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1. In [6] Stickel found the form of the most general pointwise transformation

(1) t= Tl(x> y) s Z = TZ(X, Y)
converting any linear homogeneous differential equation of the n-th order
®) VO 4+ g a(X) Y + L+ po(x)y =0, nz2

into an equation of the same kind in variables z and ¢ (see also [7]). He considered
only diffeomorphisms of the class C". The aim of this paper is to give the proof of
the same result without any assumptions of differentiability of T (see Theorem).

Let I and J be open intervals. The equation of the form (2) on the interval I will
be denoted by Q(p, I) where p = (po, Py, ---» Pu—1)- We shall take into account only
the equations with continuous coefficients. If y € C*(I, R) we define the vector func-
tion y = (y, .,y ..., y" V). For every vector function y = (y, s, ..., V) €
e C'(I1, R") the symbol W[y] (x) will denote the Wronski determinant of y at x € I.

Consider the transformation (1) satisfying the following conditions:

(A) Tis a homeomorphism of I x Ronto J x R.
(B) For every equation Q(p, I) there is an equation Q(q, J) such that
(i) if y(x) is a solution of the equation Q(p, I) and if

(= T y(¥), 2= To(x y()

then z is a function of ¢ of the class C"(J, R),

(i) the functions zy(?), z,(t), ..., z,(t) obtained by the transformation T from an
arbitrary fundamental system y;(X), y,(x), ..., .(x) of solutions of Q(p,I)
form a fundamental system of Q(q, J).

Theorem. Under the assumptions (A),(B) and n = 2 every transformation T
has the form

(3) t=g(x), 2=k,
where k € C'(J, R), k(t) = O for every t € J and g is a C"-diffeomorphism of I onto J.
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Remark 1. It is known (see [5]) that every transformation of the form (3) has the
properties (A) and (B). Moreover, for ye C'(I, R") and z(r) = k(t) y(h(t)), ke
e C"(J, R), he C(J,I) the formula

wlz] (1) = (k(0)y" WLy] (h(?) (R()" ="
is fulfilled.
Remark 2. The transformation (1) which converts every C"-function into some

C"-function is not necessarily C"-differentiable. According to Theorem 10 in [2] an
appropriate counterexample can be constructed for every n = 1.

2. The proof of the theorem is based on two lemmas given in this section.

Lemma 1. Let y € C'(1,R), j(x) % 0 for every x € I. There is a continuous function
P = (Po> P1s --» Pu—1) on I such that y is a solution of the equation Q(p,I).

Proof. We can choose a sequence {U,,}2_ _, of open intervals having the following

@
properties: U,, " U,y £ 0, U, "U,,;=0forj=2,I= {J U, and for every m
m=—o
there is i, € {0, 1, ..., n — 1} such that y"’(x) % 0 on the closure ¢cl(U,,) of the in-
terval U,,. For i€ {0, 1,...,n — 1} \{i;} let p; be an arbitrary continuous function
on cl(U,). Define

1
)

Then the function y is a solution of the equation Q(p, U;). Forie {0, 1,...,n — 1} \
\{i2} extend the functions p; continuously to the interval cl(U; u U,). On cl(U,)
put

pi(x):= —

(0169 5 pi9 009

iFiy

1
y(iz)(x)

Since y")(x) % 0 on cl(U; n U,) we get p;, = g;, on this interval. Putting p;, := q;,
on cl(U,) we extend the function p;, to the interval cl(U,; U U,). Hence y is a solution
of the equation Q(p,U; u U,). By induction for m = 1,2,... and for m = 1,
0, —1, ... we can construct a continuous function p on the whole interval I.

qi(%) := —

[0 + 2 p0 0]

i*iy

Lemma 2. Let a < b, n 2 1 and let (ug, uy, ..., u,), (vo, vy, ..., v,) be arbitrary
vectors in R"** such that (uo, 4y, .., 4,—1) and (vo, vy, ..., v,_,) are nonzero in R"
and ugvy > 0 if n = 1. Then there is a function y € C'([a, b]) satisfying j(x) + 0
for every x e(a, b) and

y‘:)(a) = U, y(—i)(b) =70
for i=0,1,..., n
Proof. We shall distinguish the following cases.

