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ON DETERMINATION OF A CYCLIC ORDER

ViTEzZsLAV NovAK and MIROSLAV NOVOTNY, Brno .

L
(Received Pugust 26, 1982) L

In [5] it is shown that there exists a close relation between cyclic orders and orders
on a set G. The aim of this paper is the study of cyclic orders from this point of view.
We show that any cyclic order is in a certain sense generated by a system of orders.
Further, the so called cocyclic order is introduced and properties of this relation
are studied.

1. ORDERS AND CYCLIC ORDERS

1.1. Remark. By an ordered set we mean a pair (G, <) where G is a set and <
is an order on G, i.e. an irreflexive and transitive binary relation on G. If (G, <) is
an ordered set, then there exists the least (with respect to the set inclusion) subset H
of G such that < < H2 If < is a linear order on this set H, then we shall call the
order < a linear order in G.

1.2. Definition. Let G be a set, C a ternary relation on G. C is called a cyclic order
on G, iff it is:

(i) asymmetric, i.e. (x, y, z) e C = (z, y, x) €C,
(ii) transitive, i.e. (x, y, z) € C, (x, z,u) € C = (x, y, u) € C,
(iii) cyclic, i.e. (x, y,z)e C = (y, z, x) € C.

If G is a set and C a cyclic order on G, then the pair (G, C) is called a cyclically
ordered set. If, moreover, card G = 3 and C is

(iv) complete,ie. x, y,z€ G, x =y =z %+ x=>(x,y,z)e Cor(z, y,x)€C,

then C is called a linear cyclic order on G and (G, C) is called a linearly cyclically
ordered set or a cycle. If C = 0, then (G, C) is called a discrete cyclically ordered
set.

1.3. Lemma. Let (G, <) be an ordered set. For any x, y, z € G put (x, ¥, z) eC.
iff either x <y <zory<z<xorz<x<y. Then C_ isa cyclic order on G.

Proof. Trivial; see also [5], 3.5.
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1.4. Lemma. Let (G, C) be a cyclically ordered set, x € G. For any y, z€ G put
Y <cx 2 iff either (x,y,z) e C or x = y == z. Then < is an order on G and x is
the least element of (G, <c ).

Proof. Trivial; see also [5], 3.1.

1.5. Lemma. Let (G, <) be an ordered set with the least element x. Then there
exists a cyclic order C on G such that < = <c,,.

Proof. Put C = C.. By 1.3, C is a cyclic order on G; it is not difficult to prove
< = <, (see also [5], 3.8).

Now we can put an analogous question: Let (G, C) be a cyclically ordered set.
Does there exist an order < on G such that C = C.? The following lemma shows
that the answer is negative in general.

1.6. Lemma. Let (G, C) be a cyclically ordered set. If there exists an order <
on G such that C = C., then there exists a linear extension of C on G, i.e. such
a linear cyclic order D on G that C < D.

Proof. According to Szpilrajn’s theorem ([7]) there exists a linear extension < of
the order < on G. Thus < € < and hence C. < Cg, ie. C = C4. But Cy is evi-
dently a linear cyclic order on G.

As there exist cyclic orders that have no linear extension ([3]), 1.6 generally implies
the negative answer to the above question. Nevertheless, we shall show that any cyclic
order is a union of cyclic orders, each of which is generated by an order according
to 1.3.

1.7. Definition. Let G be a set, (<;);; an indexed family of orders on G. We call
this family harmonized iff the following conditions hold:
(1) If iel and x, y, z€ G are such elements that x <; y <; z, then either z <; y,
y£jxory €;x,x €;zorx <«;z z «;yforanyjel.
(2) Ifi,jel and x, y, z, u € G are such elements that (x, y, z) € C,, (%, z,u) € C<,
then there exists k € I such that (x, y, u) e C,.

