAX1 + Q) B,

I[4:(x, ) = 44(% D] o5, 3, 2(% V)] <
< n’H’ [HAi 'r b(t) dt r b(t) dt
+ 2C(1 + Q) A0, + mQB,) .r b(t) dt

+ QMP, + mC(1 + nQ) B, +

|

+ nCe,)
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and finally

[(Fz) (x, ) = (F2) (%, »)|. < nH’

J'j plt)dt r p'(t)dr

n’H'(6, + OM,),

n(N, + nHAB, + S,),

nH'(1 + Q + q) AL,, + n*H'CAX1 + Q) B, +

+ mn*H'C(0, + OB,) (1 + nQ) + 2n*H'C(1 + Q) 6, + mQB,) +
+ n*H'QAP, + mC(1 + nQ) B, + nCl,),

Yo = nC'(N, + nHAB, + S,) + n*H'C(0, + OB,).

+

r b(t)‘dt
J’E () dt

x

J. n(f) dt! + n*HH' A2

x r b(r) dt

X

+ 7 + 72 + 73 + Yo

bl

where

V1
Y2
V3

Let us put
(5) p(x) = Ry n{x) + Ry p(x) + R, p'(x) + R3 b{x), xel,,
where

Ry >nH', R,R,>0, Ry>n*HHA(1 + k)™'.
We shall take a so small that
Yo <1—Ry'nH', y,<1—R3'n*HH'AL, y, <(1 = y,) Ry,
72 < (1 —y0) Rz, 73 (1 — 7)) Ry — n*HH'AA.

Then nH' + Ryy, < R, and
33 X
J n(t) dt 'f b(t) dt

x x r b(1) dt

x

J'E u(t) dt

X

I(F2) (x, y) = (F2) (X, 5)]. < nH’ + n2HH' A), n

+ (1 =) + [(1 = 7o) Ry + n*HH'A1] +

r (Ry p(t) + R, p'(1)) dt

x

=

+ 7 U"_C(R0 nt) + Ry p(t) + R, p'(f) + R; b(t)) dt

This concludes the proof.

Lemma 3. If Assumption H, —H, are satisfied then for any two elements ze€ K,
ZeK; corresponding to g = g[z], § = g[z] € Ko, and any two elements y, § € J,
the estimate
(6) |Fz = F2l, < ofly = 7). + Blz — 2.
holds true, where

a =1+ 2n*HH' + n*H'(P, + mC(1 + nQ) B, + nC%,),

¢
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B = nC(N, + nHAB, + S,) + nH'L (1 + M)[1 + (1 + Q + q) AL,] +
+ n*H'A[2HAL,(1 + M) + CB,(1 + (1 + Q) (1 + M) AL,)] +
+ n?H'[CO, + 2C(1 + (1 + Q) (1 + M) AL,) (0, + mQB,)[+
+ (P, + mC(1 + nQ) B, + nCO,) (1 + Q(1 + M) AL,).

Proof. Let y, 7 be any two elements of J, z, Z any two elements of K, and K,
respectively, and let g, g be the corresponding elements in K. Then we can derive

(Fz) (x,y) = (FZ) (x,y) = 9(x, ») = 7(x,y) + 04 + 0, + 03 + 04,
where

lowln = I[41(x, y) + 4afx, y) + A3(x, p)] [ x, , 2(x, ) = alx, v, 2(x, Y))] [0 <

< nC'(N, + nHAB, + S,) |z — |,
loz)n = I[44(x, ») = As(x, p)] olx, 3, 206 W) <

SnH'L (1 + M)[1 + (1 + Q + q)AL,] |z = |,
loslln = I[420x, ») = Aol )T i, 5 Z(0x, Yo < 20°HH 3 = 70 +

+ n?H'A2HAL(1 + M) + CB,(1 + (1 + Q) (1 + M) AL)] |z — 2|,
loalls = I[4(x, ¥) = A, 9)] o, v, 205, W) <

n?H'[CO, + 2C(1 + (1 + Q) (1 + M) AL,) (0, + mQB,) +
+ (P, + mC(1 + nQ) B, + nCO) (1 + Q(1 + M) L) |z — Z]. +
+ n*H'(P, + mC(1 + nQ) B, + nC8,) ”y - ﬂ]a.

