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Let
(1) A={a}r,, 0<a; fa,<..=Zaq

IA

Aj+1

be a sequence of real numbers with lim a, = +oo. It is well-known (cf. [6], p. 40)
k= o

that there exists a unique number 2 = J(4), 0 < A(4) £ + oo such that for each

geR, g >0, 0 <A we have Za[” = +o and foreach e R, 6 > 0,0 > 1 we
oo k=1
have Y a,° < +oco. The number 2 = 4(A) is called the exponent of convergence of
k=1

the sequence A and can be calculated by using the following well-known formula:

) 2(A) = lim sup 128" ")
n~w loga,
(cf. [6], p. 40).

Denote by S* the metric space of all sequences of the form (1) with Fréchet’s
metric. If we denote by A(x) (for x € S*) the exponent of convergence of the sequence
x, we get a function A : S* — <0, + o). The fundamental properties of this function
are described in the papers [2] and [3].

In this paper we shall investigate the exponents of convergence of subsequences of
a given sequence A4 of the form (1). It could be expected that the results will depend on
the sequence A, but we shall show that such results can be proved which are valid
for subsequences of an arbitrary sequence A of the form (1) with A(4) > 0 (it can
be A(4) = + o). So e.g. we can show that in the topological as well as in the metrical
sense “‘almost all” subsequences of an arbitrary sequence A4 with A(4) > 0 have the
exponent of convergence which coincides with A(4).

In what follows we shall use the usual method of mapping the set of all infinite
subsequences of the given sequence A (see (1)) onto the interval (0, 1) (cf. [5], p. 17):
the number

x=Y27e(0,1)
k=1

*) log x denotes the Napierian logarithm of x.
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corresponds to the subsequence

(3) a;, Sa, .. .2a;, £... (ji<ja<..<j<..)

of the sequence A.

So we get a one-to-one mapping of the set of all infinite subsequences of the
sequence A onto the interval (0, 1> (cf. [5], p. 17). This mapping enables us “‘to
measure” various sets of subsequences of the sequence A. That can be done in the
following way: Denote by A(x) the subsequence (3) (in particular, we have A(1) =
= A). Let S be a certain set of subsequence of the sequence A. Let M(S) = (0, 1)
be the set of all such x € (0, 1) for which A(x) e S. Then “the size” of the set S can
be calculated by ““the size” of the set M(S) (we can investigate the Lebesgue measure
of M(S), the Hausdorff dimension of M(S), the topological properties of M(S), etc.).

The introduced mapping of the set of all subsequences of the sequence 4 onto the
interval (0, 1) enables us to define the following real function A on the interval (0, 1):
for x € (0, 1), put A(x) = A(4(x)).

axL 20
If for some g € R, o > 0, the series ) a; 7 converges, then its subseries ) aj°

k=1 k=1
converges, too. This simple observation shows that for each x e (0, 1) we have i(x) <
< A(A(1)) = A(A) and hence 1: (0, 1) — <0, A(4)>.
We consider the interval (0,1) as a metric space (with the Euclidean metric);
the same holds for the interval <0, A(4)) if A(4) < + co. In the case 4(4) = + o0
we consider the interval <0, 2(A)> as a metric space with the metric d, where

d(x, y) = |o(x) = e(y)], o(1)

ot
L+1

for 1€<0,4+00) and v(+o0)=1.

In the first part of the paper we shall deduce some fundamental results on the
function 4, in the second part we shall introduce some fundamental metrical and topo-
logical results on the sets {x e (0, 1>; A(x) = A(A)}, {x e (0, 1>; A(x) < A(A)}.

1. FUNDAMENTAL PROPERTIES OF THE FUNCTION 4: (0, 1) — <0, 2(4))

The question arises whether the function A maps the interval (0, 1) onto the whole
interval <0, A(4))>. We shall give the affirmative answer to this question (see Theorem
1.1). First we shall prove two auxiliary results.

