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1. INTRODUCTION

A semigroup S is called periodic if to each element a of S there corresponds an
idempotent e and a positive integer n such that a" = e; the element a is then said to
belong to e. In his pioneering study of periodic semigroups, Schwarz [7] introduced
the equivalence &, each of whose classes is associated with a particular idempotent e
and consists of all elements belonging to e.

Some of the earliest structure theorems for periodic semigroups are due to Schwarz
[8] and Yamada [11], both of whom were concerned with the commutative case.
Later Petrich [6] introduced the notion of weak commutativity and applied it to
periodic semigroups. Sedlock [9] used a generalized form of this concept to charac-
terize certain periodic semigroups as semilattices of more restricted semigroups. His
principal hypotheses are in the form of connections between Green’s relations and the
equivalence 1 .

The main purpose of this paper is to give a characterization of those periodic
semigroups for which Green’s relation # is included in 2. Section 2 is a development
of properties of such semigroups. Section 3 includes the primary structure theorem
for these semigroups, as well as a characterization of periodic semigroups which
are #-trivial.

The final section is a brief discussion of the current status of the structure problem
for periodic semigroups in which ¢ < &

2. THE EQUIVALENCE X

The notation and terminology of [3] will be followed wherever applicable. In
particular, if J is any one of Green’s relations £, 9, &, # or # on a semigroup S
and if x is an element of S, the J-equivalence class containing x will be denoted
by T,. It is well known that these five equivalences form a sublattice of S x S
(partially ordered by inclusion), with greatest element # and least element .
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Green [4] noted the following property of periodic semigroups.

2.1. Proposition. If S is a periodic semigroup then 9 = #.
The relation &, introduced by Schwarz [7], has proved to be an extremely useful
tool in the study of periodic semigroups.

2.2. Definition. Let S be a periodic semigroup, with set of idempotents Eg. For a, b
in S, a A b if and only if there exist positive integers m, n and an element e in Eg
such that @™ = b" = e.

Evidently £ is an équivalence relation on any periodic semigroup S. The J# -class
containing an element x of 'S will be denoted by K. Schwarz established the fol-
lowing connection between J#-classes and J¢'-classes of a periodic semigroup.

2.3. Lemma. (Th. 8 of [7]). For each idempotent e in a periodic semigroup S,
eK,=K,e=H,.

The balance of this section is concerned with the properties of periodic semigroups
which satisfy the condition ,# = 2. The equivalence & is, of course, idempotent-
separating on every such semigroup.

The following notation will be used extensively. If s and ¢ are elements of a semi-
group S and if k is a positive integer, then [s, t], is defined by

(2.9) [s, t] = (st)* ™1 s = s(ts) 1.

In particular, [s, t]; is understood to denote s. Note also that
(2.5) 1[s, t]e = (ts) = [t, s]i s

2.6. Lemma. Let S be a periodic semigroup with # < A and let a,be S, e€ Eg.
Then ab € K, if and only if baeK,.

Proof. Suppose that abeK, and ba € K, where fe Es. Thus (ab)" = e and

(ba)" = f for some positive integer n, so
e = (ab)*" = a(ba)" (ba)"* be S'fS*.

Similarly fe S'eS! so e #f. Thus e A f so, since A is idempotent-separating,
e=f. O

The following result will be used to show that the s -classes of certain periodic
semigroups S are in fact subsemigroups of S.

2.7. Lemma. Let S be a periodic semigroup with # < A and let a, be S. Then
ab A a'b for every positive integer i.

Proof. Suppose that abeK, and a’beK,, where e,fe E;. By Lemma 2.6,
ba € K,, aba € K, and ba® € K. Thus there is a positive integer n such that
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(2.8) (ab)" = (ba)" = e
and
(2.9) (a*b)" = (aba)" = (ba®)" = f.

If n=1 then f=ba® = (ba)a =ea so ef =f. Also e = e* = (ba)(ab) =
= b(a’b) = bf, so ef = e. Hence e = f.
Suppose that n > 1. Since (ab)" a = a(ba)" then, by (2.8)

ea = ae.
Similarly
eb = be.

Moreover, since (a’b)" a = a(aba)", then
fa = af.
Similarly b(a’b)" = (ba®)" b, so

For each positive integer k, let

a, = [a,b]i, by =[b,al,, ¢ =]a,ba].
By (2.5) and (2.8), (ba)c, = (ba®)", so by (2.9),

(2.10) (ba)c, = f.

Moreover, since f commutes with both a and b,

(2.11) feo=c¢f forall k=1.
Since

e = ¢* = (ba)" (ab)' = (ba)'~? b(aba)? b(ab)'~ 2,

it follows from (2.4) that
e =b,_4(aba)’*b,_, .