1.8. Theorem. Let G be a set, (<,);.; a family of orders on G. Then the following
statements are equivalent:
(A) The family (<;)ics is harmonized.
(B) The ternary relation C = \) C., is a cyclic order on G.
el

Proof. 1. Let (A) hold. If (x, y, z) € C, then there exists i €I such that (x, y, z) €
€C.,ie eitherx <;y <;zory <,z <;xorz<;x <;y. Suppose (z, y, x) € C;
then there exists j € I such that (z, y, x) € C.,ie.eitherz <;y <;xory <;x <;z
or x <;z <;y. By a simple calculation we find that this contradicts (1) of 1.7 in all
cases. The relation C is thus asymmetric. Trivially, (2) of 1.7 implies that the relation
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C is transitive. Finally, as all relations C, (i €I) are cyclic, the union C = (J C_,
is cyclic as well. Hence C is a cyclic order on G and (B) holds. el

2. Let (B) hold. If iel, x, y,ze G are such elements that x <; y <; z, then
(x,y,z)e C<, = C so that (z, y, x) € C. This means (z, y, x)€C., for any jel,
i.e. neither z <;y <;x nor y <;x <;z nor x <;z <; y holds and this implies
(1) of 1.7. Further, the transitivity of C implies (2) of 1.7. Thus, the family (<),
is harmonized and (A) holds.

1.9. Theorem. Let (G, C) be a cyclically ordered set. Then there exists a family
(<1)ie1 of orders on G such that C = |) C<.
iel
Proof. Let 7 be the set of all ordered triples (x, y, z) € G* such that (x, y, z) € C.
For any t = (x, y, z) € define an order <, on {x, y,z} by x <,y <,z. Then
(<<1)ees is a family of orders on G and clearly C = () C._holds.

€T

Let us note that any order <, in the proof of 1.9 is a linear order in G. Thus,
a stronger result holds:

1.10. Corollary. Let (G, C) be a cyclically ordered set. Then there exists a family
(<1)ier of linear orders in G such that C =) C<..

iel
From 1.8 it follows that the family (<,),ey in the proof of 1.9 is harmonized;
naturally it is simple to prove it directly. But we prove also

1.11. Theorem. Let (G, C) be a cyclically ordered set. Then C = |) C ..
xeG
Proof. It is not difficult to prove C<c,, < C for any x € G (see also [5], 3.9).
Thus we have |J C.c , < C.On the other hand, if(x, y,z)eC,thenx <c ¥y <c,x 2

xeG

which implies (x, y, z) € C<, . This yields C = |J C, and hence C = |J C< .

xeG xeG

1.12. Corollary. Let (G, C) be a cyclically ordered set. Then the family (<c,x)xEG
of orders on G is harmonized.

2. WIDTH OF A CYCLICALLY ORDERED SET

2.1. Definition. Let (G, C) be a cyclically ordered set. We put w(G, C) =
= min {card I; there exists a harmonized family (<;);; of orders on G such that
C =) C.,}, W(G, C) = min {card I; there exists a harmonized family (<;);;; of

iel
linear orders in G such that C = {J C,}. The number w(G, C) will be called the
iel

width, the number W(G, C) the strong width of (G, C).
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If Tis a ternary relation on a set G, then we denote by T¢ the cyclic hull of T, i.e.
T¢ = {(x, y, z) € G*; there exists an even permutation (u, v, w) of the sequence
(x, v, z) such that (u, v, w) e T}.

2.2 Example. Let G = {x, y, z,u, v}, T = {(x, y, 2), (x, y, u), (x, y, v), (z, u, v)},
C = T°(Fig. 1). Itis easy to see that C s a cyclic order on G; we shall show w(G, C)=
=2, W(G, C) = 4.

v
z > u
A
Y
x O S R y
Fig. 1

First, we show that w(G, C) > 1. Suppose w(G, C) = 1, i.e. there exists an order <
on G such that C = C.. Then (x, y,z) e C_, thuseither x <y <zory <z <x
or z < x < y, and simultaneously (x, y,u)e C., (x, y,v)€ C<, (z,u,v)e C..

Case 1. Let x < y < z. Then y < u < x is impossible. If u < x < y, then u <
< x < z, thus (u, x, z) € C. = C, a contradiction. Hence we have x < y < u. For
the same reason x < y < v holds. If z <u < v, then y <z <wu and (y,z, u)e
eC.=Cifu<v<z,theny<u <vand(y,u,v)eC;ifv<z<u,theny <
<v<zand (y, v, z) € C. Thus the case x < y < z is impossible.

Case 2. Let y <z <x. Then x < y <u, u <x <y are impossible, hence
¥y <u < x. Analogously y <v < x holds. If z<u <wv, then y <z <u and
(yoz,u)eC; if u <v <z then y<u<zand (y,u,z)eC; if v < z < u, then
y <z <uand (y, z, u) € C. Thus also the case y < z < x is impossible.

