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By a graph we shall mean a pseudograph in the sense of [1]. If G is a graph, then
V(G), E(G), C(G), pg, 46, and c¢ denote its vertex set, its edge set, the set of its
components, the number of its vertices, the number of its edges, and the number of
its components, respectively. If G is a connected graph, then y,/(G) denotes the
maximum genus of G, i.e. the maximum integer k with the property that there exists
a 2-cell embedding of G into the closed orientable surface of genus k. If G is a con-
nected graph, then y(G) < [(4¢ — pe + 1)/2] (cf. [1] or [7], for example). A graph
G is said to be upper embeddable if it is connected and y,(G) = [(9¢ — ps + 1)/2].

Let G be a connected graph. We denote by 7(G) the set of its spanning trees.
If Te 7(G), then we denote by x4(T) the number of components F of G — E(T)
with the property that g, is odd. The following theorem was proved by Homenko,
Ostroverkhy, and Kusmenko [2] and independently by Xuong [8]:

Theorem A. If G is a connected graph, then

m(G) = (46 — p + 1 — min xg(T))/2.

TeT (G)

The following partial case of Theorem A was also proved independently by
Jungerman [3]:

Theorem B. A connected graph G is upper embeddable if and only if there exists
Te 7(G) such that x4(T) < 1.

If H is a graph, then we denote by by the number of components F of H with the
property that gr — py + 1is odd. If G is a graph and 4 < E(G), then we denote

Yo(A) = cg-u + bg_y — 1 — |A].
Theorem C ([5]). If G is a connected graph, then

min x4(T) = max yg(A).
TeT (G) ASE(G)

The following theorem is a very easy consequence of Theorems B and C:
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Theorem D ([5]). A connected graph G is upper embeddable if and only if
g+ bg_q—2= |A| for every A < E(G).

In the present paper we shall generalize Theorems C and D.

Let G be a graph and let n = 1 be an integer. By an n-factorization of G we shall
mean a sequence (G, ..., G,) of edge-disjoint spanning subgraphs G,, ..., G, of G
with the property that E(G) = E(G,) U ... U E(G,). We shall say that an n-factoriza-
tion (G, ..., G,) of G is connected or upper embeddable if for each ie {1,...,n},
G; is connected or upper embeddable, respectively.

The following theorem is due to Tutte [6]; it was also proved by Nash-Williams

[4]:

Theorem E. Let n = 1 be an integer. A graph G has a connected n-factorization
if and only if

n(cg-4 — 1)< IAI for every A <= E(G).

Let n = 1 be an integer. Assume that H is a graph; then we denote by B, ; the set
of all F e C(H) with the property that g — n(py — 1) is odd; moreover, we denote
b,y = an,11|~ Consider a graph G. We denote by 7 ,(G) the set of all sequences
(Ty. .... T,) of edge-disjoint spanning trees Ty, ..., T, of G. For every (Ty....,T,) e
€ 7 (G) we denote

Xn6(Tis - T) = |{Fe C(G — (E(T}) U ... U E(T,)); gy is odd}|.
For every A = E(G) we denote
yn,G(A) = n(CG—A - 1) + bn,G—A - ‘A| .

The following theorem is the main result of the present paper:

Theorem 1. Let n = 1 be an integer. Assume that G is a graph which has a con-
nected n-factorization. Then

min Xp6(Tys 2oy T,) = max y, 6(4) .
(T11ee, TRET n(G) ASEG)

Combining Theorems B, E and 1, we get

Theorem 2. Let n = 1 be an integer and let G be a graph. Then G has an upper
embeddable n-factorization if and only if

() n(cg—4 — 1) + max (0, b, g4 — n) < |A| for every A < E(G).
Before proving Theorems 1 and 2 we shall prove two lemmas.
Lemma 1. Let n = 1 be an integer and let G be a graph. Then

Vn(4) = g6 — n(pg — 1) (mod 2) for every A < E(G).
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Proof. For an arbitrary A = E(G) we have
g6 — n(pe — 1) + J’n.G(A) =g — n(PG - 1) + n(CG—A - 1) +
+bygoa— A =bug_s+ Y (qr—n(ps— 1)) =0 (mod2).
)

FeC(G— 4
Hence, the lemma follows.