Assume inductively that, for some positive integer k,
2.12) e = b, s(aba)*tbk_, .
Since e commutes with both a and b, it also commutes with b,. Thus
e=e*=b, (aba)*! ebi_| =
— [b,-1(aba)*'] [(aba) b,- ;] b5 s = b, s(aba)*2 bE*1

Hence (2.12) holds for every positive integer k.
Set k equal to n — 1 in (2.12); by (2.9),

e=b,_fb"=1.
Thus e e S'fS!.
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Furthermore, by (2.4),
¢, = [a, ba], = (aba)" ' a
and similarly
¢, = a(ba®y"~".
Hence, by (2.9),
f =f* = (aba)" (ba®)" = (aba)"~* a(ba)* a(ba®)"~!
so, by (2.4),
f=clba)c,.
Assume inductively that, for some positive integer k,
(2.13) f = cy(ba)*t ck.
Then, by (2.11) and (2.10),
f=1% = c(ba)tt fck = c(ba)ft? &+t

Therefore (2.13) holds for every positive integer k.
Replace k by n — 1 in (2.13) to obtain

f=cyba)yc .

By (2.8), f = cyec)” ' e S'eS".

Thus e # f so e = f, and hence ab A a*b. By induction, ab A a'b for every
positive integer i. [] .

Again let S be a periodic semigroup with # < . Suppose e€ Eg and a, beK,,
say a" = e. By Lemma 2.7, ab A a"b = eb. Moreover, by Lemma 2.3, eb € eK, =
= H, = K,. Thus K,, = K, = K,, so K, is a subsemigroup of S. This establishes
the following result:

2.14. Lemma. Let S be a periodic semigroup with ¢ < A and let e € Eg. Then K,
is a periodic unipotent subsemigroup of S.
Lemma 2.7 also yields a description of the quotient set S/,

2.15. Lemma. Let S be a periodic semigroup with § < A". If e, f, g are idem-
potents of S such that ef € K, then

KK, <K,.

Proof. Let beK,; thus b" = f for some positive integer n. By Lemma 2.7,
be A" b"e = fe so, by Lemma 2.6, eb " ef A" g. Thus eb € K, so

(2.16) K, < K,.

Now suppose a € K, and b € K, with a™ = e for some positive integer m. Then
ab A" a™b and, by (2.16)
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a"b = ebeeK, S K,
so abeK, [
Lemmas 2.6, 2.14 and 2.15 together yield the following result.

2.17. Theorem. Let S be a periodic semigroup for which § < A . Then S is a semi-
lattice of periodic unipotent semigroups.

3. STRUCTURE THEOREMS

Petrich [6] introduced the concept of weak commutativity and used it to charac-
terize a class of periodic semigroups.

3.1. Definition. A semigroup S is said to be weakly commutative if for each a, b
in S there exist x, y in S and a positive integer k such that

(ab)t = xa = by.

3.2. Theorem. (6.8 of [6]) If S is a periodic semigroup, the following are equi-
valent:

(i) For all e, [ in Es, KK, < K,; = K,.

(ii) S is weakly commutative and Eg is commutative.

(iii) S is weakly commutative and Eg is a semigroup.

In his study of Green’s relations and the equivalence 2" on periodic semigroups,
Sedlock [9] used a generalization of weak commutativity to obtain several structure
theorems. They are restated here for comparison with the principal result of this
section.

3.3. Definition. (3.3 of [9]) A semigroup S is said to be left [right] weakly com-
mutative if for each a, b in S there exist an element x of S and a positive integer k
such that

(ab)t = bx [(ab)* = xd].
3.4. Theorem. (2.9 of [9]) The following are equivalent on a periodic semi-
group S:

(i) S is a semilattice of groups;
(ii) S is a union of groups and is weakly commutative;
(iii) # = .

3.5. Theorem. (3.5 of [9]) The following are equivalent on a periodic semigroup S:

(i) S is a semilattice of right groups;
(ii) S is a union of groups and is left weakly commutative;
(i) # = 2.
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3.6. Theorem. (2.3 and 3.8 of [9]) The following are equivalent ona periodic
semigroup S:
(i) S is a semilattice of completely simple semigroups;
(i) S is a union of groups;
(i) o = A;
(iv) £ = #.

Theorem 2.17 can be recast into a form analogous to that of Sedlock’s theorems.

3.7. Theorem. T he following are equivalent on a periodic semigroup S:
(i) S is a semilattice of unipotent semigroups;

(ii) S is a union of unipotent semigroups and is weakly commutative;

(iii) £ = .

Proof. Assume (i). If a, b € S then ab, ba € T for some unipotent subsemigroup T
of S, say with idempotent e. Moreover, (ab)’ = (ba)" = e for some positive integer n,
so S is weakly commutative. Thus (ii) is valid.

By Proposition 2.6 of [9], # < & in every weakly commutative periodic semi-
group, so (i) implies (iii). Finally, by Theorem 2.17, (iii) implies (i). [J

A semigroup on which Green’s relation # is the identity is said to be #-trivial;
such a semigroup is necessarily combinatorial.