Lemma 1.1. Let

9g1) =92 ...29(n) = ..., g(n)—> +0 (n > o).
Let

b = lim sup logn >0
N g(n
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(we admit b = +oo) and let j be a positive integer. Then we have

lim sup ﬂf—_— =
n—aom g(n + ])

Proof. According to the assumption of Lemma there exists such an n, > 2 that
for each n = n, we have g(n) > 0. For such n the identity
) ' logn  log(n+j) logn
g(n +Jj) g(n +j) log(n + j)
holds. The lim sup of the first factor on the right-hand side of (4) is b and the limit
of the second factor is 1. Hence the assertion of Lemma immediately follows.

Lemma 1.2. Let

g1)=9(2)s...29(n=s ..., gn)—> +o (n—> o).
Let
b =limsuplo—g’—1 >0
n—= o0 g(n)

(we admit b = +o0). Let 0 <t < b. Then there exists such a sequence j, <
<j, <...<j, <...o0f positive integers that

. log n

lim sup g =t

e G(Jn)

Proof. Choose an integer k, = 1 such that g(k, + 2) > 0 and

log 2
g(ky +2)
According to Lemma 1.1 we have

kwe gk + k) h
Therefore there exists such a positive integer k, > 3 that
log k,
gk, + k;)

and for each n, 2 £ n < k, we have

v

t

__logn
g(k, + n)
Let us choose k3 = 1 such that
log (k, + 1)
glky + ky + k3 + 1)

<t.

<t.
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Such a kj exists for lim g(n) = + 0. Again according to Lemma 1.1 there exists
sucha k, > 1that "7°

log (k, + k)
glkey + ky + ks + ky)

1%

and
log (k, + n)
g(ky + ky + k3 + n)

foreachn, 1 < n < k.
So by induction we construct two sequences {k,;_;}i=y, {k2:}i2, of positive in-
tegers such that

e
(i=1.2,..) and
(6)

foreachn, 1 < n <k, (i=23,...) Put

log (ks + ko + ... + ka;) S
gy + ko + ks + .o+ kyp) T

log (ky + ky + ... + koyy_p + n)
glky +ky +ky+ ...+ ky;—y + 1)

Ji=ky, jo=k +2,j35=k +3, ...,
Jo=ki + Ky, i1 = kg + ky + k3 + 1,
Jor2=ki+ky + ks +2, . jien, =k +ky + ks + ky,

Jiatrart = ki Hhy + ks + kg + ks + 1, o Jigtrg sty = kg + ko + o0 +kyy,
Jigtkatothgrr = Ky + ko + oo+ kg + kg + 1,
Jhythatothogtz = kg + ko + oo+ kg + koyey + 2, ...

By a simple estimation we get from (5), (6)

<log(kz+k4+...+k2,-)__ log (ky + kg + ... + kyjoo + kyy — 1)
g(kl +k2+k3 + ...kz,') g(kl + kz + k3+..‘+ kZi—l + kz,- - 1) =

< 1 o ky +ky + ...+ kyy 50

T oglky + ky + .o+ kyy) ky +ky + ...+ ky;— 1

(i = o). This together with (5), (6) immediately yields the assertion of Lemma.

0

A

Theorem 1.1. Let 0 < 1 < A(A). Then there exists such an x € (0, 1) that A(x) = t.

Proof. The assertion of Theorem is obvious for t = A(4) or ¢ = 0. In the first
case it suffices to put x = 1. In the second case we proceed as follows. Since a, - + o
(n — o0), there exists such a sequence k; < k, < k; < ... of positive integers that

aq,>n" (n=12..).
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Put ¢, =1 (n=1,2,...) and ¢; = 0 for i + k, (n =1,2,...). Then evidently
Ax) =0, wherex——2c2 e (0, 1).

Let 0 <t < A(A). Put g(n) = loga, (n = 1,2,...). Then the sequence {g(n)}:-,
fulfils the assumptions of Lemma 1.2. According to this lemma there exists such a se-
quence j, < j, < ... of positive integers that

. 1
lim sup ogn
n— o log ajn

=1.