Case 3. Let z < x < y. Analogously as in Case 1, we find that u < x < y,
v <x <y hold and any of the possibilities z <u <v, u <v <z, v<z<u
leads to a contradiction. Thus we have shown w(G, C) > 1. Now put <; = {(x, y),

(x.2). (3. 2). (5, ). (o). (s, 0), (0 )} <5 = {(z, ), (2. 0). ()} (Fi. 2)

We easily see that C., U C., = C. Thus w(G, C) = 2.
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Further, put G, = {x, y,z}, G, = {x, y,u}, G; = {x, y, v}, G, = {z,u, v} and
let us define a linear order <; on G; (i = 1,2, 3,4) as follows: x <, y <, z, x <»

z u v oV
e
N . ° )
1 y <2. Y v U
QX
(-2 4

Fig. 2

<,y <,u, x <3y <30, z <zu <4v. Each <;is alinear order in G and clearly
4

C = | C<,. This implies W(G, C) < 4. On the other hand, let (<;),.; be a family

i=1
of linear orders in G such that C = () C., and let iel be such an element that
iel

(x, Vs z)e C., Then <;is a linear order on H 2 G; if H # G,, then either ue H
or ve H. In the first case we have either (y, z, u)e C<, or (u, z, y) € C,, which is
a contradiction, for (y, z,u)&C, (u, z, y) € C; in the second, either (y, z,v) e C,
or (v, z, y)e C.,, a contradiction. Thus H = G,. For the same reason there exist
jelj*i kel i=*k=jlel l€{ij k}suchthat <;isalinear order on G,, <,
a linear order on G, <, a linear order on G,. Thus cardI > 4, W(G, C) = 4 and
we have W(G, C) = 4.

The definition directly yields

2.3. Lemma. Let (G, C) be a cyclically ordered set. Then
(1) w(G, ¢) = w(G, C),
(2) w(G, C) = 1 iff there exists an order < on G such that C = C..

In [5]. the following notion was introduced (3.12): A cyclically ordered set (G, C)
is called x-stable (where x € G) iff the following condition is satisfied: y, ze G — {x},
(u, y, z) € C for some u € G = (x, y, z) € C or (z, y, x) € C. Further, it is proved that
(3.15) if (G, C) is a cyclically ordered set which is x-stable for some x € G, then C =
= C. .- As a consequence, we obtain

2.4. Corollary. Let (G, C) be a cyclically ordered set. If there exists x € G such
that (G, C) is x-stable, then w(G, C) = 1.
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Let us recall the definition of the direct sum of cyclically ordered sets ([5], 2.7):
Let (G;, C;)ier be a family of cyclically ordered sets and let the sets G; be pairwise
disjoint. The direct sum of sets (G;, C;) (i €I) is the cyclically ordered set (G, C)
where G =) G, C = U C;; we write (G, C) = Z(G,, C) If I=1{1,...,n}, we

iel

write Z (G, C) = (G, Cl) + ... + (G, C,). Now, let (G, C) be a cyclically ordered

set WIth W(G, C) = 1. Then there exists a linear order < on a subset G, = G such
that C = C.. If card G, < 2, then C. = 0 so that (G, C) is discrete. If G, = G
and card G 2 3, then C. is linear, so that (G, C) is a cycle. In the other cases, put
G, =G~ G, C; = C = C., C, = 0; then clearly (G, C) = (G,, Cy) + (G,, C,).
On the other hand, if (G, C) = (G4, C;) + (G,, C,) where (G,, C,) is a cycle and
(G,, C,) is discrete, then C = C._ _for any x € G, and < is a linear order in G.
Thus, we have ’

2.5. Lemma. Let (G, C) be a cyclically ordered set. Then W(G, C) = 1 iff (G, C)
is either a cycle or a discrete cyclically ordered set or (G, C) = (Gy, Cy) + (G,, C,)
where (G, C,) is a cycle and (G,, C,) is discrete.

2.6. Theorem. Let (G, C) be a cyclically ordered set. Then w(G, C) < card G.

Proof follows from 1.11.
If (G, C) is a cyclically ordered set and H < G is a subset such that D = C n H?
is a linear cyclic order on H, then (H, D) is called a cycle in (G, C).