These semigroups arise in formal language theory; for example, Simon [10] has
shown that a language is piecewise testable if and only if its syntactic monoid is
f—trivial.’) Theorem 3.7 yields a global description of periodic #-trivial semigroups.

A semigroup with zero is said to be nil if each of its elements is nilpotent; in parti-
cular, every nil semigroup is periodic.

3.8. Lemma. Let S be a semilattice of nil semigroups. If xy € K, for some x, y
in S and some e in Eg, then there is a positive integer k such that [x, yl=e.

Proof. Note that the nil components of S are just the # -classes K, of S, where e
ranges over Eg. »

Suppose that x € K, y € K, and xyx € K,,, where f, g, h € E5. Since xy € K, then
yxekK, so x(yx) €eK,K,nK,. Thus KK, nK, +0 so KK, = K. Therefore
(K/K,)K, < K,K, " K, ie., K,K, = K,

Moreover, (xy)? € K, and (xyx) y € K,K,, so K, K, < K,. Thus, as above, K;K, =
< K,. Since also KK, < K, then h = e, so xyx € K,.

If k is any integer exceeding 2 then, by (2.4),

[x. y]e = (xyx) (x)* " ? e KK, = K, .

Since xy € K, then (xy)" = (yx)' = e for some positive integer n, assumed to be
greater than 2. Therefore

[x, ¥]one1 = (k)" x = ex = (xp)" x = [x, y]os1 -

1) For an account of this and related results, see Lallement [5].
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Thus, since [x, y],+1 € Kes
[X’ y]n+1 = [x’ y]2n+1 = [X, y]n+1 (yx)’1 = [X, y]n+1 e=e. D

3.9. Theorem. The following are equivalent on a periodic combinatorial semi-
group S:

(i) S is a semilattice of nil semigroups;

(ii) S is a union of nil semigroups and is weakly commutative;

(iii) S is F-trivial.

Proof. A periodic nil semigroup is necessarily unipotent, and a unipotent sub-
semigroup of a periodic combinatorial semigroup must be nil. Hence the equivalence
of conditions (i) and (ii) follows from Theorem 3.7.

Suppose that S is #-trivial. Then # = X so, again by Theorem 3.7, S is a semilat-
tice of nil semigroups.

Finally, suppose that S is a semilattice of its J -classes. If a, b in S satisfy a &£ b
then there exist x, y in S* such that xa = b, yb = a. Suppose that xy, and hence
also yx, lies in K,, with e in Es. Then (yx) a = y(xa) = yb = a, so

[x,y]a=x(yx}"ta=xa=b, all k=1.
Thus, by Lemma 3.8, ea = b. Dually eb = a, so
a=ceb=eeb)=ea=Db.

Therefore S is ZL-trivial; similarly S is %-trivial and hence Z-trivial. And the
periodicity of S implies that # = 2. O

3.10. Corollary. A periodic Z-trivial semigroup is a semilattice of nil semi-
groups.

4. CONCLUDING REMARKS

In view of Theorem 3.7 it is natural to look more closely at periodic unipotent
semigroups. Let S be such a semigroup, with idempotent e. Let xe S and let G,
be the maximum subgroup (and minimum ideal) of the cyclic subsemigroup {(x)
of S. Thus G, < H,, the maximum subgroup of S, so

xeexG, =€ G, < H,.
Therefore
xH, = x(eH,) = (xe) H, < H, .

Similarly H,x < H,, so H, is an ideal of S.

Moreover, x" = e for some positive integer n, so the Rees quotient semigroup
S/Hc is nil. Therefore S is an extension of the periodic group H, by the nil semigroup
S/H.,.

Conversely if a semigroup S is an extension of a periodic group G by a nil semi-
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group N then to each x in S corresponds a positive integer n such that x"e G.
Thus (x")™ is equal to e, the identity element of G, for some positive integer m, so S is
periodic. In particular if x is idempotent then x = e, so S is unipotent.

These remarks are summarized as follows:

4.1. Theorem. Every periodic unipotent semigroup is an extension of a periodic
group by a nil semigroup and conversely.

It is well known (see, e.g., Theorem 4.19 of [3]) that all of the extensions of a semi-
group S by a semigroup T = T° are determined by the partial homomorphisms of
the partial groupoid T* = T\ 0 into S. Moreover, these partial homomorphisms
have been characterized by Arendt and Stuth [2].

It follows from Theorems 3.7 and 4.1 that an adequate description of all periodic
semigroups for which # < 2 depends upon a determination of three classes: the
class of periodic groups, the class of nil semigroups, and, for a given semilattice Y
and set {Sy :ye Y} of periodic unipotent semigroups, the class of semilattices Y of
the S,. A partial solution for the latter problem, in the commutative case, has been
given by Arendt and Stuth [1].

Acknowledgement. The author is indebted to F. Pastijn for several useful discussions
concerning this problem.
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