Here 4;, j = 1, 2, 3, can be obtained from 4; by replacing y, z and g with 3, Z and g,
respectively. Combining the previous estimates we have

I(F2) (x, y) = (F2) (e, »)|lu S o]y = 7)o + Bz — 2

as

and finally
|Fz — Fz|, < ally — 7] + B|z — 2|

Thus the proof of Lemma 3 is complete.

5. The main result. Theorem. If Assumptions H; — H, are satisfied then for a
sufficiently small, 0 < a £ a,, there is a vector function z: D, - R, zekK,,
which satisfies (1) a.e. in D, and (2) everywhere in D. Furthermore, z is unique
in the class K, and depends continuously on y.

Proof. We have shown in Lemma 2 that the transformation F maps K, into
itself. We now prove that the map F: K, — K, is a contraction. We shall take a
so small that f < k < 1. Then we find from (6) that for y € J fixed and for every
pair z, Z € K,, corresponding to g, g € K, the following estimate holds:

|Fz = Fzl, < K|z - 2.,
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where k < 1. Thus, the transformation F is a contraction mapping of K, into itself;
and there exists a unique fixed point z € K,, Fz = z, such that the following integral
equations hold:

gl{&x,y) =y —(Tig) (& x,¥), (& x,y)ed,, i=1..n,
z(x, y) = (Fz)(x,»), (x,y)eD,.

We can show similarly as in [7] that the fixed point z = z[y] is the (unique in the
class K,) solution of the Cauchy problem (1), (2).
Relation (6) now yields

|z = 2l = [2[2] = 2[7]]e = (1 = B)™" ]y = 9]

that is, z = z[y] depends continuously on y e J.

a’

Thus the proof of Theorem is complete.

6. Examples. We list below a few examples of systems which can be derived
from (1) by specializing the operator V.

(i) As a particular case of (1), (2) we obtain the initial problem for the quasilinear
hyperbolic system of partial differential equations with a retarded argument (cf. [13])

- 0z; & 0z;
Z Aij(x7 YV, Z(xa J’)) — + Z Qik(xa Y, Z(X, J’); Z<¢(x)9 lp(xﬁ y))) —| =
j=1 0x k=1 0y

= fi{x, , z{x, y), z(@(x), ¥(x, y))) , (x,¥)€ D,
z(x, y) = y(x, y), (x,y)eD?,
whete 2(p(x), ¥(x. 1)) = ((01(x), (52 ). - Z(@:(3)s i, V),
U= Wn oo ¥jn)s = 1onl, i=1,..,n.
Let us suppose that

1° @;:1,, > R, j=1,...,1, are measurable, —t < ¢;(x) < x, j=1,...,1, ae.
inl,;

2° npj(-, y):l,,—» R", j=1,...,1, are measurable for every ye R", and there
are constants r; > 0, such that for all y, y € R™ and a.e. x € I,, we have

19,66, 9) = Vi Dlm S 751y = Fllws G= 10 L

Then Assumption H; is satisfied for

(V;z) (x, ) = Z(‘Pj(x)’ Uix, ), J=1...1,
withg; =r;,,e;=0and M;=1,j=1,..,1L
(if) Let
Y j(x,y)

(7) (Viz) (x, y) =J (s, ) Ki{s, t, x, y)dsdt, j=1,...,1,

@j(x,y)
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where K;, j = 1,...,1, are n x n matrix functions K; = [K¥], i,k =1,...,n,
j =1,..., 1. Then problem (1), (2) reduces to the Cauchy problem for the system of
partial integrodifferential equations

3 Al . y))[ J+ZQ,k(xy,/_xy)J

Y(x,y)

2(s, 1) K(s, t, x, y)dsdt) ]:
(x,9) 0y
W(x,y)

=f; (x, Vv, z'x,p), 2(s, t) K(s, t, x, ) ds dt) , (x,y)eD,,

@(x,y)
2(x, y) = (%, ) (x,y)eD;.
Let us assume
(), ¥(-,y):1,,» R™™1, j=1,..., 1, are measurable for every ye R™,
—tZ9u(x,y) < x, =t = Y;(x,y) £ x, (x,y)eD,, and there are constants
r;, F; > 0, such that for all y, y € R™ and a.e. in I,, we have
losx, ) = @)% P)mss S 7 ”Y = Jla"t
[, ¥) = Y06 P mes S By = Fl™ s =113
3° there are constants d; > 0, such that for every (x, y) € D, we have
m+1