Hence 1 = A(x) (see (2)), where x = ) 277" €(0, 1). This completes the proof.

n=1
The following auxiliary result will be useful for the investigation of the continuity
and Darboux property of the function A.

In what follows Z &l x) 27k denotes the non-terminating dyadic development of
the number xe(O 1) (ie. x = Zsk(x)2 K, sk(x) =0orgx)=1(k=12.)
and for an infinite number of k’s we have g(x) =

Lemma 1.3. Let i(4) > 0, 0 <t < A(A). Then the set {xe(0,1); A(x) =1t}
is a dense set in (0, 1).

Proof. In virtue of Theorem 1.1 there exists such an x, € (0, 1) that A(x,) = ¢.
Denote by M(x,) the set of all such x e (0, 1) for which there exists no = ny(x)e N
such that for each n = n, we have ¢,(x) = ¢,(x,). The set M(x,) is evidently dense

in (0, 1) and the series ) g(x)a, ° converges if and only if the series Y &(x,) a, ’
k=1 k=1

converges. This yields A(x) = A(x,) for each x € M(x,). This completes the proof.
The following result is an immediate consequence of the previous Lemma.

Theorem 1.2. Let (A) > 0. The function 2 :(0,1) — <0, A(4)) is everywhere
discontinuous.

By Lemma 1.3, for each interval I < (0, 1) we get A(I) = <0, A(A)>. Hence we
have:

Theorem 1.3. The function 2 :(0,1) — <0, ((A)) has the Darboux property.
We show that 4 is a measurable function. This can be obtained from the following
more exact result.

Theorem 1.4. Let /(A) > 0. The function 1 :(0,1) — <0, A(A4)) belongs exactly
to the second Baire class.

Proof. It is a well-known fact that the set of discontinuity points of a function
belonging to the first Baire class is a set of the first Baire category (cf. [4], p. 301).
Since the function 4 is everywhere discontinuous (see Theorem 1.2), it cannot belong
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to the first Baire class. Therefore it suffices to show that for each real d each of the

sets
M= {xe(0,1); x)=d}, M,={xe(0,1); Ax)=d}

belongs to the second multiplicative Borel class.
Investigate first the set M% If d < 0, then M? = 0 and the above assertion is
evident. Let d = 0. Then we have

(7) Mi=N{xe(0,1>; Y g(x)a;“ "' < +oo} =
m=1 k=1
=N N U NH(m, k n,p),

1]

1k=

m n=1p

where

n+p
H(m,k,n, p) = {,\' e(0,1); Y glx)a;“rim < ]-} .

j=n+1 I\

Denote by X the metric space (with the Euclidean metric) of all irrational numbers
of the interval (0, 1). Then it is evident that for fixed m, k, n, p the set H(m, k, n, p) n
N X is closed in X (it can be expressed as a finite union of sets of the form (j . 27 R,
(j + 1)27@*P% ~ X). But then it follows from (7) that M? n X is an F ,4-set in X and
so an F,gset in (0, 1) as well.

Denote by Q the set of all rational numbers of the interval (0, 1>. Then M~ Q
is a countable set and therefore an F,4-set in (0, 1. Hence the set M? = (M? n X) U
U (M?~ Q) as a union of two F,ssets in (0, 1) is an Fs-set in (0, 1) as well.

Investigate the set M,. If d > A(A4), then M, = 0 and all is clear. Let d < 2(A).
On the basis of the definition of the exponent of convergence we get

(8) M, = ﬁ {xe (0, 1); fsk(x) a; UM = 40} =

m= k=

-

U L(m, p,n),

1n=1

D8

=N

m=1p

where
L(m, p,n) = {xe(0,1); Y sk(x) a;“mtm > ph
k=1

Analogously as in the foregoing part of the proof we can show that L(m, p, n) n X
is a closed set in X and from (8) we deduce that M, n X is an Fs-set in (0, 1). Using
analogous considerations as in the previous part of the proof we can show that M, is
an Fs-set in (0, 1. The theorem follows.

