Czechoslovak Mathematical Journal

Véclav Koubek
Large systems of independent objects in concrete categories. I

Czechoslovak Mathematical Journal, Vol. 34 (1984), No. 4, 506-527

Persistent URL: http://dml.cz/dmlcz/101978

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101978
http://dml.cz

Czechoslovak Mathematical Journal, 34 (109) 1984, Praha

LARGE SYSTEMS OF INDEPENDENT OBJECTS IN CONCRETE
CATEGORIES I

VAcLAv Kougek, Praha

(Received September 2, 1982)

0. INTRODUCTION

One of the basic ideas in combinatorics is that of independence of certain parts
of a structure, intuitively described as absence of links or overlapping between any
two of them. To express it formally, we have to define, on the collection of the parts
in question, adjacency represented by a collection of adjacent pairs. A collection
is then called independent if no two distinct members of it form an adjacent pair.
Relevant questions are those concerning large independent collections of specified
parts of a given structure.

In a graph G, two distinct points p and g are adjacent if they form a line {p, g}
of G; two distinct lines of G are adjacent if they have a point in common; two subsets
of points of G are adjacent if either A N B # @ or there is a line {a, b} with a € 4,
b € B. Finite combinatorics was concerned with point and line independencies in
graphs in late twenties and early thirties, when the by now classical results were ob-
tained by Menger, Konig, Dilworth, Hall and others.

A typical and interesting phenomenon in the infinite combinatorics, unparalleled
in the finite theory, is represented by infinite graphs G containing independent subsets
of points of the same cardinality as the whole set of points of G. We shall call such
a subset a span of G, a graph G having a span will be said to be spanned (by any one
of its spans).

In an arbitrary category J¢, the notion of independence of objects aiises naturally
from that of adjacency of a pair {4, B} of objects established by the existence of
a morphism either from A to B or from B to 4. Two classes </, # of objects of A~
are adjacent if either &/ N & + @ or there is an adjacent pair {4, B} with A€ <,
Be #. Thus we can speak about independent families of classes of objects of .
To be able to speak of spans of o, we have to express the size of #°° and of its
subclasses. To this end, we add to the class Card of all cardinals in Bernays-Gddel
set theoty a class cardinal ¢ to follow all cardinals. If we further assume the strong
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axiom of choice, then we can assign to " a cardinal card & equal to the cardinal
of a maximal class of pairwise unisomorphic objects of .

A typical independence question to be dealt with in this categorial setting is e.g.
that of S. Ulam who asks whether there exist 2¥° countable graphs such that there is
no morphism from one to another. Put otherwise; is the category of countable graphs
spanned?

Let us call a category ¥ self-independent if the class #°° of all its objects is indepen-
dent. Since an independent class of objects of a category A determines a full self-
independent subcategory of ', the problem of finding large independent classes of
objects in /" amounts to that of full embeddings of large self-independent categories
into #". The theory of full embeddings, developed in Prague as part of infinite com-
binatorics rather than of abstract algebra, possesses methods, results, and techniques
powerful enough to deal with independence questions in concrete categories.

Indeed, the affirmative answer to Ulam’s question follows immediately from 1esults
of Hedrlin and Pultr [8]. Moreover, one can restrict oneself to graphs with special
properties (symmetry, fixed chromatic number >3, [18], [19]) and the answer
remains affirmative. Analogous results hold for various types of algebras instead of
graphs (unary algebras with at least two operations, groupoids, or more specially
semigroups, integral domains, etc., [7], [10], [3]). It is essential that all these cate-
gories are binding, i.e. receiving full embeddings of any concrete categories. A remark-
able result, pertaining to Ulam’s question but obtained differently, by Kat&tov (inan
unpublished paper) and independently by Gavalec and Jakubikovd [4], says that
there exist 2™ independent countable unary algebras with one operation. Here the
technique of full embeddings does not work, since the category of monounary algebras
is not binding. Also, a negative answer has been obtained in this case for cardinals
bigger than 2% [1], [4].

It is reasonable, when dealing with a concrete category (Jf , U), not to look for
spans in the whole category " but for the so called o-spans defined as spans in its
full subcategories #,, a € Card, #J> = {Ae A" card U(4) < «}. To make it
more difficult, we can prescribe endomorphism monoids of the objects of a span
of A ,.

Definition 0,1. Let (", U) be a concrete category, let .# be a monoid. A full
subcategory € of A',, a € Card, is called an a-span of A" if

(1) # is self-independent,
(2) card € = card A,

If, moreover,

(3) End (A4) = A for every A e 6,
than we call ¢ an (., «)-span of A"

A category (o, U) is said to be a-spanned ((.#,a)-spanned) if it has an
a-span ((.#, )-span).
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If A" is a-spanned ((.#, o)-spanned) for all « = B, p € Card, then it is said to be
spanned (M-spanned) from B upwards.

If A" is spanned (#-spanned) from some f upwards, then it is said to be ultimately
spanned (ultimately M -spanned).

In the case of trivial .# we shall call an (., a)-span also a discrete a-span, and
an (., o)-spanned category " also discretely a-spanned.

If a category (o, U) is both (.#, a)- and (4, «)-spanned, for two non-isomorphic
monoids # and /', we may be interested in finding in & the corresponding
(A, 2)-span € and (', «)-span ¢’ in such a way that € and %’ are not adjacent. More
generally, we have

Definition 0,2. Let (47, U) be a concrete category, let MM = (#;);e; be a family
(possibly a big one) of monoids. An (M, «)-span of A", a € Card, is an independent
family (%;);c;, Where €, is an (.4, a)-span of A" for every i €1l.

A is (M, a)-spanned if it has an (M, «)-span.

A is M-spanned from B upwards if it has an (M, a)-span for all « = B.

A" is ultimately M-spanned if it is M-spanned from some S upwards.

Calling two distinct full embeddings @, @': # — £ adjacent if their images are
adjacent in %, we can speak about independent families of full embeddings of o
into #.

A full embedding &: (A", U) — (&, V) is called strong (in [19]) if there exists
a covariant set functor F such that the following diagram commutes. Any such F
is called an underlying functor of ®.

(]
A — Z

ul lV

Set ——> Set

Definition 0,3. Let (2", U) and (&, V) be concrete categories. For o € Card, a family
F = (9,);q of (strong) full embeddings of A" into & is called a (strong) (A", a)-span
of Z if

(1) # is independent,

(2) cardI = card &,

(3) VA e A" Viel(card V&, A < max (card UA, )).

& is (strongly) (4, «)-spanned if it has a (strong) (4, &)-span.

& is (strongly) A -spanned from B upwards if it is (strongly) (", «)-spanned
for all « = .

Z is ultimately (strongly) A -spanned if it is (strongly) A -spanned from some f8
upwards.
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We shall study independence questions in an important class, introduced in [8],
of concrete categories S(F) determined by set functors F. The objects of S(F) are the
pairs (X, R), where X is a set and R < FX, and the morphisms from (X, R) to
(Y, S) are the mappings f fulfilling Ff(R) = S (Ff(S) = R) if F is covariant (con-
travariant). The underlying set functor from S(F) to Set is defined in the natural way.

Most day-life categories are “nice” (i.e. reflective or coreflective) full subcategories
of suitable S(F)’s. The categories of n-ary relations, symmetric n-ary relations, and
hypergraphs actually are categories S(F ). Moreover, Kugera [16] proved the existence
of functors F for which every concrete category can be fully embedded into S(F).
Kudera and Pultr [17] showed that every “reasonable™ concrete category even has
a realization (i.e. a strong full embedding with identity underlying functor) in S(F)
for a suitable F. These facts clearly demonstrate the importance of the categories S(F ).