(i) Let uy > 0, v, > 0. According to Borel’s theorem for fixed x, € R there is an
infinitely smooth function (i.e. from C®(R, R)) having arbitrarily prescribed value
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and derivatives at x,. Hence there are such infinitely smooth functions ¢, @, that

(pl(a) = Uy — 5 ) @(li)(a) = U;,

902(17) =0y =9, ‘P(zi)(b) =;
for 0 < 6 < min (ug, vg) and i =1,2,...,n. Choose ¢€(0,4(b — a)) such that
©; > 0, @, > 0 on the intervals (a — ¢, a + ¢€), (b — &, b + ¢), respectively. There
exist nonnegative smooth functions o, a, defined on R such that o; = 1, o, = 1
on (a — e, a + %¢), (b — %&, b + %e), respectively and oy = 0, «, = 0 outside
of (a — &, a +¢), (b — ¢ b + &), respectively. The function
¥(x) 1= ay(x) @4(x) + aa(x) @5(x) + 0
has the required properties, in particular y(x) > 0 and hence j(x) # 0 for every
x€(a, b).
(ii) The case uy < 0, v, < 0 is converted into (i) if —u, —v are considered instead
of u, v.
(iii) Let uy < 0, vy > 0. Put ¢ = X(b — a) and define

Wx)i=x—a—2

on the interval (a + ¢, b — &). According to (i) we can find a function y on [b — ¢, b]
such that y(x) > 0 on this interval and

yb—e)=¢, yi(b—¢ =1,
JOb =9 =0, i=23.m,
YOB) = v, i= 01,

Similar construction can be carried out on the interval [a, a + ¢]. The function
constructed in this way satisfies all requirements of the lemma.

(iv) The construction for the case u, > 0, v, < 0 follows from (iii).
(v) Let uy = 0 or v, = 0. There are smooth functions ¢4, ¢, such that

o0@) = us 99b) = v

for i =0,1,...,n. Since (ug, g, ..., u,—4) *+ 0 and (vo, v5,...,v,_;) + 0 there is
e€(0, b — a) such that ¢; % O on (a,a + €] and ¢, + 0 on [b — ¢, b). Otherwise,
all the derivatives of ¢, at a and ¢, at b would be zeros, which is excluded. Now it is
sufficient to construct the required function y on the interval [a + ¢, b — ¢] under
the conditions y(a + ¢) & 0 and y{(b — &) # 0. This completes the proof.

3. The proof of Theorem will be given in several steps. We shall always suppose
n=2.

(i) Denote the inverse transformation of T by P. Then

x=Pyt,z), y=Pytz).
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We shall show that P, is independent of the second variable. On the contrary, sup-
pose there are t, € J, {; € R. {, € R such that

Xy = Pl(’o, C1) + Pl(th Cz) = X,
and put
ni=P2(IO’Ci): l=1,2

Due to Lemma 2 one can show that there is a function y e C*(I, R), y+0onl
and y(x;) = n; for i = 1,2. By assumption (B) the transformation T converts the
function y(x) into a function z() on J. But this is a contradiction with

T(xls '11) = (to, 51) > T(XZs ’12) = (to’ CZ) .
Thus
x = Py(1).

For every fixed € J the mapping P maps the line {t} x R on to the set {P(t)} x K,
where K, is an open interval. Since P is a homeomorphism between J x RandI x R,
we get K, = R. Hence P, is a homeomorphism between J and I.

Put h:= Py, f(t, y) := Ty(h(1), y) and instead of z = T,(x, y) write

) 2(1) = f(t, y(h(1)) -
(ii) Lemma 3. Let r, s be fixed real numbers. If for some y € C'(I, R), j(x) + 0
for xel,

) f(t, ry(h(1) = sf (&, y(h(1) , teJ
then (5) is fulfilled for every y € C'(I, R), ji(x) # 0 for xeI.

Proof. Let y, € C"(I, R), ,(x) + 0 on I, satisfy (5) and let y, € C'(I, R), j,(x) + 0
on I, be arbitrary. Choose @, bel, a < b. Then I = I, U [a, b] UI,, where I, 1,
are open intervals. Lemma 2 implies the existence of a function y € C"(I, R), j(x) + 0
on I such that y = y, onI;, i = 1,2. According to Lemma 1 the functions y and ry
are solutions of an equation Q(p, I). This equation is transformed into an equation

0(q, J) which has z,(f) := f(1, y(h(t))) and z,(t) := f(t, ry(h(1))) as its solutions.
On the open interval h™'(I;) we have

25(1) = St ry(h(1)) = s/ (8, y:(h(1) = s 2:(2) -

Since zy, z, are solutions of the same equation, z,(f) = s z,(f) on J and (5) is satisfied
for y as well as for y, on the whole interval J.