2. METRICAL AND TOPOLOGICAL PROPERTIES OF THE SETS
T={xe(0,1); Ax)=4A)}, T ={xe(0,1>; A(x) < A(4)}

In this part of our paper we shall prove some metrical and topological results
on thesets T, T
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In what follows {MI denotes the Lebesgue measure of the set M and dim M the
Hausdorff dimension of M (cf. [5], p. 190).

The definition of the sets T, T’ yields
9) TuT =(0,1), TnT =9.

Since A is a measurable function (Theorem 1.4), the sets 7, T’ are measurable
(more precisely, it follows from the previous part of the paper that T is an Fs-set
and T is a G;,-set in (0, 1)).

The following theorem shows that ““almost all”” subsequences of the given sequence
(1) have an exponent of convergence which is equal to the exponent of convergence
of the sequence (1).

Theorem 2.1. We have |T| = 1.

Corollary. We have |T'| = 0 (see (9)).

We need not prove Theorem 2.1 since it follows immediately from the following
stronger result.

Theorem 2.2. We have dim T’ = 0.

0

Proof. Denote by H,, the set of all x € (0, 1), x = ) &(x) . 27, which satisfy

(10) lim inf 202%) — o,
n—o n
where p(n, x) = ¥ g(x) (n = 1,2,...). It is well-known that
k=1

(11) dim Hy = 0
(cf. [1]; [5], p- 194).

Choose z € (0, 1> — H,. Hence
(12) fim inf 22 5 0.

n—+w n
It is proved in the paper [7] that if

dy2dy = ...2d 2 dyy,

is a sequence of positive real numbers, Y d, = + oo and for a certain x e 0, 1) we
© k=1

have Y &(x)d, < + oo, then this x fulfils the condition (10).

k=1

v

LetceR,6>0, Y a;° = +o0.Putd, = a,° (k = 1,2,...). Then on the basis
k=1

of (12) it follows from the quoted results of [7] that ) g(z) a;° = +oo. Hence
k=1
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we get A(z) = A(A). Since A(z) < A(A4), we have A(z) = A(A). Thus we have proved
the inclusion (G, 1> — H, = T. Taking complements of the above sets we get T’ <= H,
and in virtue of (11) we get dim 7’ = 0. This completes the proof.

The following theorem shows that also from the topological viewpoint ‘‘almost
all” subsequences of the sequence (1) have exponents of convergence that are equal
to the exponent of convergence of the sequence (1).

Theorem 2.3. The set T is residual of the second Baire category in (0, 1).
Cerollary. The set T’ is a set of the first Baire category in (0, 1).

Proof. First let 0 < A(4) < +o0. It is easy to check that

(13) T=NT,

k=1
where
T, ={xe(0,1); Y g(x)a;'* " = + 0}
i=1
(k = 1,2,...). Further, we have
(14) To=0 UPKjs),
Jj s=1
where s
p(k,j, s) = {xe(O, 1>; Zfii(x) Q= j} )

i=1

o8

1

Let X have the same meaning as in the proof of Theorem 1.4. Then it is easy to
verify that P(k, j, s) n X is an open set in X and therefore according to (13), (14)
the set T~ X is a G,-set in X and so a G-set in (0, 1) as well. Since |T| = 1 (Theorem
2.1). the set T n X is dense in (0, 1). Therefore the set Tn X is a residual set in
(0, 1> (cf. [4], p. 49). But then also the set T> T X is residual in (0, 1). Since
(0. 1) is a set of the second Baire category in itself, the set T is a set of the second
category in (0, 1).

Now let A(4) = + o0. Then
(15) T=

k

Ve,

1

[ X}

where
Vi={xe(0,1); Yefx)a7*=+x} (k=12..).
i=1

Further,

(16) Vi=0 UB(Kk,js),
j=1s=1
where

B(k,j,s) = {xe(0,1); Y e(x)a " >j}.
i=1
Let X have the same meaning as above. Then it is easy to verify that B(k, J, s) nX
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is an open set in X. Using (15), (16), an analogous consideration as that used in the
previous part of the proof shows that T is a residual set of the second Baire category
in (0, 1>. The theorem follows.
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