]:[l’l//jk(x> y) - (pjk(x5 J’)| g dj’ ./ = 17 ] I’

4° the matrix functions Kj(-,y) = [K¥(-,y)]: 1, x R™ x I,, > R", ik =
=1,...,n,j=1,...,1, are measurable for every y € R™;

5° there are constants ¢; > 0, such that for every (s, t, x, y) e I, x R™ x I, x R"
we have [|[K(s, 1, x,y)| S ¢;j=1,...,1;

6° there are constants #; > 0, such that for all y, j € R™, (s,t,x)el,, x R" x I,
we have

IK(s, %, 5) = Kj(s t. %, )| < 75y = 5wy =1 L

Then Assumption H, is satisfied for the operator V; defined by (7) with q; =0,
e; = Qe(ry™ + FI*) + d;F}) and M; =dyc;, j=1,....1, provided djc; <1,
j=1,.., L

(iii) Let (Viz) (x,y) = Lo 2(x, ) K,(y — t)dt, j = 1,..., I. Then system (1) is
a system of integrodifferential equations, whose particular case (l =1, 0(x, y, z, u) =
=0(x,y,2) and fi(x,y,z,u) = f(x,y,z) +u, i =1,...,n) was considered by
P. Bassanini, M. C. Salvatori [4], under slightly less restrictive assumptions.

Now Assumptlon H, is satisfied with ¢; =0, e¢; = Q(r; + sup [K(»)|) and

= |fo* K1) dt|, j =1, ..., I, if we assume

10 the matrix functions Kj( ) = [K¥(-)]: R™ - R™,j=1,...,1, are measurable
and bounded;

2° there are constants r; > 0, such that for all y, j € R" we have

1K) = KO = rilly = 5y G= 1000
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3 |fe e K(t)de| <1, j=1,..., L

(iv) By A4, we denote the set of all elements ;= (uo, gy, ..., ), such that

mi=0or g;=1fori=0,1,...mand 1 < |u| < p+ ...+ p, It is easy to
see that the number of elements of A is equal to 2m+1 _ 1 Let N, = {izp; = 1}.
For (s, t)e D, we define u(s, 1) = (uoS, ity, .- Hmt,,) (we shall often write u(s, )
instead of u(s ). Let 1 —p=(1—po, 1 —pty,.. 1 — ty) and (1 — p) (s, t) =
= (1 = Ho} s, (1 = m3) 1y oy (1 = fn) 1,). SuppOSe that

ds dt;, ... dt; if oeN,, il,-~-,ikeN,,,

ﬂdet: ;dl dt . dt if OéN io, ila-. ikEN k=1 ..

and (/)“‘) lp(u) D, _,Rlul, where (p(u) — ((p(“) ’(p(u)) ‘//(u) (l//(“) . (u)) and
O0sip<iy<...<ig=migiy,... €Ny, k=1,..,m
We define the operator V, in the following way:

W (R)(x,y)

®) (V) (5, y) = j (s, 1) + (1 = i) (x, ) g ds d

@) (x,y)

Here [u ds dt is the |u|-dimensional integral with respect to the variables s, ;,, ..., t;,
ifoeN, iy, ..., i€ Ny, and it is the integral with respect to t,, ..., 1, if 0EN,,.

Now we consider the Cauchy problem (1), (2) for the integrodifferential system
with  Vz = (V.. 1)2 Vo107 Via,0,0,,0% o Vit e 1,007 V(0,001,015 -+

o> Vi,01,0,0% -+ Vit o, )Z)

We introduce the followmg assumptions:

1° W+, y), ¥*(-, »):1,, > R, peA,, are measurable, —t < 0{(x, y) < x,
—1 < Y§(x,y) £ x, ae. in D;

2° there are constants 7", 7/ > 0, such that for all y, j € R™ and a.e. in I, we
have

|(p(u) x )’) _ (p(u) A, )7)‘ < ;(u)”y _ y”:n/[l«[ ,
Wio(x, y) =0 p)| < F@y — FWH, j=1...m, peA,;

3° there is a constant d*), 0 < d* < 1, such that for every (x, y) € D, we have
H l‘//(u)(x y) (pflu) X, y)l < am .
JeN, ©n
The Assumption H, is satisfied for the operator ¥, defined by (8) with g, = d®,
e, = Q[(F¥) + (F)*] and M, = d" (here I = 2"*' — 1).
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