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COMPLETENESS ARE DIFFERENT

LADISLAV MiSik Jr., Bratislava

(Received March 2, 1983)

Assuming x = 2° (a set theoretical assumption weaker than Martin’s axiom),
we construct a {0, 1}-sequentially regular Fréchet space which is sequentially complete
but fails to be {0, 1}-sequentially complete. This solves (conditionally) Problem 1.23
in [3] concerning the classification of sequential convergence spaces. The space is of
the form N U A (4 is an almost disjoint family of infinite subsets of N) and has
the corresponding nice topological properties (e.g., it is Hausdorff, separable, first
countable, locally compact, totally disconnected, O-dimensional).

1. INTRODUCTION

Recall that a Fréchet space is a topological space in which, whenever a point
belongs to the closure of a set, then there is a sequence in the set converging to this
point. First countable spaces are Fréchet and Fréchet spaces are sequential conver-
gence spaces in which the closure is idempotent. For sequential convergence spaces
the notion of sequential regularity and {0, 1}-sequential regularity play analogous
roles as complete regularity and 0-dimensionality, respectively, for topological spaces
(cf. [4]). Namely, sequential regularity or {0, 1}-sequential regularity means that,
in the space in question, a sequence (x,) convergences to a point x iff for each real-
valued or {0, 1}-valued, respectively, continuous function f we have f(x) = lim f(x,),
i.e., the sequential convergence structure of the space is projectively generated by the
corresponding class of functions. Clearly, {0, 1}-sequential regularity implies sequen-
tial regularity. Note that a completely regular Fréchet space is sequentially regular.
Moreover, if it is also 0-dimensional, then it is {0, 1}-sequentially regular. To a certain
extent, the notion of sequential completeness or {0, 1}-sequential completeness plays
a similar role for sequential convergence spaces as realcompactness or {0, 1}-
compactness, respectively, for topological spaces (cf. [2]). A sequential convergence
space is said to be sequentially complete or {0, 1}-sequentially complete, if for each
sequence (x,) no subsequence of which converges there is, respectively, a real-valued
or {0, 1}-valued continuous function f such that the sequence (f(x,)) fails to converge
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(in the real line). More information about sequential completeness and {0, L}-
sequential completeness and their mutual relationship, as well as further references
on the topic, can be found in [3].

The title of the present paper might be misleading, viz., the real line is a trivial
example of a sequentially complete space which fails to be {0, 1}-sequentially com-
plete. The point is that the real line is not {0, 1}-sequentially regular. Our aim is to
show that the two notions mentioned in the title are different in the class of {0, 1}-
sequentially regular spaces.

Let N be an infinite countable set and let 4" be an almost disjoint family of
infinite subsets of N. Define a topology for N U A" as follows: all points n € N are
isolated; for each A e A/, sets {4} U A’, where A’ = 4 and A\ A’ is finite, form
a neighborhood base at 4. In addition to other nice topological properties, N < A~
is a Hausdorff 0-dimensional (and hence {0, 1}-sequentially regular) Fréchet space.
Clearly, a one-to-one sequence (x,) convergences in N U A4 to a point 4 e 4 iff
x, € A for all but finitely many n.

As a rule, each ordinal number is identified with the set of its predecessors. Let
us denote by w the first infinite ordinal. In [1] the following cardinal invariant s
has been introduced. Let % be the smallest cardinal number for which there is a system
(%,)ses such that:

1. For all e %, %, = (Ua,,,)ﬂez,,, is a maximal disjoint system of clopen sets in
o* = fo\ w;
2. There is no function g : ¥ — 2 such that N U,

aex

The assumption » = 2° is weaker than Martin’s axiom (cf [1]) and hence, in
particular, than the continuum hypothesis.

a,9() D@S @ nonempty interior.

Dealing with one-to-one sequences and their subsequences the following con-
vention will be used. We shall make no distinction between a one-to-one sequence (x,)
and the set {x,; ne w}. Further, if S is an infinite subset of w, then by (x,,),,es we
understand the subsequence of (x,,) the k-th term of which is x,,, where n, is the k-th
element of the ordered set S (a subset of w).

