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This paper is devoted to spaces in which the convergence of sequences is pro-
jectively generated by a class of mappings of the space in question into a fixed
terminal space. Such spaces were introduced by J. Novdk (cf. [16], [17]) who
considered the special case in which the terminal space is the real line, and were
further studied, e.g., in [13], [4], [7], [12]. We focus on the case when the terminal
space is a subspace either of the real line or of the plane. The main results of the
present paper were announced in [8] and [9].

Let X be a set, & a class of closure spaces, and & a class of mappings f: X — Y,
Ye &. The class & projectively generates a convergence of sequence in X : a sequ_nce
{x,> € XV converges to a point x € X whenever for each f € & the sequence {f(x,)>
converges to the point f (x) in the range space of f. Usually, X is a closure space, & con-
sists of a single space Y, and the convergence of sequences in X is projectively
generated by &. Two special cases are of interest. First, if we study topological
invariants, then we choose & to be the set of all sequentially continuous mappings
of X into Y (see e.g. [16], [13], [7], [11], [9]). Secondly, if some other invariants
(e.g. uniform, measure-theoretical) are studied, then X and Y are equipped with
additional structures and & is a corresponding subset of sequentially continuous
mappings of X into Y(see e.g. [17], [14], [5], [11], [10]). In both cases the categorical
point of view is useful (see [11], [9]).

Let Y be a terminal space. As far as we are interested in notions based on a pro-
jectively generated convergence of sequences, the closure operator in Yis not essential
to the extent that it can be replaced by any other closure operator inducing in Y the
same convergence of sequences. In what follows, all terminal spaces are assumed to
be convergence spaces.

In notation and terminology we generally follow [7] and [12]. However, classes
of functions are denoted by script letters, e.g., we write ¥(X) instead of C(X).
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Symbols E and F always denote convergence spaces. Let X and Y be closure spaces.
Then %(X, Y), resp. (X, Y), denotes the set of all continuous, resp. sequentially
continuous, mappings of X into Y, and %(X, R), resp. %S(X, R), is condensed to
%(X), resp. €,(X). Throughout the paper we make a blanket assumption that in all
spaces every sequence converges to at most one point.

1.

In this section we develop a general theory of spaces in which the convergence of
sequences is projectively generated by a class of mappings (cf. [9], where such spaces
are investigated from the categorical point of view). In most cases we give generaliza-
tions of known statements in which the terminal space is a subspace of R. Since the
proofs are either straightforward or obvious modifications of those for subspaces of R,
they are left out. However, we indicate in parentheses the statement being gen-
eralized.

We start with definitions and some fundamental properties. Then we proceed by
describing certain extremal embeddings. The final part of this section is devoted to
the mutual relationship between various terminal spaces.

Definition 1.1. Let X be a closure space, E a convergence space, and & < EX.
The space X is said to be F-sequentially regular if the convergence of sequences
in X is projectively generated by & .

Remark 1.2. Let X be an & -sequentially regular closure space. If E = R, then we
obtain Definition 0.2 in [12]. Clearly # < %(X, E). If # = %,(X, E), then we speak
of E-sequential regularity and moreover, if E = R, then we omit the letter E (cf.
[7]). Trivially, every E is E-sequentially regular.

Theorem 1.3. (Theorem 9 and Theorem 10 in [16].) E-sequential regularity is
a hereditary and a productive property.

Theorem 1.4. (Theorem 11 in [16], Theorem 1.13 in [7].) A convergence space is
E-sequentially regular iff it is homeomorphic to a subspace of a convergence
power E™ (pointwise convergence) for some cardinal m.

Lemma 1.5. The following statements are equivalent:
(i) Every E-sequentially regular closure space is F-sequentially regular.
(ii) E is F-sequentially regular.