The present paper is the first one of a series of papers devoted to the study of spans
in the categories S(F). Its objective is to settle the covariant case by

Main Theorem. Let & be the category of directed graphs. For a covariant set
functor F the following are equivalent:

(1) S(F) is strongly ultimately Z-spanned,

(2) S(F) is ultimately discretely spanned,

(3) there exist sets A, B such that A is finite, and F(A U B) % Im Fi U Im Fj,
where i: A —> AU B, j: B— A U B are the inclusions.

In the next paper we shall prove an analogous theorem for F contravariant, with
(1) and (2) the same and (3) replaced by a statement of a corresponding equivalent
property of F. Further papers will be devoted to a-spans in the categories S(F). For
example, by additional restrictions on cardinalities we strengthen a result of Hedrlin
and Sichler [11] who proved, under the assumption that measurable cardinals form
a set, that 2 is Z-spanned.

I want to express my thanks to A. Pultr who called my attention to these interesting
problems, and to P. Goraléik and the referee who helped me to clarify the exposition.

This section has an auxiliary character and is devoted to the investigation of set
functors. It is based on notions and propositions in [21] and [12].

For a filter & on a set X let us denote
|#| = min {card Z; Z e F},
NF =N{Z; Ze 7}.
I ﬂﬁ’“ = card &,
<{V;3ZeF, V> Z - NF}.
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For every filter # we have (\(d#) = 0, and the relation d% = exp X = {Z; Z = X}
is valid if & = {Z; X > Z > \F).

For a mapping f: X — Yand a filter #, f(#) = {V; 3Z e #, V > f(Z)} is a filter,
too. In particular, we shall consider exp X as a filter (on X), i.e., a filter on X is a family
of subsets of X closed under meets. The following is proved in [21]:

Proposition 1,1. Let F be a covariant set functor, x € FX. If Y, Z are subsets of X
with the inclusions i: Y— X, j: Z - X such that xeIm Fi n Im Fj then either
0 =Yn Zor xelIm Fk where k: YN Z — X is the inclusion.

According to [12], for a covariant set functor F and x € FX put #x(x) = {Z = X3
x € Im Fi, i: Z = X is the inclusion}. Then #¥(x) is a filter or #§(x) = exp X — {0}
by the foregoing proposition. In the latter case we add to & if(x) the empty set, then
F¥(x) is always a filter and is called a filter of the point x.

The following proposition characterizing the relation of a filter of a point and
a mapping is simple but very useful for a description of the behaviour of a set functor.

Proposition 1,2 [12]. Let f: X — Ybea mapping, let F be a covariant set functor,
x € FX. Then f(F}(x)) = FHF f(x)):
If for a set Z € F¥(x), f is one-to-one onto Z, then f(F¥(x)) = FHFf(x)).

The second notion describing set functors is [12]:

If F is a covariant set functor, then a cardinal o > 1 is called an unattainable
cardinal of F if for a set X with card X = « we have FX = {J Im Ff where the union
is taken over all f: Y — X with card Y < a.

The class of all unattainable cardinals of F is denoted by 7.

The connection between unattainable cardinals of F and filters of points is shown
in the following propositon:

Proposition 1,3 [12]. Let F be a covariant set functor. Then a cardinal o« > 1 is
an unattainable cardinal of F iff there exists a set X and x € FX with a = | F§(x)].

In the sequel we restrict ourselves only to the covariant set functors, calling them
just set functors. Here is a list of some basic ones:

I — the identity set functor;

C,; — the constant set functor onto M;

0O — the covariant hom-functor of the set M;
P, — the covariant power set functor defined as P,X = {Z; Z < X, card Z < o}

and for f: X - Y, P, f(Z) = f(Z).

As follows from the definition of strongly ultimately J¢-spanned category the basic
role is played by functors of the following special kind:

Definition. Given a cardinal «, a set functor F is said to be non-increasing from a
upwards, if card FX < card X for every set X with card X = o.
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Then we have

Theorem 1,4. For a set functor F, the following are equivalent:

a) F is non-increasing from o upwards for a cardinal a;

b) if o is an unattainable cardinal of F, then a is finite;

c) F is a colimit of homfunctors of finite sets;

d) F is a factor-functor of a sum of homfunctors of finite sets.

Proof. If we combine Theorem 3,4 in [13] and Lemma 2,3 in [12] we get that if F
has an infinite unattainable cardinal «, then there exists a proper class A of cardinals
such that for Be A, cf B = cfa and card FX > 2° for any set with card X = .
Hence a) = b). Further, by an easy application of Theorem 1,3 in [ 12] we get b) = a).
For the implications b) <> ¢) <> d) see Theorem 3,4 in [12] or [2].

We next prove some auxiliary lemmas about set functors.

Cenvention. For a set functor F, x € FX, F* is a subfunctor of F defined as F*Z =
={zeFZ; If:X - Z, Ff(x) = z}. Further, let us denote F(x)Z = {zeFZ;
3f: X — Z, Ve F¥(x); f is one-to-one onto V and F f(x) = z}.

Lemma 1,5. Let F: Set — Set be a set functor, x € FX. Then for every infinite
set Y with card Y = card X we have card F*Y = card F(x) Y.

Proof. For every mapping h: X — Y there exists a one-to-one mapping f,: X —
— X x Y with h =IIyof, (ITy:X x Y— Y is the projection). Hence for every
z € F*Y there exists a point y, € F(x)(X x Y) with F I1y(y,) = z, i.e. card F*Y <
< card F(x)(X x Y). Since card Y=cardX x Y and F(x)Y< F'Y we get
card F(x) Y = card F*Y.

Lemma 1,6. Let F be a set functor, x € FX with | F¥(x)|]| = N,. Then for every
finite set A = X withcard A £ |((F¥(x))| we have card F(x) X = card {y € F(x) X;

4 = N(FFW)}-

Proof. Let {X,; z€ X} be a family of disjoint subsets of X — A with card X, =
= card X for every z € X (since X is infinite, such a family exists). Choose a bijection
@: {B < X; card B = card A} — X, and for every B < X with card B = card 4
choose an injection Y5: X — X with Y5(X) = X, 5 U A and yz(B) = A. Now for
every y € F(x) X choose B, = ((#¥(y)) with card B, = card 4 and put z, =
= F 5 (¥). Since ¢, is an injection we get that Fy is an injection, which means
that if y, + y, and y,, y, € F(x) X and B,, = B,,, then z,, # Z,,- By Proposition
1,2, 7¥(z,) = Vs, (FE(v)), hence if y,, y, € F(x) X and B,, # B,,, then z,, *xzyz-
Since {z,; y € F(x) X} < {y e F(x) X; 4 = (\(FX())} (indeed, FF(2) = ¥5,(F ()
because Yp, is an injection, thus ((F}(z,)) = ‘psy(n(f’p((y))) and because B, =
< () and V3,(B,) = A, necessarily 4 = N(FX(z): We get the required
equality.
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Proposition 1,7. Let F be a set functor, x € FX with |F}(x)| 2 N, and F=F~.
Then for every finite set A = X with card A < |(F}(x))| there exists a set A of
objects of S(F) such that

a) if (Y,S)eWthen Y=X,0 + S c F(x)X, and ye S implies A = ((F}(y));
b) if (X, 51),(X,S,)eA then S; — S, £ 0+ S, — Sy;
c) card S(F)earax = card 2.

Proof. Let (Z, S) € S(F)4ax, then card Z < card X and therefore we can choose
a bijection f: Z — Y where Y < X; then (Z, S) is isomorphic with (Y, F (S)). Thus
card S(F)pax < max {card 2%, card 27*}. Since the converse equality is clear we
get card S(F)ax = max {card 2%, card 2"*}. Since |#}(x)| = N, we get by [12]
that card FX = card X, which means that card S(F),,,qx = card 2¥. Choose two
disjoint subsets X,, X, of X with card X, = card X, =card X and An X, =
=0=An X, Let ¢;, ¢,: X - X be injections with ¢,(A) = A = ¢,(4), ¢,(X) =
=X, UA, 0;(X)=X,0A. Let Tc {yeF(x)X; A<= ((F))}, put 1=
= (X, Fo,(T) U Fo,({ye F(x) X — T; A< N(FX»)}). Put A={oy; Tc
c {yeF(x)X; A = N(#}(y))}. From the definition of 7, and by Proposition 1,2
we get that 2 fulfils a), b), Lemmas 1,5 and 1,6 imply card FX = card {y € F(x) X;
A = N(F1(y))} and hence U fulfils c) as well.