Under the assumption x = 2, we are going to construct a space X of the type
N U A which is sequentially complete but fails to be {0, 1}-sequentially complete.
Let T = {exp (2rit); t € [0, 1)} be the unit circle and let T, = {exp (2nit); t € [0, 1) N
N Q} be the set of all “rational” points of T. The space X can be visualized in the
form of a cylinder. Put X = (T x 2°)\((T\ Tp) x (w + 1)). First, we identify
the countable set T, x o with N via a one-to-one correspondence. Second, for each
(r, ®) e X \ N we define an infinite countable subset N(r, &) of N so that for (r, a)
* (s, B) the intersection N(r, «) N N(s, §) is finite and the topology for X defined
via the space N U A" (where the set 4 = {N(r, a); (r,®) e X \N} is canonically
identified with X \N) has the desired properties. For (r,w)e T, x {w} define
N(r, ) = {(r,®); ae ®}. For re T and a € 2°\ + 1 the set N(r, «) consists of
points (8, %), where (s,) is a one-to-one sequence in T, converging in T to r and (x,)
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is a suitable sequence in w. To define the sets N(r, cx) for a € 2N w + 1 precisely,
we need several auxiliary results.

As already stated, X is a {0, 1}-sequentially regular Fréchet space. We shall show
that X is sequentially complete. In fact, we shall show that if 4 is a closed discrete
infinite countable subset of X, then there is a real-valued continuous function f on X
having on A at least two accumulation points. Finally, we shall prove that if the
countable closed discrete set T, x {w} = X is decomposed into two infinite sub-
sets Y and Z, then for each neighborhood U of Y and each neighborhood V of Z we
have cl,U n clyV + 0. Consequently, each continuous {0, l}-valued function on X
is on T, x {w} almost constant. Thus X fails to be {0, 1}-sequentially complete.

For notational reasons, it will be convenient to fix J = 2°\w + 1. Throughout
the paper we assume x = 2°. The assumption is stressed each time we use it.

2. AUXILIARY RESULTS

Let 7 be the set of all mappings of T, into w equipped with the quasi-order “modulo
finite”, i.e., for g, h e # put g < h whenever the set {q € Ty; g(q) = h(q)} is finite.
Clearly, 4 is isomorphic to the Baire space “w. As shown in [1], if x = 2, then each
unbounded subset in “w has cardinality 2° and, in turn, this implies the existence of
a scale (i.e. a well-ordered dominating family in “w). We shall identify mappings
in # with their graphs in T, x w. Note that for each (r,x)e T x J the set N(r, )
will be a subset of the graph of a mapping g, € 4, i.e., a restriction of g, to a certain
subset of Tj.

Lemma 1. Assuming % = 2°, let (g,)s, be a scale in B. Let («,) be a strictly
increasing sequence of ordinal numbers smaller then 2°. Then there is a sequence
(h,). h, = g,,, such that:

(i) for each ne w, g,,\ h, is a finite set;

(ii) for each k,ne w, hy A h, = 0;

(m) for each pe2°\ {ac,,, new}, g, 0 (U h,) is a finite set.

Proof. Denote « = sup {a,; new} and h, = {(¢; 9,(q)); g€ Tp and g,,(q) <
< 9..(9) < 9.(q) for all k € n}. Clearly, for each n € w, h, < g,,and g, \ h, is a finite
set. To prove (i), choose fe2° If f >« then gyn (U h,) =U(g9;0h,) <

new new

{(9. 94(q)); g € Tp and g4(q) < g.(q)}, where the last set is finite. If ¢, < B < 044,
forsomekew theng; N (U h,) = ((U h,) 0 gg) v ((U h,) 0 gy) = U(ga"ngp)u

new

v {(4,94(q)), e Ty and g,,, (q) g,,(q }, where the both sets in the union are
ﬁmte. The case B < «, easily follows from the previous one. This proves (iii).

Lemma 2. Let r be a real number and let « € 2°. Let fy, B € a, be arbitrary func-
tions on (r — 1,r) into [0, 1]. Let (r,) be a one-to-one sequence of real numbers
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in (r — 1,r) converging to r. Then there is an infinite subset S of w such that for
each B e o the sequence (f5(r,))es converges in [0, 1].