Let n = 1 be an integer and let G be a graph. We denote
Vn,g = max J’n,(;(A)-
ASE(G)

Moreover, we denote by MAX,(G) the set of all A = E(G) with the properties that
V.c(4) = y,.¢. and for each 4, = E(G), if v, ¢(40) = yu, then A is not a proper
subset of A4,.

Lemma 2. Let n > 1 be an integer. Assume that G is a graph. Let A€ MAX,,(G)
and let F e C(G — A). Then

(i) if gr — n(pr — 1) is even, then qp = 0;

(ii) if gr — n(pp — 1) is odd, then qp 2 1, and for each e € E(F), y, p_. = ¢ and
F — e has a connected n-factorization.

Proof. (i) First, let g5 — n(py — 1) be even. Clearly, y, (A U {e}) = y, ¢(4) for
each e € E(F). Since 4 e MAX,(G), g5 = 0.

(ii) Now let gz — n(ps — 1) be odd. If gy = 0, then p, = 1and gr — n(py — 1) =
= 0, which is a contradiction. Thus, gz = 1.

Consider an arbitrary e € E(G). Let Z < E(F — e). It is clear that

Co—(Avfejuz) = C-4 — L + Cr_e)-z
and
by 6-(avterozy = bug-a — 1 + by g-e)-z -
We have
,\’..,G(A Y {e} vZ)= "(CG—(Au{e}uZ) = 1) + by 6-(auteuzy) — IA Y Zl -1=
= yn,G(A) + yn,F—e(Z) - 2.

Since A e MAX,(G), y,¢(4 U {e} UZ)<y,q(A). Hence, y,r_(Z) < 1. Since
gr-. — n(pr — 1) is even, it follows from Lemma 1 that y, y_(Z) is also even, and
thus y, p—(Z) < 0. Since y, r-(0) 2 0, y, p—. = 0.

Assume that F — e has no connected n-factorization. According to Theorem E, there
exists Z' < E(F — e) such that |Z’| < n(Cgp-ey-z- — 1). Since y, p_(Z') £0,
n(cr-ey-z — 1) £ |Z'| = by p-ey-z- Thus, b, z_o_z < 0, which is a contradic-
tion. This means that F has a connected n-factorization, which completes the proof
of the lemma.

Let n = 1 be an integer and let G be a graph. If G has a connected n-factorization,
then 7 ,(G) # 0 and we denote

X = min X, 6(Ty, .0, T)
(T30, TR)ET n(G)
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Proof of Theorem 1. We shall prove that x,; = y,¢. If g6 = 0, the result is
obvious. Let g; = 1. Assume that for every graph G’ which has a connected »n-
factorization, it has been proved that x, 6. = y, ¢

(1) We first prove that x, ¢ < y, . Consider A = E(G) such that y, 5(4) = y, ¢
Let (T;...., T,) € T,(G). Denote

By, ={FeB,;_4 foreach ie{l,...,n},

the subgraph of T; induced by V(F) is a tree}
and
Eo = E(T,) U ... UE(T,).
Clearly, |E(F) — Eq| is odd for each F € By. It is easy to see that for at least |Bo| —
— |4 — E,| components H of G — Eq, gy is odd. Hence,

%0 6(Tis - T,) 2 |Bo| — |4 — Eq .
Moreover, we have
Cry—a + oo+ Cp_q Z NCG_4 + IBn,G-A - Bo‘ .
Clearly, |E(T;) n A| = ¢g,—4 — 1 for each ie {1, ..., n}. Since
|[Eo 0 A] = [E(T)) 0 4] + ... + |E(T,) n 4],
it is obvious that
02 |Byg-u— Bo| + nlcg_y— 1) = |Egn 4]

We have
X6 2 X0 o(Tis o T) Z [Bo| — |4 — Eo| 2

2 |Bo| = |[A — Eo| + |Byg-a — Bo| + ncg—a — 1) — |Eo 0 4] =
= n(cG—A - 1) + bn,G—A - ]AI = yn,G(A) = yu,G .