To conclude this section we formulate two simple but very useful propositions:

Proposition 1,8. Let (A", U), (£, V), (M, W) be concrete categories such that
(o, U) is (strongly) M-spanned from o« upwards and there exists a (strong) full
embedding @ of (A, U) to (&, V) such that for a cardinal p we have card V®A <
< max {card UA, B} for every object A of H'. Let y be a cardinal such that
card A5 = card &, for every 6 2 y. Then (£, V) is (strongly} J-spanned from

max {a, B, y} upwards.

Proposition 1,9. Let(",U), (£, V), (#, W) be concrete categories such that
(', U) is (strongly) M-spanned from o upwards. If there is a (strong) full embed-
ding ® from (£, V) to (M, W) such that for a cardinal p we have card WbA <
< max {card U4, B}, then (', U) is (strongly) Z-spanned from max {o, B} up-
wards.

Since both propositions have straightforward proofs we omit them.

I

This section is devoted to set functors F which have a finite unattainable cardinal o
(i.e., there exists a set X and a point x € FX with |(F}(x))| = « and d(F}(x)) =
= exp X). We shall show that S(F) is strongly ultimately %-spanned. This result
follows by a simple compilation of results proved in other papers.
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Definition. The category of symmetric connected graphs without loops and com-
patible mappings is denoted by &.

We recall some propositions:

Proposition 2,1 [19]. There exists a strong embedding of 9 to & such that the
underlying functor is non-increasing from N, upwards.

Proposition 2,2 [13]. For every set Z there exists a full subcategory &, of & and
a strong embedding I, from & to &, such that

1) for every symmetric graph (X, R)e &, we have Z < X, and for every com-
patible mapping f: (X, R) — (Y, S) where (X, R), (Y, S) € &, we have f|Z = 14;

2) the underlying functor of the embedding II, is non-increasing from
max {No, card Z} upwards.

Proposition 2,3 [19]. There exists a strong embedding from the following concrete
category:

a) objects are (X, R, S) where (X, S) and (X, R) are symmetric graphs;

b) morphisms from (X, Ry, S;) to (X,, R,, S,) are mappings which are com-
patible mappings from (X, Ry) to (X,, R,) and at the same time compatible
mappings from (X,, S;) to (X5, S,);

to & such that the underlying functor is non-increasing from N, upwards.

Note. We can get an independent proof of Proposition 2,3 if we use a technique
from [14] and [15] and make two Sip-constructions where 3ips are independent.

Proposition 2,4 [13]. If a set functor F has a finite unattainable cardinal then there
exists a strong embedding of & to S(F) such that the underlying functor is non-
increasing from W, upwards.

Theorem 2,5. Fis strongly &-spanned from Ny-upwards.

Proof. Let « be an infinite cardinal, then by Proposition 2,2 there exists a strong
embedding I, from & to &, ( is the set of ordinals smaller than o) with an under-
lying functor F, non-increasing from « upwards. Let (y, & ) be the category described
in Proposition 2,3, then for every symmetric graph %= («, S) we can define ®:
S > (£, ), Pg(X,R) = (Y, S;, S,) where (Y, S;) = II(X,R) and S, = S, @, f =
= I1,f. Then &g evidently is a strong embedding of & to (&, &) with the underlying
functor F,. By Proposition 2,3 there exists a strong embedding ¥ from (&, &) to &
with an underlying functor G non-increasing from N, upwards. Hence ¥ - @, is
a strong embedding from & to & with the underlying functor G - F, non-increasing
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from o upwards and obviously ¥ o &y, and ¥ . Py, are independent where ¥; =
=(0,S,),i=12iff S, — S, + 0 + S, — S;. Let ¢, ¢,: & > « be two injections
with ¢,(2) N @,(®) = 0. For x = {0,1} € P,2and T < P,(x) a set Uy = ¢4(T) U
U @5(Py(x) @ — T). For different S, T = P,(x) a we have Us— Uy % 0 # Uy — Ug
and thus the proof is complete.

Note. Since ¥ is a full embedding, G must be faithful and therefore we can consider
I as a subfunctor of G, see [19].

To prove the basic theorem of this section we first prove an auxiliary lemma:

Lemma 2,6. Let x € FX where F is a set functor. Let o be a cardinal with o =
= |#X(x)|- Let S(F*) be (strongly) (', a)-spanned for a concrete category (A, U)
such that the independent full embeddings {Q,: # — S(F*); a € S(F*),} fulfil:

(%) for every object A of A" and a e S(F),, o is a subset of the underlying set of
Q.A, and for every morphism f: A — B in &', Q,fla = 1,.

Then S(F) is (strongly) (A, a)-spanned.

Proof. Clearly card S(F), = card {(«, R); R = F(«)}. For every (, R)e S(F)
we give a (strong) full embedding X such that:

a) the power of the underlying set of 234 is equal to the power of the underlying
set of Q, rnrepA for every object 4 of A,

b) if there exists a morphism f: gz, A — Zg,B of S(F) then R; < R,.

Define XzA4 = (Z, V) where Q, gorend = (Z, W) and V = WU Fi(R — F*a) where
iz o — Z is the inclusion. Since Q,f/x = 1, we get that X is a functor. If f: X4, =
= (Z,,V}) > ZgA, = (Z,, V) is a morphism of S(F) and Q, gr=adi = (Z;, W),
i= 1,2, then for y € W; we have F f(y)e V, and F f(y) € F*Z,, thus F f(y) e W,.
Hence f:(Z,, W;) » (Z,, W,) is a morphism of S(F) and since Q, rnr~y) is full we
get that Zy is a full embedding fulfilling a) and b). Moreover, if ©, g fxs) is strong
then Xy is strong. If we use the same technique as in Proposition 1,7 we get that there
exists a set A of subsets of F, such that card A = card 2* and R;, R, € A implies
R, — R, = 0 + R, — R,, which completes the proof.

Theorem 2,7. If F is a set functor with a finite unattainable cardinal, then S(F)
is strongly 9-spanned from N, upwards.

Proof. By Proposition 1,3 there exists x € FX with d(F}(x)) = exp X, N, >
> |N(#%(x))| > 1 and hence by Lemma 1,5, Proposition 2,4 and Theorem 2,5 we
get that the assumptions of Proposition 1,8 are fulfilled for &, & and S(F*). Thus
S(F*) is strongly &-spanned from ¥, upwards. Proposition 1,9 and Lemma 2,6
conclude the proof.
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Let ¥: A& — S(F) be a full embedding, let (Z, V) be an object of S(F) such that

a) Z is a subset of the underlying set of ¥4 for every object A€ A;

b) ¥f|Z = 1, for every morphism f: A — B of A;

¢) for every pair of objects 4, B of A, if Y4 = (X, R), ¥B = (Y, S) then every
morphism f: (X, R) > (Y, S U Fi(V)) of S(F) where i: Z — Y is the inclusion,
satisfizs F f(R) = S and S n Fi(V) = 0.

Then (Z, V) is called a graft of ¥.

Now we give the basic lemma of this paper:

Lemma 3,1. Let (&, U) be a concrete category. Let B be such a cardinal that for
every cardinal y = [ there exist a set T withcard T =y, a (strong) full embedding
Vi A — S(F) such that the power of the underlying set WrA is smaller than
max {y, card UA} for any object A of A", and a class of objects Ay with the under-
lying set T such that

a) if (T, V) e Uy then (T, V) is a graft of ¥r;
b) if (T, V), (T, V,)eUp then V, — V, £ 0 % V, — V3
¢) card A = card S(F),.