Proof. For each f e a, let %; = (U ,),c2 be a maximal almost disjoint system of
infinite subsets of (it is not contained property in any almost disjoint system of
infinite subsets of w) having the following property: the sequence (f4(r,))icr,.,
converges whenever Uy, € %, Now, x = 2¢ implies the existence of an infinite
subset S of w such that for each f < « there exists an ordinal number y € 2° such
that S\ U, is a finite set. Consequently, the sequence (fj(r,)).s converges for
each f < a.

Lemma 3. Let r be a real number and let w € 2°. Let f;, f € a be continuous func-
tions on (r — 1, r) into [0, 1]. Let (r,) be an increasing sequence of real numbers
converging to r. Then there is a sequence (U,) of open subsets of (r — 1, r) such that:
(i) r, € U, for each n € w; (ii) if (s,) is a sequence of real numbers such that s, U,,
new, and Bea, then the sequence (f4(r,)) converges iff the sequence (fy(s,); con-
verges.

Proof. For each n € w, let (U, ;)i be @ monotone fundamental system of open
neighborhoods at r,, where U, , = (r — 1, r). Let f € «. Then there is a mapping h,
of w into w such that for each sequence (s,), s, € U, ;> the sequence (fy(s,)) con-
verges iff the sequence (f,(r,)) converges. Let h be a mapping of ® into @ such that
for each f8 € o the set {n € w; hy(n) = h(n)} is finite (the existence of h is guaranteed
by the assumption % = 2¢). Put U, = U, ), n€ . The sequence (U,) has the
required properties.

3. CONSTRUCTION

For each re T, denote by T, the set of all points se T such that the distance
between r and s (in the complex plane) is less than 1. Denote by I,, D, the sets of
all “‘strictly increasing” and “strictly decreasing”, respectively, sequences in T, N Ty,
converging to r. Denote by P, the set of all pairs (A4,, B,), where 4, and B, belong
to I, and, considered as sets, A, and B, are disjoint. The cardinality of P, is clearly 2.
Let (A, 4 B, 4)zes be a one-to-one mapping of J onto P,.

For each re T, let (f,,a)%, be a transfinite sequence of continuous functions
fra: TN{r} = [0, 1] such that

fr.a[Ar,a] = 0’

fr,a[Br,u] = 13

S is “‘symmetric about r”, and

/1.2 s linear ““between neighboring points of 4., U B, .
As we shall see, functions f, ., (, oc) e T x J, play a fundamental role in the construc-
tion of our space X.

Lemma 4. Let r € T'and let (r,,) be a ““strictly monotone” sequence in T, converging
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to r. Then there is an ordinal number o€ J such that the sequence (f, (r,)) does
not converge.

Proof. Since functions f,, are symmetric about r, we consider only increasing
sequences. Passing to a suitable subsequence, the general case can be reduced to the
following two. First, (r,) € I,. Then the assertion follows directly from the construc-
tion of functions f, ,. Second, all r, belong to T,\ T, (i.e. all r, are “‘irrational”).
Choose a sequence (s,) in T, 0 T, such that r, < s, < r,, forall n € w. Let A4 be the
subsequence of (s,) consisting of those s, for which n = 4k orn =4k + 1, ke
and let B be the subsequence of (s,) consisting of the remaining terms. Then, for some
ae J we have (4, B) = (4,,, B, ,). Hence the sequence (f, ,(r,)) has at least two
accumulation points, one of which is 0 and the other 1.

Definition. Let re T and let A = (r,) be a “‘strictly monotone™ sequence in T,
converging to r. Denote by o(A4) the smallest ordinal number a, « € J, for which the
sequence (f, ,(r,)) does not converge. It will be called the order of A.

The next assertion follows directly from Lemma 2.

Lemma 5. Let r € T and let A be a “‘strictly monotone” sequence in T, converging
to r. Then for each ordinal number a € J there is a subsequence B of A such that
o(B) > o.