(iii) Let Q(p,I) be an arbitrary equation. Consider a fixed fundamental system
Y = (V1. Y2, ..., ¥,) Of this equation. Put

zi(1) == £(t, y{(h(1))) .
Due to (B), z = (zy, 2, ..., 2,) is a fundamental system of an equation Q(q, J)
and for every vector ¢ = (¢, ¢,, ..., ¢,) € R" there is just one vector d = (dy, das - »dy)
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such that

n

1 Zc.y/h H)) =2 diz(1).

Put G{c):=d. i=1

Lemma 4. The mapping G: R" —» R" has the following properties.

(a) For 1 = k < n it maps every k-tuple of linearly independent vectors on
a k-tuple of linearly independent ones.

(b) G is a homeomorphism of R" into R".

(c) For 1 £ k < n the inverse mapping G™': G(R") > R" maps every k-tuple
of linearly dependent vectors on a k-tuple of linearly dependent ones.

(d) Let r, se R be fixed. If for some ce R"~\{0}

(6) G(rc) = s G(c)
then (6) is satisfied for every ce R".

Proof. (a) follows from the fact that the transformation T converts every funda-
mental system of solutions of the equation Q(p,I) on a fundamental system of solu-
tions of the equation 0{q, J).

(b) Let c', c?e R", ¢! + ¢ Define d' := G(c/) for i = 1, 2. There is x, €I such
that

n

Tl yix) + 3 el pix).

Since T is a homeomorphism, we have

:Zl diz(h™'(xo)) :':_:Zl diz{h™(xo)) .

That is why d! % d? and G is injective.
We shall prove the continuity of G. Let ¢ € R" and lim ¢* = c. Put d* := G(c*)
and d := G(c). Then ke

(7) lim i diz (1) = :ilszt, _i iy (1)) =

— 1, élciyi(h(t))) =éldizi(t)

for every f e J. If the sequence {d*}, is bounded then from any subsequence we
can choose such a subsequence {d*/}7_, that lim d*/ exists. From (7),

Jji=w
Y (limd¥ —d)z{t)=0.
i=1j-w

Due to W[z] (1) & 0 we have lim d}/ = d; and also limd} = d, for i = 1,2,...,n.
Jj—= o k— o0

Now it is sufficient to prove that the sequence {d“};”., is bounded. Passing to a sub-

sequence if necessary, we may suppose without loss of generality that there is an

index j such that lim d% = + oo, d% & 0 and |d%| > |d}| for every positive integer k

k— o

621



and ie{l,2,..., n}\{j}. From (7)

) lim z Ezf)) Y diz() \
lim [ -7'( 2(0) + z,(t):| = ko= S = T 02302

k= oo lmd’,‘- lim d% =1 -
k= o0 k=00

for every teJ. Since the sequences {d}/d}}>.; are bounded for i =1,2,...,n,

the above considerations imply lim (d}/d%) = 0, in particular 1 = 0 for i = j, which is
k— o

a contradiction. By using the continuity of the inverse transformation of T we can

similarly prove the continuity of G™*.

(¢) follows immediately from (a).
(d) If (6) holds for some ¢ e R"\ {0} the function y = Z c,y; satisfies (5) and we

can apply Lemma 3 to get (6) for every ce R" ~{0}. (c) 1mplxes that (6) holds for
<=0 as well

(iv) Lemma 5. For every r € R there is a unique s € R such that

®) G(re) = s G(c)
holds for arbitrary ce R". Moreover, the function r+ s(r) is a homeomorphism
of R into R.

Proof. Let ce R"\ {0} be fixed. Let M = {r € R, there is s € R such that G(rc) =
= s G(c)}. From the continuity of G it follows that M is closed. Since G is a homeo-
morphism of R” into R its range G{R") is open in R” (see [3]). Hence the set S =
= {seR, s G(c) e G(R")} is open. Further, S is not empty because 1 € S. For every
s € S there is d € R” such that

G(d) = s G(c).
G~ ! preserves linear dependence, hence d = rc for some r € R. The function s+ r
is a homeomorphism of S into R as it is defined with help of the homeomorphism G™*
restricted to the set {s G(c), s € S}. S is open, hence the range of this homeomorphism
is also open in R. Simultaneously, this range is equal to the set M which is closed
in R. That is why M = R and the inverse function r  s(r) is a homeomorphism of R
into R. Lemma 4{d) implies that the statement (8) holds for every c e R".

(v) Lemma 5 and Lemma 3 imply that for every r € R there is s(r) € R such that

© St ry(h(1)) = s(r) £t y((2)))

for arbitrary y e C'(I, R), 7(x) % 0 on I. Double use of (9) yields the formula

(10) s(ryrs) = s(ry) s(r,) .
for arbitrary ry, r, € R. All the homeomorphisms on R satisfying (10) are
(11) s(r) = sign(r) |[r]*, A>0
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(see [1]). By substituting y(x) = 1 in (9) we get
ft,r) =s(r)f(1,1).