Then S(F) is (strongly) A -spanned from B upwards.

Proof. If 7 = (T, V) is a graft of ¥ then define X,: # — S(F) as follows: for
an object 4 of A", ;A = (X, R L Fi(V)) where ¥74 = (X, R) and i: T — X is the
inclusion, for a morphism f: A — B define X, f = ¥,f. Since (T, V) is a graft of ¥,
we have T < X for every object A of ", ¥;4 = (X, R). Thus the definition Z,A4
is correct and since for every morphism f: A —» B, Y1f|T = 1; we get that X, is
a functor. If 7, = (T, V,), 7, = (T, V,) are grafts of ¥; and A, B are objects
of A then the existence of a morphism f: X, 4 = (X, R U Fi(V,)) - Z5,B =
= (Y, S u Fj(V,)) where i: T— X, j: T — Y are the inclusions implies that V; = ¥,
and f: WA - ¥;B. Indeed, since (T, V) is a graft of ¥, we get Ff(R) < S, i.e.
f: WA - ¥Bis a morphism of S(F), which means that f/T = 1; and thus V; < V,.
If V; = V, then since ¥y is full we obtain that X is full, moreover, if ¥ is strong
then X, is strong with the same underlying functor. Now the existence of a class
concludes the proof.

Note 3,2. Let F be a set functor such that, for a point x € FX, N(F(x)) * 0,
[#F(x)| = No and there exists a strong embedding ¥ from & (or 2) to S(F) with
the underlying functor non-increasing from o upwards. If we prove that for each in-
finite set T there exists a finite set 4 = T such that each object (T, V) is a graft of
¥ o IT; whenzver V< F(x) Tand 4 = ((# () + 0 for any y € V then combining
Lemma 3,1 and Proposition 1,7 we get that S(F) is strongly & (or 2)-spanned from «
upwards.
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Construction 3,3. Let such a set functor F be given that for a point x € FX,
[ZF(x)] = Ro > n = |N(F¥(x))| > 0. If for a concrete category (A, U) there
exist a set Z with card Z = |#¥(x)|| and a full embedding ¥: # — S(P, ) such that

a) for every object A of o, Z is a subset of the underlying set of ¥4;

b) for every morphism f: A » B of A, Yf|Z = 1y

c) for every object A of A with YA = (Y, S) we have S < P,,(n)(Y) (where
n={0,1,...,n — 1}, thus P,,,(n) (Y) is the set of all n-point subsets of Y),
then we can define ¥: " — S(F) as follows:

for an object 4 of A define ¥4 = (Y, R) where ¥4 = (Y,S) and R = {y e F(x) Y;
NZFXy)e S, Zu (N(FHy)) e Fi(y)}, for a morphism f: A — B define ¥f = ¥f.

By a) ¥4 is correctly defined. We have to prove that ¥f is a morphism of S(F),
then clearly ¥ is a functor. Let us denote ¥4 = (Y, R), ¥4 = (Y, S), ¥B = (Y,, R,),
¥B = (Y,, S;). Choose y € R. Then Z U (N(Z}(y))) € #{(v) and since by b) Pf)Z =
= 1, we get that NPf(F(»)) = ¥ (N(FK)))- Since N(F{(v)) € S and Pf = ¥f
we have Pf(((F}(y))) €S, thus by c) card Zf(N(FL(»)) = [NF}(»)| and so
ZfIN(F1(»)) is one-to-one. Therefore there exists Ue #(y) such that PfJU is
one-to-one and by Proposition 1.2 ¥f(F)(y)) = Z}(F(¥ f(y))) and so F(¥ f(y)) e
€ R,. Hence Pf is a morphism of S(F). We prove that ¥ is full. If ¥4, = (Y, R,),
YA, = (Y, S;) for i = 1,2 and f: (Y, Ry) > (Y2, R,) is a morphism of S(F) then
for every ye R, and for every Z'e FX(F f(y)), card Z' 2 |#¥(x)| and hence
card f(Z) = | #¥(x)|. We choose Z; = Z such that card Z, = card Z, and f|Z, is
one-to-one. Then for every y € R, there exists ' € Ry with N(Z1'(y)) = (F1()'))
and Z, U (N(ZF'(v))) € F5(y'). By Proposition 1.2, Z{(F f(y')) = f(Z}(y')) and
since f(NFL() = F(NFV() we get that ((FE(FF0) = FNFL()
However, both sets have the same finite cardinality and hence coincide, which
means that f(N(Z}'(y)))e S, for any ye R, and thus f:(Y;,S;) — (Y5, S,) is
a morphism of S(P,, ;). Since ¥ is full we get that ¥ is full. Moreover, if ¥ is strong
then ¥ is strong with the same underlying functor.

Lemma 3,4. Let F be a set functor such that 1 < [|[((F(x))| < Ro £ |Z(x)|
for some x € FX. Then for each infinite set Twith T~ Z = 0 and each finite subset A
of T with card A = n we have. if (T, V) is an object of S(F) such that V< F(x) T
and y eV implies ((F[(y)) = A, then (T, V) is a graft of ¥ oIy for each full
embedding ¥: ¥ — S(P,) which extends the underlying sets (i.e. if (Y,S)e ¥,
Y(Y,S) = (W, Q) then Y = W and if f: (Y, S) > (Y,, S;) then ¥f]Y = f).

Proof. Let¥: & — S(P,,) be a full embedding which extends the underlying sets.
For a set Z we construct ¥ by Construction 3,3. Let T'be an infinite set with Tn Z =
= 0. Let (Y}, S;) be graphs, ¥ o IT4(Y}, S;) = (W, Q)), ¥ o I14(Y,, S;) = (W;, R)),
j=1,2.1f f: (W, R;) > (W,, R, U Fi(V)) is a morphism of S(F) where i: T~ W,
is the inclusion then we have to prove F f(R;) = R,. Assume that F f(y) ¢ R, for
some y € R;. Then Te #}*(F f(y)) and so there exists Z’' = Z such that card Z’' =
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= card Z, f|Z is one-to-one and f(Z') = T. For every y € R, choose )’ € R, with

NFFO) = NFr0). 2 o((FFK)eFr ().
Then card (f(Z" v (N(ZF(¥')))) — T)is finite and f(Z' U (NF (1)) is an element
of FYA(F f(y')), thus Ff(y') € R, U Fi(V). Since f|Z' is one-to-one and NZ1 (")
is finite we get that Nf(ZF'(¥')) = f(N(F (")) and by Proposition 1,2 we conclude
that ((F1(F ())) € Of(F () = [(NFF(5')))- Now if we use the fact that
N(Z 1 (v')) and N(F(F f()'))) are finite and have the same cardinality we get the
equality. By the property of V we obtain that f("(#}'(y))) = A for each y e R,.
Thus there exists a morphism from ¥ o IT,(Y;,S,) to (n, {n}). Hence if Q; + 0
then there exists a morphism h: (Wy, Q;) = (W,, Q,) of S(F) which factorizes by
(n, {n}). Then card Im h < n and this contradicts h|/T = 1. If @, = 0 then we get
a contradiction by the same argument.

Theorem 3,5. Let F be such a set functor that for some x € FX, 1 < |\(F}(x))| <
< Wo. Then S(F) is strongly @-spanned from |F¥(x)|| upwards.

Proof. By Lemmas 2,6, 3,1 and 3,4, Note 3,2 and Theorems 2,7 and 1,9 it suffices
to find a strong embedding ¥: & — S(P,) with an underlying faithful functor non-in-
creasing from N, upwards. Such a functor was constructed in [13].

v

The aim of this section is to prove that if there is a point x € FX for a set functor F
with [|(ZF}(x))]| > 1 then S(F) is strongly Z-spanned from max {|Z(x)|, No}
upwards. We recall the construction of a strong embedding from & to S(F) for
N(Z }(x)) infinite which was given in [13].