(1I) We now wish to prove that x, ¢ < y, ¢. We distinguish the following cases
and subcases:

1. Assume that for every 4 e MAX,(G) and every F € C(G — A), gr < 1. It follows
from Lemma 2 that for every 4 € MAX,(G) and every F e C(G — A), py = 1.

1.1. Assume that there exists no loop in G. Let A € MAX,(G). We have 4 = E(G)
and b,;_, = 0. Since y, ¢ = y,6(0) 2 0, g < n(pg — 1). Since G has a con-
nected n-factorization, there exists (Tj, ..., T,) € 7,(G). Since q; < n(pg — 1),
(Ty, .... T,) is an n-factorization of G. Hence, x, ¢ = 0 < y, 6.

1.2. Assume that there exists a loop e in G. We denote by w the vertex incident
with e in G.

1.2.1. Assume that p, g < Vsg-e There exists A* < E(G — e) such that
V- A%) = Yy G-o. Obviously, y,e(A* U {e}) =y, 6-(4*) — 1. Since y,q <
< VnG-e = Yng-oA*), Yuo(4* U {€}) = y, s This implies that there exists 4 e
€ MAX,(G) such that ec 4. Let F* be the component of G — A containing w.
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Clearly, gp. < 1 and pp. = 1. If gp» = O, then y, 6(4 — {e}) = y, o(4) + 2. which
is a contradiction. Thus gz, = 1. Since pp« = 1, the only edge of F*, say an edge e*,
is a loop of G. Obviously, G — e — e* has a connected n-factorization. It is clear that
for every Z € E(G — e — €*), V,g-c-ed(Z) = Vu(Z). Hence, y,5-c-es < Vag-

It follows from the induction assumption that X, g-c—e+ = Vn,G-e-e+ SICE X, 5 <

S Xy Goe—et XnG = Vug-
1.2.2. Assume that y, s, < y, . It follows from Lemma 1 that y,c-. + !
V- Since e is a loop in G, T,(G — e) = 7,(G). It is easy to see that x, 5 <
X, G-o + 1. According to the induction assumption, X, -, = Vng-. Hence,
¢ = Yn,G-

2. Assume that there exists 4 € MAX,(G) such that for at least one Fy € C(G — 4),
gr, = 2. Denote B = B, ;_ 4. As follows from Lemma 2, B + 0.

A A

A IA

Consider a graph J with the following properties:

(i) there exists a one-to-one mapping r of C(G — A) onto V(J);

(i) 4 < E(J);

(iif) if v e ¥(J) and e € 4, then v and e are adjacent in J if and only if in G the
edge e is incident with a vertex of ™ '(v);

(iv) there exists a one-to-one mapping s of B onto E(J) — A such that if Fe B,
then s(F) is a loop of J and it is incident with r(F).

It is easy to see that for every Z, < E(J)and every e, € E(J) — 4, Vusd(Zou {e}) £
< ¥./(Z,). This implies that

Yn,g = max yn,J(Z) .
zZc4

Let Z' be an arbitrary subset of A. There exists a one-to-one mapping ' of C(G — Z')
onto C(J — Z’) such that for each H e C(G — Z'),