Thus, the transformation (4) has the form

(12) 2(t) = k(1) s(y(h(1))) »
where k(1) := f(t, 1) and s satisfies (11).

(vi) In this part we shall show that ke C'(J, R), he C(J,1I), k() # 0 and
I'(t) + 0 for t € J. For similar situation see [4].

Putting y(x) = 1 on I we get from (12) that ke C"(J, R). Let y = (yy, y2, ..., »,)
and z = (zy, z,, ..., z,) form two fundamental systems of some equations such that

zi(t) = k(1) s(y:(h(1)))
for i =1,2,...,n. For every teJ there is ie{1,2,...,n} such that z(r) % 0.
This implies k(f) = 0 for t e J.

Now we can write 2
— =So0yoh.
k

Choose y(x) = e* on 1. Then z/k is a positive function of the class C"(J, R), the func-
tion s has an inverse function of the class C" on (0, o) and y has an inverse function
of the class C" on I. Thus

z
h=yhlosﬂlo—
k

is a function of the class C*(J,I). It remains to prove h'(r) & 0 for e J. On the
contrary, suppose h'(t,) = 0 for some to € J. Let y = (yq, y5, ..., ¥,) be a funda-
mental system of some equation with y,(h(t,)) > 0 for i = 1,2, ..., n. The transfor-
mation T converts these functions into a system z = (zy, z,, ..., z,) wWith a nonzero
Wronski determinant W[z] on J. Thus, according to Remark 1

Wlz/k] (t0) = [k(ﬁo)]"wm (to) + 0.

Since the function s is differentiable on (0, o), for h'(t;) = 0 we get
Zi d Irs ’ ’
() ) = s t0tee) yitha) e = 0

for i = 1,2,..., n. This is a contradiction and hence h'(f) + 0 for te J.

(vii) To complete the proof of Theorem it remains to show that s(y) = y. Suppose
the transformation (12) to convert every fundamental system of solutions into
a fundamental system. According to Remark 1 the transformation

w(x)

1 -1
= mz(h (x)) on I
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has the same property. By composition of these two transformations we get the trans-
formation
(13) w(x) = s(y(x)) on I
which ought to have this property as well. It is sufficient to prove that (13) does not
fulfil the required property if s(y) is not identity.

A€ (0, 1) is not possible in (11) since for the function y(x) = x — xo, xo €I, we
get Wi(xo) = Alim (x — x0)*™! = 0.

X=X0+
For A > 1 and n = 2 the transformation (13) converts the n-tuple of the linear
independent solutions
1, x — Xg, (x — X0)% ..oy (x = xo)" ™", xp€l
of the equation y™ = 0 into the functions the first derivatives of which are
0, Ax — xo)*7 1, 2A(x — x0)**71, v (n = 1) Ax — X))t

for x = x,. At x, €I they all are zeros, which contradicts (B).
That is why for g := h™?! every transformation (1) satisfying (A) and (B) has the
form (3)if n = 2.
Remark 3. For n = 1 one can show that all the transformations (1) satisfying

the assumptions (A) and (B) are
=g(x), z=k(t)sign(y)|y|*, 2>0,

where k € C"(J, R), k(t) = 0 for every t € J and g is a C"-diffeomorphism of I onto J
(see [6] and [7]). The proof can be performed similarly as the steps (i)—(vi) in the
proof of Theorem, but when using Lemma 2 some changes are necessary.

Remark 4. The statement of Theorem holds provided the transformation T
in (A) is only a homeomorphism of I x R into R x R and J is the smallest interval
such that T(I x R) = J x R,

References

[1] Aczél, J.: Lectures on functional equations and their applications, Academic Press, New
York and London, 1966. )

[2] Boman, J.: Differentiability of a function and of its compositions with functions of one
variable, Math. Scand. 20 (1967), 249—268.

[3] Dugundji, J.: Topology, Boston 1967.

[4] Neuman, F.: A note on smoothness of the Stickel transformation, to appear.

[5] Neuman, F.: Geometrical approach to linear differential equations of the n-th order, Rend
Mat. 5 1972, 579—602.

[6] Stdckel, P.: Uber Transformationen von Differentialgleichungen, J. Reine Angew. Math. /17
1893, 290— 302. ,

[7] Wilczynski, E. J.: Projective differential geometry of curves and ruled surfaces, B. G. Teubner,
Leipzig 1906. N

Author’s address: 603 00 Brno, Mendlovo nam. 1, Czechoslovakia (Matematicky Gstav CSAV,
pobocka Brno).

624



		webmaster@dml.cz
	2020-07-03T04:59:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