Construction 4,1. Let F be a set functor such that there is a point x € FX with
[N(FE(x))| = N and d(F}(x)) = exp X. Put « = |\(F}(x))|. We shall assume
that (Y, R) is a symmetric connected graph without loops such that Yna =@ and
neither Y nor « contain points a, b. Put Z = Yu a U {a, b}. Let S be the set of all
points z € F(x) Z such that ((#%(z)) coincides with some of the sets described in

a)—h):
a) E = {x + 2n; x is a limit ordinal smaller than «, n is a natural number};
b) 0 = {x + 2n + 1; x is a limit ordinal smaller than a, n is a natural number};
c) D= {x + 3n; x is a limit ordinal smaller than «, n is a natural number};
d) P, = {y€E; y > x} u {x} for some x € 0;
e) P,={ye0;y>x+ 2} U {x} for some x € E;
f) VU {a, x,y} for some x,ye0(x + y) and some V < E with card V' =
=cad(E - V) =a
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g) Vu{b,x,y} for some x,yecE (x # ») and some V<0 with card V =
= card (0 -V =g
h) DnE v {x, y} for some (x, y) e R (ie. x,yeY).

Put A(Y,R) = (Z, S)e S(F) and for a compatible mapping f: (Y, R;) - (Y3, R;)
define Af: A(Y,, R;) - A(Y,, R,) such that Af]Y, = f and Affa = 1,, A f(a) = a,
Af(b) = b. Then A is a strong embedding from &% to S(F) with an underliyng
functor I v C,_ ., (see [13]), non-increasing from o upwards.

Lemma 4,2, Let T be an infinite set, t € T. Then for a set functor F with a point
x € FX such that o = |\(F¥(x))| = No and d(F¥(x)) = exp X an object (T, V)
is a graft of AoITy (for A see Construction 4,1) whenever V< F(x) T and yeV
implies t € (F ().

Proof. Let (Y}, S;) be graphs, A.II(Y;,S;) = (W;, Q;), j =1,2. Then for
a morphism f: (W, Q,) = (W,, @, U Fi(V)) where i: T— W, is the inclusion we
have to prove that Ff(Q,) = Q,. Assume the contrary, i.e. Ff(q)e Fi(V) for
som: g€ Q,. By Construction 4,1, card (N(#7'(q9)) n«) =« and by Pro-
position 1,2, N(Z}*(Ff(q))) = f((N(FF'(9))). Since card (F¢*(F f(q))) = « and
N(FY Ff(q))) = T, we have card(f(x) n T) = a. Therefore there exists
A < a, card A = a, such that f(4) = T and f/A is one-to-one. Clearly we can as-
sume that A = O (we have card (4 n 0) = a or card (4 N E) = «, hence in the
first case put A = A n O, in the second case put A = A N E and substitute E instead
of 0). Since E = N(#}'(q,)) for some g, € Q,, necessarily card f(E) = o. Now
we choose A’ < A, iy, i, € E such that card 4’ = card (0 — A’) = « and f is one-
to-one onto A’ U {a, iy, i,}. Since there exists ye Q, with N(F}'(y)) = A" v
v {a, iy, i,} we get by Proposition 1,2 that (F7*(F f(»))) = f(N(#¥'(»))), hence
card (N(ZFF*(F f(y))) " T) = o and so F f(y)e F i(V), thus f(A" v {a,i;, i,}) = T.
Since iy, i, were arbitrary points of E we get f(E) = T. Now, if we exchange E and O
we get f(0) = T. Further, we prove that for every 4 < O, card A = a, we have
card f(A4) = . Otherwise we can choose A’ = 4 with card A’ = card (0 — A') = «
and then there exists y € Q, with N(#}'(y)) = A’ U {a, i,,i,} for some iy, i, € E,
iy # i, Then by Proposition 1,2, N(ZFF(Ff(») = f(NF}'(») = f(4" v
U {a, iy, i5}) but cardf(4" U {a, i, i,}) <« which contradicts Ff(y)e Q,u
U F i(V) = F(x) W,. Analogously we can prove that for every A < E, card A = «
we have card f(A4) = «. Thus there exists an ordinal k < « such that for all ordinals
Jok £j < o, f(j) # t. Assume that k € 0, then there exists y € @, with N(F}(y)) =
= {k} v {j€E; j > k}. Now by Proposition 1,2 we get that N(Z}*(Ff(y))) =
< f(NFF () = {f(k)} v {f(j); j€E, j > k}; this implies t ¢ \(F}(Ff(y))),
therefore Ff(y) ¢ Fi(V). On the other hand, fIN(FF'(y)) = T implies Ff(y) ¢
¢ 0, — a contradiction. Hence Ff(Q,) = Q,.

Construction 4,3. Let F be such a set functor that for some x € FX, d(#}(x)) *
+ exp X and « = |(F¥(x))| = No. Then for A: ¥ — S(P,) defined in Construc-
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tion 4,1 we can define X: & — S(F) as follows: if (Y,S)e & and A oI, S) =
= (W, Q) where Z is a set with card Z = |d(#¥(x))| then put X(Y,S) = (W, R)
where R = {y e Fx)W; N(FL()e 0, Zu (NFL() e ZFE()); if f: (Y1, S1) =
— (Y5, S,) is a compatible mapping of & then define Zf = Ao IT,f. Then
X: ¥ — S(F) is a strong embedding with an underlying functor non-increasing from
[#¥(x)| upwards as was proved in [13].

Lemma 4,4, Let T be an infinite set with T Z = (. Choose three distinct points
ty, t,,t3 of T. Then for a set functor F with a point x € FX such that card Z =
=B = |dFXx)| = Ro, « = |NFHx)| = R,, an object (T, V) is a graft of
2 o Iy (for X see Construction 4,3) whenever V < F(x) Tand y € Vimplies ty, t,, t; €
e (ZH(y)). (Since T Z = 0 we can assume that for any graph (Y,S), Tc W
where X o IT(Y, S) = (W, Q) and for any morphism f of &, X o II1f|T = 11.)

Proof. Let(Y;,S;) be graphs, X o IT(Y;,S;)=(W;, Q;) for j=1,2. Let f: (W}, 0,) -
—(W,, Q, U Fi(V) be a morphism of S(F) where i: T— W, is the inclusion. We have
to prove that Ff(Q) = Q,. Assume that Ff(q)e Fi(V) for a point g € Q,. Then
there exists Ae Z)*(Ff(q)) with A < T and card A = | #}(x)|. Hence either
card (f(Z) n T) = |#}(x)| or card (f(2) n T) = a where a = |\(F§(x))|.

1) Assume card (f(Z) n T) = card Z. Then there exists a set Z' = Z such that
card Z' = card Z and f|Z' is one-to-one. By Construction 4,3, for every ye Q,
there is 1" € 0, with (FI() = NFL'(), Z 0 ((FL())) € (). Then
Proposition 1,2 yields (ZF(F f(¥)) = NF(ZF'(V')) = F(NFF'(y'))) and hence
card f(N(#}'(y))) = «foreach y € Q;. Choose A = 0, iy, i, € E such that card 4 =
= card (O — A) = «, f is one-to-one onto 4 U {a, iy, i,}. There exists y € Q, with
NFF'(») = Au iy, iz,a} and Z' U AU {a, iy, i,} € F}'(y), hence by Proposi-
tion 1,2, FFFf(y)) =f(F'(y)) and since f(Z') = T we get that necessarily
Ff(y)e Fi(V) and so f(4 U {iy, i, a})eT. Since A and iy, i, are arbitrary we
have f(oc) < T. Since for each A = a, card A = «, there exist two points iy, i, €a
such that 4 U {a, b, iy, i} > N(Z}'(y)) for some ye Q;, we conclude that for
each A < «, card 4 = o, we have card f(4) = «. Hence there exists k < « such
that for each j, k < j < «, we have f(j) = 1y, t,, t3. Then there exists y € Q; with
{2k + 1} u{j>2k+1; jeE}uZ eZ}(y) and N(FF'(y) = {2k + 1} U
u{j>2k+1; jeE}. But then 1,1, t;¢/(NF1'(¥) = NFF(Ff(y) —
a contradiction with F f(y) € F i(V).