Lemma 6. Let Y and Z be infinite disjoint subsets of Ty such that YU Z = Tj,.
Then there is a point r€ T such that for each ordinal number o€ J there are
sequences (p,) in Y and (q,) in Z, both belonging to I, U D,, such that o((p,)) =
= o{(q,)) > o

Proof. Fitst, suppose that both Y and Z are dense in T. Then, using Lemma S5,
choose r € Tand, for a given o € J, choose an increasing sequence (r,,) in T, converging
to r such that o((r,)) > «. Since Y and Z are dense in T, it follows from Lemma 3
that there are sequences (p,) in Y and (g,) in Z, both belonging to I,, such that
o{(p)) = 0((g,)) = o((r,)) > «. Second, one of the sets, say Y, is not dense in T.
Then there is an interval [r, s] < Tsuch that [r, s] N Yis a finite set and one of the
endpoints, say r, is an accumulation point of Y. By Lemma 5, for a given a e J,
there is a sequence (p,) €I, such that p, e Y for all n € w and o((p,)) > . Let (r,)
be the sequence which is symmetric to (p,) about r. Then o((p,)) = o((r,)). It follows
from Lemma 3 that there is a sequence (g,) in Z, (g,) € D,, such that o((r,)) = o((4,))-

Clearly, for each r e T there are 2% partitions of T}, into two infinite subsets Y, Z
such that for each « € J there are sequences (p,) in Y and (g,) in Z, both in I, U D,,
for which o((p,)) = o((¢,)) > «. Let (Y, 4, Z, 4)ses be a one-to-one mapping of J
onto the set of all such partitions.

Finally, let u be a bijection of J =2°~w + lonto J x J,letv:J x J —> J be
the canonical projection onto the first factor, and let w = vou :J — J be their
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composition. Then w is a transfinite sequence of ordinal numbers in J and each
a e J occurs in (w(at)),es 2°-times.

Now we are ready to define the sets N(r, a) for r € Tand o € J. Assuming » = 2°,
let (g4)pes be a scale in B(~“w). Choose sequences (p,) in Y, ., and (q,) in Z, .,
both in I, U D,, such that o((p,)) = 0((g,)) > «. Define a sequence S(r, a) = (s,(r, a))
as follows: s,,(r, @) = p, and s,,,,(r, «) = q,, n € ®. Then S(r, n) is a sequence in T,
converging to r and o(S(r, a)) > o. Put N(r, a) = g, I S(r, a) = {(su(r, ), gu(5,(r, 2)));
new}. It follows readily that {N(r, «); re T, w € J} is an almost disjoint family of
infinite subsets of T, x w. Recall that for « = w and re T, we have N(r, w) =
= {(r, n); ne w}. Hence A" = {N(r, «); (r,2) e X \(T, x )} is an almost disjoint
family of infinite subsets of N = T;, x w.

4. SEQUENTIAL COMPLETENESS VERSUS {0, 1}-SEQUENTIAL COMPLETENESS

Recall that the space N U 4/, and hence also X, is a {0, 1}-sequentially regular
Fréchet space. Our final task is to verify that X is sequentially complete but fails to
be {0, 1}-sequentially complete.

Proposition 1. The space X is sequentially complete.

Proof. Let (x,) be a sequence in X no subsequence of which converges. We have
to construct a real-valued continuous function f on X such that the sequence (f(x,))
does not converge in the real line. Clearly, we can assume that (x,) is one-to-one.
Since X is a Fréchet space, A = (x,) is a closed discrete subset of X. It suffices to
constider three cases.

1. 4 € Ty x w. Define a function f on X as follows: f(x,,) = 1 for all new
and f(x) = 0 otherwise. Since 4 is closed and discrete, f has the desired properties.

2. A < Ty x {w}. Then there is a one-to-one sequence (q,) in T, such that
X, = (qu @), n € . Let r € T'be an accumulation point of (g,). Then for some o € J,
the function f,, : T\ {r} — [0, 1] oscillates on (g,), i.e., sets {q,; f,.(4,) = 0} and
{a.: 1,..(a,) = 1} are infinite. So it suffices to show that there is a continuous function
f:X - [0, 1] such that f((¢., ®)) = f,..(4,) for all n € ». Define

(9, @) = frx(q) for g€ Ty {r}, ‘

(g, n)) = f,.(q) for ge Ty\ {r} and n > g,(q),

7((s, B)) =frals) for seT, s r, and § > o,

1((r, B)) = limf, (s.(r, B)) for B > «, where (si(r, B)) = S(r, B) and N(r, ) =
= 9, | S(r, B) (note that lim f, ,(s,(r, B)) is well-defined since o(S(r, B)) > B > o, and

J(x) = 0 otherwise.