Corollary 1.6. Let X be an E-sequentially regular closure space. If E is sequen-
tially regular, then X is sequentially regular. If E is {0, 1}-sequentially regular,
then X is {0, 1}-sequentially regular.
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Corollary 1.7. If X is a {0, 1}-sequentially regular closure space, then X is
E-sequentially regular for each E such that card (E) > 1.

Corollary 1.8. If X is a sequentially regular closure space, then it is E-sequentially
regular for each E containing an arc.

Definition 1.9. Let X be a closure space, E a convergence space, and & < EX.
A sequence {x,» of points of X is said to be F-fundamental if for each f e F there
is a point a, € E such that limf(x,,) = a;. We say that X is #-sequentially complete
if every #-fundamental sequence converges in X.

Remark 1.10. Let X be an & -sequentially complete closure space. If E = R, then
we obtain Definition 1.5 in [12]. If # = (X, E), then we speak of E-sequential
completeness and moreover, if E = R, then we omit the letter E (cf. [7]). Trivially,
every E is E-sequentially complete.

Theorem 1.11. Let X be an F-sequentially complete closure space. If F <
< %X, E), then X is #-sequentially regular.

Theorem 1.12. (Lemma 1.16 and Lemma 1.17 in [7].) E-sequential completeness is
a productive property and a hereditary property with respect to sequentially
closed subspaces.

Theorem 1.13. (Theorem 1.19 in [7].) 4 convergence space is E-sequentially com-
plete iff it is homeomorphic to a (sequentially) closed subspace of a convergence
power E™ for some cardinal m.

Theorem 1.14. (Theorem 1.8 in [12].) Let X be a closure space, E a convergence
space,and F < E*. Let X be % -sequentially regular. Then the following statements
are equivalent:

(i) X is Z-sequentially complete.

(ii) If {x,y and {y,) are sequences of points of X such that for each f € F there
is a point a; e E such that lim f(x,) = a, and lim f(y,) = a, in E, then there is
a point x in X such that lim x, = x and lim y, = x in X.

(iii) X is sequentially closed in every closure space Y in which it is sequentially
F-embedded (i.e., for each fe F(c (X, E)) there is g€ €Y, E) such that
g|lXx =) '

Lemma 1.15. The following statements are equivalent:

(i) Every E-sequentially complete closure space is F-sequentially complete.
(ii) E is F-sequentially complete.
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Corollary 1.16. Let X be an E-sequentially complete closure space. If E is sequen-
tially complete; then X is sequentially complete. If E is {0, 1}—sequentially com-
plete, then X is {0, 1}-sequentially complete.

Corollary 1.17. If X is a {0, 1}-sequentially complete closure space, then X is
E-sequentially complete for each E such that card (E) > 1.

Corollary 1.18. If X is a sequentially complete closure space, then it is E-sequen-
tially complete for each E containing an arc.

Let E be a convergence space, (E), the class of all E-sequentially regular con-
vergence spaces, and (E), the class of all E-sequentially complete convergence
spaces. Then (cf. [9]) (E), is the smallest bireflective class of convergence spaces
containing E and (E)e is the smallest epireflective class of convergence spaces con-
taining E. If E = R and X € (E),, then (cf. Corollary 3.2 in [12]) the %-sequential
envelope o(X) of X is the epireflection of X into (E),. Accordingly, if E is a conver-
gence space and X € (E),, then the epireflection of X into (E), will be denoted by
o5(X). Recall that o;(X ) is characterized by the following properties: X is a sequential-
ly dense subspace of ¢;(X), each mapping in %(X, E) can be (uniquely) continuously
extended over o5(X), and o.(X) is E-sequentially complete.

Theorem 1.19. Let E be a sequentially complete convergence space and X € (E)b.
Put €y = 6(X, E) o ¢(E, R). Then o5(X) is a €y-sequential envelope of X.