2) Assume card (f(2) N T) = «. Then there exists 4 < a, moreover, we can
assume that 4 — O since otherwise we can substitute E instead of O, such that
card A = card (0 — A) = o, f[A is one-to-one and f(A4) = T — {t,t,,t3}. If
card f(Z) = card Z, then we choose Z' = Z such that card Z' = card Z and f|Z’ is
one-to-one. There is ye Q, with Z'vAu{a,i,i}eZ}(y), NFF'(y) =
= AU {a, iy, iy} for some iy, i, € E, iy * i,. Then N(FF(Ff(»))) = F(NFF'()))
and so Ff(y)e Fi(V) but we can assume that f(i), f(i,) ¢ {t,, t,, t3} and hence
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(11, o, 13} & n(g;FwZ(Ff(y))) —- a COHtFadiction. Therefore card f(Z) < card Z.
For arbitrary iy, i, € E choose y e Q; With NZF'(y) = Av{a, iy iz} and Z U
UAU{a iy, i) e #7(y). Since card (f(Z UAu{a,iyi}) - T) < |[F¥(x)| and
F f(y) € F(x) W, we get that F f(y)e F l(V). Since iy, i, are arbitrary we can assume
that £(i), f(i,) ¢ {1, t2» 13} and so for arbitrary B e d(#}"(y)) we get that t,, 1,, 1, €
ef(B) U {f(a)}. Assume that f(a) # ty,1,. Then either card(Z — f7'(t,)) =
= card Z or card (Z — f'(t2)) = card Z. Assume the first case occurs then there
is y; € Q; with ﬂ(gf’}v‘(J’)) = ﬂ(«"/"?”‘(yl)) hence F f(y,) € F i(V) and (ﬂ(«/’”“?‘(yl)))u
D2~ (1)) #2(n). Then 14 € F(OFL () o (2 — S (1)) and. Pro-
position 1,2 yields ¢, ¢ ﬂ(«ﬂ"z(Ff(yl))) — a contradiction since Ff()’1) ¢F i(V)-

Theorem 4,5. Let F be a set functor with a point xe FX |((#X(x))| > 1. Then
S(F) is strongly @-spanned from | F(x)| upwards.

Proof. By Lemmas 3,1, 4,2 and 4,4 and by Note 3,2 and Theorems 3,5 and 1,9
and Constructions 4,1 and 4,3, S(F¥) is strongly &-spanned from || #¥(x)| upwards.
Now Lemma 2,6 concludes the proof.

\%

In this section we deal with the categories S(F) such that for some x e FX,
IN(ZE(x))| = 1 and [|d(#¥(x))| = N, (hence F}(x) is not an ultrafilter). We prove
that S(F) is strongly ultimately #-spanned. We first recall a construction in [13].

Construction 5,1. Let F be a set functor such that for some x € FX |(F}(x))| =
=1 and a = |[#}(x)| > 1. Then there exist objects (Z, U,), (Z, U,) of S(F) and
four distinct points a b ¢ d € Z such that

a) Uy c U, c F(x)Z, Uy # Uy;
b)if ye U, (i = 1,2) and FXz) = FH(y) for some z € F(x) Z then ze U;;
c) put By = 0, B4y = 2°¢ and for a limit ordinal y, B, = sup f;; then card Z = §,;

i<y

d) for f: Z — Z such that card f({z; f(z) % z}) = « there exist ye U, and Z, = Z
such that N(F{(y)) = {b}, Z, L {b} € F{(y), f|Z, is one-to-one, f(Z,) " Z, =
=0, card Z, = o and for every ve U,, d(F%(v)) + f(d(FH()));

e) for f: Z — Z with card {z; f(z) # z} 2 « and card f({z; f(z) + z}) < « there
exists y € U, such that N(FH(»)) = {b} and {z; f(z) % z} U {b} e F);

f) for every Z, = Z with card Z, = o there is y € U, with N(F}(y)) = {a} and
Z, v {a} e FL(y); |

g) for f: Z — Z such that card {z; f(2) * z} < aand for someze Z — {a, b, c, d}.
f(z) # z, there is y e U; with (FE(y)) = {z} and {z} U {ve Z; f(v) = v} €
€ ZZ(y) such that for each w € Us, FH(w) + f(FXy));

h) there are y,, y,e U, with ZFE() = {c}, FXy,) = {d}, d(F4y)) +
+ d(#Hy,)), and for each z € U, cither #%(z) = F¥y,) or Fz) = F¥y,)
or d(F(y,)) + d(FHz2)) + AFHr2));
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i) for a graph (Y,S) put W=YU(Yx Yx (Z - {c,d})) (we assume Y
N(Yx Yx (Z = {c, d})) = 0). For (y,,y,)eY define ¢, ,,:Z—> W as
follows: ¢(y1,3’1)(z) = (s » z)forzeZ — {c, d} QD(yx,yz)(C) = V1 Piua(d) =
=y, and put @ = UFg, ,.(U,) U UFg,, ,,(U,) where the first union is
taken over all (¥, ¥,) € Y and the second union is taken over all (1 y2)€S.
Define 2(Y, S) = (W, Q) and for a compatible mapping f: (Y;, S;) = (Y2, S,)
define Zf[Y = f, Zf[(Y x Y x (Z — {c,d})) = f x f x L.

Then Z is a strong embedding of & to S(F) with the underlying functor non-increasing
from S, upwards.

Lemma 5,2. Let (T, V) be an object of S(F) and let t € T be such that V < F(x) T
and y € Vimplies (\(# [(y)) = {t}. For every graph (Y, S) with X - IT(Y, S) = (W, Q)
and for every morphism f: (Z,U;) - (W, Q L Fi(V)) of S(F) where i: T — W, is the
inclusion and j = 1,2 we have either Ff(U;) = Q or card (Z — f~*(T)) < « and
for any W' = W with card W' < a we have card f~'(W’) < a.

Proof. Put (Y,S)=IT(Y,S). If cardf '(W’') 2 « for some W' = W with
card W' < « then by f) there is ye U; with {a} U f ! (W')e F{y). Since
card (f(a) U W’) < o we get by Proposition 1,2 that Ff(y) ¢ F(x)W, a contradiction.
To prove the first statement define f: Z — Z/~ where ~ is the equivalence with the
only non-trivial class {c, d}. Define f(z) = 2" if f(z) = (1, y,, z') for some y;, y, €
€Y, f(z) = {c, d} if f(z) e Y. If card {z; f(z) # z} = « then by d) and e) there exist
yeU; and Z' < {z; f(z) # z} such that Z' U {b} € FYy), card Z' = o and either
f]Z' is one-to-one and f(d(ZH(y))) + d(F{(w)) for all we U, or card f(Z) < .
By the definition of X and by Proposition 1,2 we get that in both these cases
(p(YI.)’z)(f(d('g"%(y)))) + (p(yl'y}’z')('g:i(w)) = ‘g’-y(F(P(YI',yz')(W)) for all Vi, V2 y,]a ylz €
€Y, weU,, and hence Ff(y)¢ Q. Thus card {z; f(z) + z, f(z) # {c,d}} <.
On the other hand if card f~'({c, d}) = a then there is A = f~'({c, d}) such that
f|A U {a} is one-to-one and card A = «, and then by f) there is y € U; with 4 U
U {a} e FXy) and {a} = N(FH))- Since f(A U {a}) = Y, Proposition 1,2 yields
f(a) = t. Now for every B = Z such that b e B satisfies either f(b) + b or f(b) ¢
¢ Y — T we have card B < «. Otherwise either card f(B) = a or card f(B) < a.
In the second case, by f) there is y € U; with B U {a} € #(y) but then f(B) u {t} €
€ ZY(F f(y)), hence |FF(F f(¥))| < « and thus F f(y) ¢ F(x) W, a contradiction.
In the first case we can assume that f/B U {a} is one-to-one and by f) there is y e U;
with B U {a} € F(y)and {a} = N(FF(y)). By Proposition 1,2, {t} = N(F}(F f(»)))
and f(B) v {t} e L (F f(y)). By d), F f(y) ¢ Q and since f(B) n T = 0 we obtain
Ff(y)¢ Fi(V). Thus if card{z; f(z)  z} = o then card {z;f(z)¢ T} < a. On
the other hand, if Ff(y)¢ Q then F f(y)e Fi(V) and so Te FY(F f(y)). By