2.7. Theorem. Let (G, C) be a cyclically ordered set which is not discrete. Then
W(G, C) = min {card I there exists a family (G;, C).; of cycles in (G, C) such
that C =) C,.

iel

Proof. Put min {card I; there exists a family (G;, C;);.; of cycles in (G, C) such

that C =) C;} = m. Let (<;);; be a harmonized family of linear orders

iel
in G such that C = (J C., and card J = W(G, C). Each <; is a linear order on
JjeJ
a certain (maximal) subset G; = G and we may assume card G; = 3 (otherwise
C., = 0and <; can be omitted). Thus (G;, C ) is a cycle in (G, C) and we obtain
m < W(G, C). On the other hand, let (G;, C,);c; be a family of cycles in (G, C) such
that C = (J C; and cardI = m. By 2.5, W(G;, C;) = 1 for each i€l, ie. there

iel
exists a linear order <;in G, such that C; = C<,. Then each <;is a linear order in G
and C = () C, which implies W(G, C) < m.

iel

2.8. Corollary. Let (G, <) be an ordered set and (<;)i; a family of all maximal
linear orders in G that are included in <. Then W(G, C.) < card I.
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Proof. Clearly, |J <; = < which implies () C<, & C<. On the other hand, if
iel iel
(x,y,z)e C, theneitherx <y <zory <z < xor z < x < y. Then there exists
a maximal chain (G;, <;) in (G, <) containing {x, y, z} and hence (x, y, z)e C.,
Thus C. = |J C., and the assertion follows from 2.7.
iel ’
2.9. Lemma. Let (G, C) be a cyclically ordered set, let H = G and D = C n H>.
Then w(H, D) < w(G, C), W(H, D) < W(G, C).
Proof. Let (<;);;; be a harmonized family of orders on G such that C = (J C,
iel
and card I = w(G, C). Put <; = <; n H?; then <, is an order on H and it is easy
to prove D = () Cx,. Thus w(H, D) < card I = w(G, C). If <; is a liner order in G,

iel

then <; is a linear order in H so that also W(H, D) < W(G, C).

2.10. Theorem. Let (G, C;);; be a family of cyclically ordered sets and let the
sets G, be pairwise disjoint. Let (G, C) = Z (Gi, C)). Then w(G, C) = sup {w(G;, C;);

iel}, W(G, C) £ Y W(G,, C). If, moreover, no (G;, C,) is discrete, then W(G, C) =
=Y W(G,C).

iel

Proof. As G, = G, C; = C n G} for any iel, 2.9. implies w(G;, C;) < w(G, C)
for any i eI and thus sup {w(G;, C;); i eI} < w(G, C). Put sup {w(G;, C;); iel} =
= mand let J be a set with card J = m. For any i €I find a family (<; ;) s of orders

on G; such that C; = |J C., , and for a given je J put <; = (J <;;- Then <; is
JjeJ iel

an order on G (in fact, <, is the cardinal sum of orders <, ;; i € ). We show that
C = | C<,. Let (x, y, z) € C. Then there exists (just one) i € I such that x, y, ze G,
JjeI

and (x, y, z) € C;. This implies the existence of j e J such that (x, y, z) € C<, . As
<;; S <j, we have (x,y,z)eC., = C.,. We have proved C = {J C.,. Let

i,j =
JjeJ JjeJ

(x, Vv, z)€ U C. . Then there exists j € J such that (x, y, z) € C.,. By definition of

the order < there exists (just one) i € I such that (x, y, z) € C, . Thus (x, y, z) € C;
and (x, y, z)e C. Hence C = ) C,, which implies w(G, C) < card J = m and we

JjeJ
have w(G, C) = m = sup {w(G,, C;); iel}. The assertion on W(G, C) follows
from 2.7.

3. COCYCLICALLY ORDERED: SETS

3.1. Definition. Let G be a set, T a ternary relation on G. T is called a cocyclic order
on G, iff it is
(v) reflexive, ie. x, y,z€ G, card {x, y,z} < 2=(x,y,2z)e T,
cyclic, complete and satisfies the condition
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(vi) x, y, z, u € G, pairwise distinct, (x, y, z) e T=(x, y,u)e Tor (x,u,z)e T.