V(r'(H)) = {r(F); Fe C(H — A)}.
Thus ¢;_5 = ¢y Consider an arbitrary H € C(G — Z'); then
9n = n(pg — 1) = [E(H) 0 4] = n(cy-a — ) + ¥ (qr = n(pr = 1))
FeC(H— A)

obviously, |E(r'(H)) n A| = |E(H) n A| and ¢@y-4 = cg—4; it follows from the
definition of J that
Gran — n(Pra — 1) = qg — n(py — 1) (mod 2).
This means that b, j_z. = b, ¢-z., and therefore, y, ;(Z') = y,.6(Z’). Since y, o(4) =
= Y6, We conclude that
Yng = yn,J(A) = Yu,G -

Recall that ¢;_z = cg_5. for every Z' < A. It follows from Theorem E that J
has a connected n-factorization. Since q; < g, it follows from the induction as-
sumption that there exists (Ty,..., T,) € 7,(J) such that x, (T},..., T,) = Vuc-
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Denote Eq = E(Ty) U ... U E(T,). Since n(c;- 4 —1) = n(p;_4=1) = |Eq|. by ;4 =
= [E(J) -~ A[, and y, ,(4) = y,q. it is obvious that

Vo = IE(J) - Al - IA - EO' = xn,J(Th (RS T;l) .

This implies that there exists a one-to-one mapping o of A — E, onto a subset of
E(J) — A such that for each e€ 4 — E,, the edges e and w(e) are adjacent in J.
Let ¢ be a mapping of B into E(G — A) such that ¢(F) e E(F) for each F € B, and if
there exists e€ A — E, such that w(e) = s(F), then in G the edges #(F) and e are
adjacent. Let F € B; according to Lemma 2, y, y— s = 0 and F — #(F) has a con-
nected n-factorization; since gp_ i < g, it follows from the induction assumption
that there exists (T} f. ..., T, y) € 7,(F) such that x, g (T > - > Tng) = O.
For each i€ {1, ..., n}, let T, ; denote the subgraph of G induced by

E(T) o U E(T, ).

According to Lemma 2, g = 0 for each Fe C(G — A) — B. This implies that
(Ty - Tng) € T,(G). The fact that x, r_ (T s, ..., T, ) = O for each Fe B
implies that

xn,G é xn,G(Tl,G’ CERTY 7::,6) é xn,J(Tl’ RS T;,) = yn,G ]

which completes the proof of Theorem 1.

Remark 1. If we put n = 1 in Theorem 1, we get Theorem C. The technique used
in the proof of Theorem 1 was derived from the technique used in [5] (but the struc-
ture of the proof was simplified in some points).

Proof of Theorem 2. (I) Assume that (x) holds. Then n(cg_ 4 — 1) < | 4] for every
Ac E(G). According to Theorem E, G has a connected n-factorization. Since
n(cg—4 — 1) + b, -4 — n < |A| for every A < E(G), it is obvious that y, ¢ < n.
According to Theorem 1, there exists (T}, ..., T,) € 7,(G) such that x,, o(T5, ..., T,) <
< n. This implies that there exists a connected n-factorization (Gj, ..., G,) of G
with the property that xg, < 1 foreachie {1, e n}. Thus, according to Theorem B,
G has an upper embeddable n-factorization.

(IT) Assume that G has an upper embeddable n-factorization, say an n-factorization
(Gy, ..., G,). Then (G4, ..., G,) is a connected n-factorization, and according to Theo-
rem B, there exists a spanning tree T; of G, such that xg, < 1 for each i e {1, ..., n}.
It is obvious that (T}, ..., T,) € 7,(G) and that x, 4(Ty, ..., T,) < n. According to
Theorem 1, y, ¢ < n. Combining Theorem E and the definition of y, ¢, we get (x),
which completes the proof of Theorem 2. ‘

Remark 2. We shall state one more consequence of Theorems A, E and 1 (the
proof is easy): A graph G has a connected n-factorization (Gy, ..., G,) such that
m(G1) = (6, — P6 + 1)/2, ..., yu(G,) = (46, — Ps + 1)[2 if and only if

n(cg-4 — 1) + b, -4 < |4 forevery A < E(G).
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