Proposition 1,2, card (Tn Im f) 2 « and so caid (z; f(z) + z} = a. The proof is
complete.
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Lemma 5,3. Let F be such a set functor that for some x € FX, |(ZF}(x))| = 1,
a = |#X(x)| > 1 and whenever, for aset X' = X, X' A + 0 for all Ae d(F(x))
then card X' 2 a. Then for any infinite set T and t € T, an object (T, V) is a graft
of Z o Il whenever V = F(x) T and y € V implies {t} = N(FF(»)).

Proof. Let (Y, 5;), j = 1,2 be graphs, IT(Y, S;) = (Y, 5;), 2o I1(Y,, S;) =
= (W, ;). Let f:(W,, Q,) = (W2, Q, U Fi(V)) be a morphism of S(F) where
i: T— W,is the incl_t_lsion. If Ff(y) ¢ Q, for some y € Q,, then by Construction 5,1 i)
there exist j;, y, € Y; and v e U, such that Fgo@l’yz)(v) = y and by Lemma 5,2 we
get that card{ze€Z; foqg,;,(2)¢ T} <o Choose zeZ — {a,b,ec, d} with
f o @, 5.(2) ¥ t. Then by g) there exists y e U, with {z} = ((FXy)). Since Ff o
> @5, 5(y) # @ We obtain (FF(Ff o 95, 5,,(v))) = {¢}. Since f o @5, 5,,(2) + 1 we
get An(fo g, 5,) " (1) % 0 for each 4 € d(F7(y)). By the assumptions of our
lemma, card (f o @, 5,)"* (f) = o« which contradicts Lemma 5,2.

Corollary 5,4. Let F be a set functor fulfilling the assumptions of Lemma 5,3.
Then S(F) is strongly 9-spanned from B, upwards.

Proof follows from Lemmas 2,5, 3,1 and 5,3 and from Note 3,2.

Lemma 5,5. Let F be such a set functor that for some x € FX, |\(Fx(x))| = 1
and d(F¥(x)) is not an ultrafilter. Let T be an infinite set with te T and let the
subset Ty = T — {t} fulfil card T, = card (T — T}). Then every object (T, V) of
S(F) is a graft of ¥ o Iy whenever V < F(x) T, and for y € V we have: \(F 1(y)) =
={t}and T, n A + 0 + [T— T,] n A4 for each Aed(F(y))-

Proof. Let (Y;, S;) be graphs, j = 1, 2. Put ITo(Y}, ;) = (Y;, 5,), Z o [14(Y, S ;) =
=W, Q). j=1,2 Letf:(Wy, Q) — (W2 Q20 Fi(V)) be a morphism of S(F)
where i: T— W, is the inclusion. If Ff(y)e€ Fi(V), for some y € Q, then there
exist ji, yo € Y, ve U, with F(p@l,;z)(v) = y. If we apply Lemma 5,2 to fo ¢, s,
we get that card {z; fo ¢, 5.(2) ¢ T} < @ Choose Ae FL(Ff(y)), A<Imf.
o @50 Then AN Ty + 0, An(T— (Ty v {t})) * 0 and either card (4 N T}) = «
or card (4 N (T — T,)) = «. Hence we can assume that card (Im f o @5, 5, 0 Ty) 2
> o (otherwise card (Im f o @5, 5, N (T — (T1V {t}))) Z @ and we can take T —
~ (Ty v {t}) instead of T;). Then there is Z, « Z with card Z, = « such that
f o P5,.5, i one-to-one onto Z; and f o @, 5(Z1) = Ty v {t}. By f) of Construc-
tion 5,1 there is qe U, with Z; u {a} € F(q), {a} = N(FHAq)). Now F(fo
© Psisn) (2) ¢ 0, since fo g, 5(Z1 v {a}) € Ty and  F(fe 9, 5,) (2) € Fi(V)
since [f o 9, 51)(Z1 U {a})] 0 (T — [Ty v {t}]) = 0 — a contradiction.

Lemma 5,6. Let F be a set functor with a point x € FX such that d(F}(x)) is not
an ultrafilter and |(\(F}(x))| = 1. Let T be a set with card T 2 o« = |F(x)],
choose te T, T, = T with card Ty = card T = card (T — T;). Then there is a set 2
of objects of S(F) on T such that '
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a) if (T,V)e then V< F(x)T, and yeV implies (\(F{(y)) = (t}, and for
each A e d(F(y)) we have AnNT, =0+ An (T - T,);

b) if (T, Vy), (T, V) €A then Vi — Vy + 0 % V; — Vi

c) card A = card S(F*)carar-

Proof. Choose 4 ¢ d(#5(x)) such that A N B =+ ¢ for each B e d(#}(x)). Denote
F ={C:3Bed(F¥(x)),C> Bn 4},% = {C;3Bed(F}(x)),C > Bn (X — A)}.
Then & + exp X + ¢ are filters. Put § =card {&#; 3/: X - T, 3Be Z, f[B is
one-to-one, # = f(#)}, 7 = card {#; 3f: X - T, 3Be %, f/B is one-to-one, # =
= f(%)},6 = card {y e F(x) X; F1(y) = F}(x)} Then card {y € F(x) T; (F}(y)) =
={1}} = B x y x 8. Indeed, if B’ = card {#;3f: X - T, IBe d(F¥(x)), f|B is
one-to-one, # = f(d(#¥(x)))} then clearly card {ye F(x) T; N(F(y)) = {t}} =
= B x 5. On the other hand, obviously f' = B x 7. Hence f x y x § =
= card F(x)T = card {y € F(x)T; (\(F}(»)) = {t}} Z card {y € F(x)T;
NZF) = {t}, VAedFi(y), AnT 0+ An(T-T)} 2 xyxds If
we now use the same technique as in Proposition 1,7 we get Lemma 5,6.

Theorem 5,7. Let F be a set functor such that for some x € FX, « = |Z¥(x)| >
> |[N(F¥(x))|| = 1. Then S(F) is strongly @-spanned from B, upwards.

Proof. Clearly d(#}(x)) + exp X. If d(#}(x)) is an ultrafilter then for every
Ac X with card 4 <o we have X — Aed(F¥(x)) (otherwise |Z}(x)| =
= |d(#¥(x))|| < ). Thus F}(x) fulfils the assumption of Lemma 5,3 and by Corol-
lary 5,4 we get the required assertion. If d(#}(x)) is not an ultrafilter then Lemmas
2,6, 3,1, 5,5 and 5,6 conclude the proof.

VI

In this section we summarize all the preceding results.