If G is a set and Ta cocyclic order on G, then the pair (G, T) is called a cocyclically
ordered set.

If G is a set and T a ternary relation on G, then we denote by Co T the complement
of Tin G*ie. CoT=G> -~ T.

3.2. Theorem. Let G be a set, T a ternary relation on G. T is a cocyclic order on G
iff Co Tis a cyclic order on G.

Proof. 1. Let T be a cocyclic order on G and denote Co T = C. Assume that
there exist x, y, ze G with (x, y, z) € C, (z, y, x) € C. Then (x, y, z) €T, (z, y, x) ET
which implies x = y = z % x and thus T is not complete. This is a contradiction
and hence C is asymmetric. Let (x, y, z) € C and assume (y, z, x) € C. Then (y, z, x) €
e Tand as Tis cyclic, (x, y, z) € T, a contradiction. Thus C is cyclic. Let (x, y, z) € C,
(x,z,u)eC. Then x = y=z=x, x =z =u=x and we shall show y = u.
If y = u, then (x, z, y) € C, thus (z, y, x) € C as C is cyclic and this contradicts the
asymmetry of C. Thus the elements x, y, z, u are pairwise distinct. Assume (x, y, u) €
€C. Then (x, y,u)e T and, by (vi), either (x, y,z)e T or (x,z,u)e T. But this
contradicts the assumption (x, y, z)€ C, (x, z, u) € C. We have shown that C is
transitive and thus C = Co T'is a cyclic order on G.

2. Let C = Co T be a cyclic order on G. From the asymmetry and cyclicity of C
we easily derive (x,y,z)eC=x =y %=z %= x. Thus x, y, z€ G, card {x, y, z} <
< 2=(x,», 2)EC, hence (x, y, z) € T and the relation T'is reflexive. Let (x, y, z) €
e Tand assume (y, z, x) € T. Then (y, z, x) € C and by the cyclicity of C, (x, y, z) e C
which is a contradiction. Thus T'is cyclic. Let x, y, z€ G, x = y = z == x and assume
(x,»,z)€T, (z,y,x)ET. Then (x,y,z)eC, (z,y,x)eC, which contradicts the
asymmetry of C. Hence T'is complete. Let x, y, z, u € G be pairwise distinct elements
such that (x,y,z)e T and assume (x, y,u)ET, (x,u,z)&T. Then (x, y, u)eC,
(x, u, z) € C and hence (x, y, z) € C by the transitivity of C, which is a contradiction.
Thus (x, y,u)e T or (x, u, z) e T, T satisfies (vi) and is, therefore, a cocyclic order
on G.

3.3 Corollary. Let G be a set, < an order on G. Then Co C. is a cocyclic order
on G.

3.4. Theorem. Let G be a set, (<,)icr a family of orders on G. Then ) Co Cv,
is a cocyclic order on G iff the family (<,-),-€, is harmonized. el

Proof. Clearly (1 CoC.,= Co(UC.) so that — by 3.2 — N CoC., is
iel iel iel
a cocyclic order on G.iff () C<, is a cyclic order on G. But this holds by 1.8 iff the
iel

family (<,);c; is harmonized.
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3.5. Theorem. Let (G, T) be a cocyclically ordered set. Then there exists a har-
monized family (<;)i; of orders on G such that T= () Co C<,.
iel
Proof. As Co Tis a cyclic order on G, by 1.9 there exists a harmonized family
(<,-),~€, of orders on G such that Co T'= () C.,. But then T= () Co C...
Analogously, from 1.10 we obtain ! el

3.6. Corollary. Let (G, T) be a cocyclically ordered set. Then there exists a har-
monized family (<) of linear orders in G such that T = () Co C~..

iel

3.7. Definition. Let (G, T) be a cocyclically ordered set. Put d(G, T) = min {card I;
there exists a harmonized family (<;);; of orders on G such that T = () Co C. },
iel
D(G, T) = min {card I; there exists a harmonized family (<);.; of linear orders in G
such that T= ) Co C. }.

iel

3.8. Theorem. Let (G, T) be a cocyclically ordered set. Then d(G, T) =
= w(G, Co T), D(G, T) = W(G, Co T).

Proof. For any harmonized family (<;);, of orders on G the relation T =
= () Co C; is equivalent to the relation Co T = (J C.;. This yields both the as-
iel iel

sertions.
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