It follows from the construction of f that f is a continuous function on X.

3. A < T x J. Then there are two possibilities.
3.1. There is a strictly increasing sequence (a,) in J and a sequence (r,) in T such
that ((r,, ,)) is a subsequence of A. Then, by Lemma 1, there is a sequence (h,),
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h, = g,,, such that: (i) for each n e w, g, \ h, is a finite set, (ii) for each k, n € w,
h, 0 h, = 0, (iii) for each B e J\{a,; ne w}, g, 0 (U h,) is a finite set. Arrange T,

new

into a one-to-one sequence (g,). Define a function f on X as follows:

f((gi h2.(q4))) = 1 for ne w and k > n,
f((r,03,)) =1 for re T and new, and
f(x) = 0 otherwise.
Then f is a continuous function on X, f[ U (ram ®2,)] =1 and f{U (r2,41,

%,+1)] = 0. Clearly, sets {x,;f(x,) = 0} and {x,; f(x,) = 1} are infinite.

3.2. There is an ordinal number o € J such that x, e T x {a} for all but finitely
many n € . Then there exists » € T'and a strictly monotone, say decreasing, sequence
(r,) in T, converging to r such that ((r,, «)) is a subsequence of A. Consider sets
S(ry, ), n € w and S(r, 0(). They form an almost disjoint family in Tj,. It is easy to see
that there are subsets S'(r,, o) of S(r,, o) such that S(r,, &)\ S'(r,, @) are finite sets,
S(r,2) 0 S'(r,,2) = @ for all ne w and S'(r,, @) N S'(ry, @) = @ whenever k + 1.
Define a function f on X as follows:

S192| S (rzm 2] = f((ram ) = 1 for ne w, and
f(x) = 0 otherwise.

Then f is a continuous function on X and (f(x,)) fails to converge in the real line.
This completes the proof.

Proposition 2. The space X fails to be {0, 1}-sequentially complete.

Proof. Arrange T, into a one-to-one sequence (g,). Then Ty x {0} = ((¢.. w))
is a sequence in X no subsequence of which converges. It suffices to prove that for
each {0, 1}-valued continuous function f on X, one of the sets Y = {q, e Ty;
(g, »)) =0}, Z = {q, € Ty; f((4, ®)) = 1} is finite. Clearly, then (f((q,, @))) is
a convergent sequence.

Suppose that, on the contrary, both Y and Z are infinite. It follows from Lemma 6
that for some r e T and f € J we have (Y, Z) = (Y, 4, Z, ). Observe that if 4 is a sub-
set of Ty x {w}, then sets V(4, h) = AU {(q.n)e Ty x w; ge A and n > h{q)},
he B, form an open base of A. Choose an element h e 2 such that f((q, n)) =
= f((4, w)) whenever ne€ w and n > h(q). Since the set {x € J; w(ax) = B} is cofinal
in J, there exists o h) € J such that w(«(h)) = p and g,,, > h. Hence (r, o(h)) belongs
to the closure of V(Y, h) and at the same time to the closure of V(Z, h). Since
fIV(Y, h)] = 0 and f[V(Z, h)] = 1, we have a contradiction.

Remark 1. Consider the subspace T, x {w} of X. Using a slight modification of
the proof of Proposition 2, it can be verified that no continuous {0, 1}-va1ued func-
tion f on T, x {w} for which both sets {g,€ Tp; f((g,, ®)) = 0} and {q,€/Ty;
f((gw @)) = 1} are infinite can be extended to a continuous real-valued function on X.

Remark 2. Consider the set X* = X U {p} equipped with the following topology:
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X is an open subspace of X* and a neighborhood base at p consists of sets {p} U A4,
where 4 is a subset of T, x {w} such that (T, x {w})\ 4 is finite. It can be easily
checked that X is a {0, 1}-sequential envelope of X and, since X is sequentially com-
plete, X is a sequential envelope of itself (cf. [2]). Thus X is another example of
a {0, 1}-sequentially regular space the sequential envelope and the {0, 1}-sequential
envelope of which are different (cf. [3]). Note that X is a sequential space but fails
to be Fréchet.
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