Lemma 6,1. Let F be such a functor that for every x € FX either F}(x) is an
ultrafilter or (F§(x)) = 0. Then for any object (T, V) of S(F), if f: (T, V) — (T, V)
is a morphism in S(F) and f(t,) = t, % t,, then g: (T, V) — (T, V) with g(t) = t
for all t # ty, g(t;) = t,, is also a morphism.

Proof. Let y € V. Then either T — {t,} € Z(y) or (F(y)) = {t;} and FL(y)
is an ultrafilter. In the first case, Proposition 1,2 yields Fg(y) = y, in the second
case {t,} € Z(y) and hence by Proposition 1,2, Ff(y) = Fg(y)e V.

Construction 6,2. Let F be such a set functor that for every x e FX either
N(F¥(x)) = 0 or F}(x) is an ultrafilter. Let 1 = {0}, 2 = {0, 1}. For x € X denote
by p}: 1 -> X a mapping with p¥(0) = x. Set D = {x e F1; Fp}(x) # Fp3(x)}. Now
for every object o/ = (X, V) of S(F) define a quasi-order <, on X as follows:
x S,y iff (FpY)"*(V)n D < (Fp})™* (V) n D.
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Lemma 6,3. Let F be such a set functor that for each x € FX either F¥(x) is an
ultrafilter or (\(F¥(x)) = 0. Then for every object (X,V) of S(F) and xeX,
a mapping g: X — X such that all points except x are fixed points of g is an endo-
morphism of o iff x < 4 g(x).

Proof. If g is an endomorphism then put # = (1, B) = (Fp})~' (V) n D. Clearly
V n Fp}(D) = Fp}(B) and so p}: # — </ is a morphism. Then g o p is a morphism
and so Vn FpX(D) = Vn F(g - p}) (D) 2 Fg(V) n F(g - p¥) (D) =
= Fg(V n Fp¥(D)) = Fg(Fp{(B)) = Fp}(B), thus y ,= x. If x <,y then for
ve V either X — {x} e #¥(v) and then Fg(v) = v by Proposition 1,2, or {x} =
= ((#¥(v)), then Fi(v)is an ultrafilter and so ve Fp¥(D) — thus Fg(v)e V n
A FpY(D) < V.

Lemma 6,4. Let F be such a set functor that for every x € X either (\(F(x)) = 0
or F(x) is an ultrafilter. Then for any object o = (X, V), g: X — X is an endo-
morphism of o/ whenever x < 4 g(x) for all x € X, and g(x) = x for all x € X but
a finite set.

Proof. If ve(X, V) then either X — {x; g(x) + x} € #3(v) and so Fg(v) = v
or there exists x € X with g(x) = x such that {x} = N(F}(v)) and N(F}(x)) is an
ultrafilter. Since x <, g(x) we get Fg(v) € V and the proof is complete.

Now we introduce some definitions which will be used in the characterization theorem.

Definition. A monoid .# is said to be given by a quasiordering, if there exists
a quasi-ordered set (X, <) and .# is isomorphic with the monoid ({f: X - X;
VxeX, x £ f(x)}, ).

Definition. An object o of a category " with the trivial monoid of endomorphisms
is called rigid. A concrete category (', U) is binding if every category of algebras
has a full embedding into (A", U) (or equivalently, the category 2 has a full embedding
into (A", U)). '

A set functor F preserves the union of sets A, B if F(A U B) = Im Fi U Im Fj
where i: A > AU B, j: B> A u B are the inclusions. A set functor F preserves
unions with a finite set if for every pair A, B of sets where A is finite, F preserves
the union of 4 and B.

(f, r) is a transposition pair on a set X if r, f: X - X are such mappings that
r(x) = x iff f(x) + x for all xe X, r* = 1y and card {x € X; r(x) & x} = 2.

For a cardinal a, «™ denotes the cardinal successor of a.

Now we have:

Characterization theorem 6,5. Let F be a covariant set functor.
Then the following are equivalent:
1) S(F) is binding;
2) there is a strong embedding from 9 to S(F);
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3) S(F) contains more than card 2" non-isomorphic rigid objects;
4) S(F) contains a rigid object on a set with power > card 2F!;
5) there is an object of S(F) such that the monoid of endomorphisms is iso-
morphic with a non-trivial group;
6) there is an object of S(F) such that the monoid of endomorphisms is iso-
morphic with a finite monoid which is not given by a quasiordering;
7) S(F) is strongly ultimately @-spanned;
8) S(F) is strongly ultimately V-spanned for a variety V of finitary algebras;
9) S(F) is strongly ultimately R-spanned for a category R of an n-ary relation
(n is finite);
10) S(F) is ultimately Z-spanned,;
11) S(F) is ultimately .#-spanned for a finite monoid M
12) S(F) is ultimately discretely spanned;
13) S(F) has an (., a)-span for a finite monoid which is not given by a quasi-
ordering and for an infinite cardinal «;
14) S(F) has an (M, o)-span for a finite monoid and o > card 2F1;
15) S(F) has an (M, «)-span for a non-trivial group and for an infinite cardinal ;
16) F does not preserve unions with a finite set;
17) F does not preserve unions of a set with a onepoint set;
18) for some x € FX, (F}(x)) + 0 and F}(x) is not an ultrafilter;
19) there exists a transposition pair (f, r) on a set X such that for some x € FX
both Fr(x) + x and Ff(x) # x;
20) there exists a cardinal a such that for each transposition pair (f, r) on a set X
with power at least «, there is x € FX with both Fr(x) + x and Ff(x) # x.

Proof. The equivalence of 1)—4), 16)—20) is proved in [13]. From Theorems 3,5,
4,5 and 5,7 we get that 18) implies 7). 7) = 8) follows from Proposition 1,9, 7) = 9)
follows from [8] and Proposition 1,9. 7) = 10) is trivial. On the other hand, 8) = 1),
9) = 1) and 10) = 1) are evident. By [8] we get 7) = 11) & 12) & 13) & 14) & 15).
Clearly 12) = 3), 13) = 6), 14) = 3) and 15) = 5). Further, 1) = 5) and 1) = 6)
and by Lemmas 6,1, 6,3 and 6,4, 5) = 18) and 6) = 18). Analogously, 11) implies
that for every cardinal o there exist a cardinal 8 > o and an object (8, V) of S(F)
such that monoid of endomorphisms is isomorphic with .#, but then Lemmas 6,1
and 6,3 imply 18). The proof is complete.

As a consequence we get

Main Theorem. For a covariant set functor F the following are equivalent:

S(F) is binding;

S(F) is strongly ultimately 9-spanned;

S(F) is ultimately discretely spanned;

F does not preserve the union with finite sets.
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One may ask whether 12) could be-strengthened so as to read “‘S(F) has a discrete
span”. The following example shows that it is impossible.

Exmaple 6,6. Let F = I x Cy where N is the set of all natural numbers. Then
card S(F)y, = 2%. On the other hand, there is & < exp N such that card Z = 2%
and for Z,,Z, e #,Z, — Z, + 0 + Z, — Z,. Let {Z; i € 2™} be a decomposition
of Z such that every Z; is infinite. Choose a countable set X and for every i let
@;: X > Z; be a bijection. For i € 2™ let (X, S;) be an object of S(F) where S; =
= {(x,n); x€ X, n € ¢,(x)}. Then by Lemmas 6,1 and 6,3, (X, S,) are rigid for every
i €2 and it is easy to verify that there is no morphism from (X, S;) to (X, S;) if
i # j. Thus S(F) has a discrete Ny-span. In the following papers we will show that
the estimate in Condition 14) can not be strengthened, either.

Note 6,7. Concrete binding categories are most often ultimately Z-spanned. One
possibility to continue the hierarchy is to ask, whether a binding ultimately Z-
spanned category & is ultimately #-spanned by some other categories & of interest,
e.g. by the category S(Q,,,) of infinitary relations or by S(P*) for P* — the covariant
power-set functor. This direction of investigation is still open.
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