Proof. It follows immediately that X is a sequentially dense %y-embedded sub-
space of o(X). Clearly, €, = €,(0x(X), E) - ¢(E, R) is the class of the extended
functions. Since E is sequentially complete and o(X) is E-sequentially complete, it
can be shown that o.(X) is %,-sequentially regular and %,-sequentially complete.
The assertion follows from Theorem 2.2 in [12].

Note that each E = R" is sequentially complete (cf. Theorem 1.14 in [7]). V.
Koutnik pointed out in [13] that the sequential envelope can be constructed via the
Cech-Stone compactification. His construction can be generalized as follows.

Theorem 1.20. (Theorem 11 in [13] and Theorem 8 in [4].) Let E < R" and X € (E),.
Let X be the underlying set of X equipped with the %, (X, E)-weak topology, and let
o X be the E-compactification of X (cf. [15]). Let S be the smallest sequentially
closed subset of o X containing X, equipped with the inherited convergence of
sequences and the closure operator derived from this convergence. Then S = o ,(X).

Corollary 1.21. Let X be a O-dimensional Fréchet completely regular space.
Let Bo,X be the epireflection of X into compact O-dimensional spaces (i.e., the
Banaschewski O-dimensional compactification of X). Let S bethe smallest sequential-
ly closed subset of foX containing X, equipped with the inherited convergence of
sequences and the derived closure operator. Then S = o4 1,(X).
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Symbol E p F denotes that a closure space X is E-sequentially regular iff it is F-
sequentially regular. Similarly, E ¢ F denotes that a closure space X is E-sequentially
complete iff it is F-sequentially complete. Clearly, p and ¢ are equivalence relations
for the class of all convergence spaces, and it follows from Theorem 1.11 that E ¢ F

always implies E p F. We focus on convergence spaces in E, = {E = R": card (E) >

> 1}, ne N. In E; the situation is relatively simple.

Theorem 1.22. (Theorem 1.12 in [7].) (i) In E, there are precisely two p-equivalence
classes: {E€E, : E contains an interval} nad {E€E, :E does not contain any
interval}.

(ii) For E, Fe E; we have Eu Fiff E ¢ F.

For convergence spaces in E, the following problem has not been solved yet.

Problem 1.23. Is there a {0, 1}-sequentially regular closure space which is sequential-
ly complete but fails to be {0, 1}-sequentially complete?

In E,, n > 1, the situation is quite different. To show that, we shall use de Groot’s
results from [3]. It follows from his Theorem 1, Lemmas 3 and 4 that there is a family
{P, : €2} of connected and locally connected subsets of R* such that for every
subset P = P, with card (P, — P) < 2° the only continuous maps on P into P, are
trivial (i‘e., constants or, if « = f, also the identity embedding).

It follows directly from the properties of {P,} that the class of P,-sequentially
regular spaces are pairwise incomparable because no Py, f # «, is P,-sequentially
regular. If P = P,, card (P, — P) < 2°, then P, equals to op(P). Hence, if x€ P,
and we put E = P,, F = P, + (P, — (x)) (of course, F is embeddable into R?),
then Epu F but Enon ¢ F because P, — (x) is F-sequentially complete but not
E-sequentially complete.

Now we shall consider general %,-sequential envelopes (cf. [17], [12]). Let X be
a sequentially regular convergence space. Denote R(X) = {%, = 4(X): X is %,-
sequentially regular}. For €y, %, € R(X) put ¢, ~ %, whenever the €;-scquential
envelope ,(X) and the ,-sequential envelope o,(X) of X are equivalent, i.c., there
is a homeomorphism of ¢,(X) onto o,(X) leaving X pointwise fixed. We write
o1(X) = o,(X) in this case. It is easy to see that ~ is an equivalence relation; by [%, ]
we denote the equivalence class containing @,. Our aim is to study the properties
of [€,]- They provide vital information about o4(X) even when %, is a general class.

Let X be a %,-sequentially regular convergence space. Denote I%, = €(0o(X)) | X
and denote by %, the smallest subring of ¥(X) containing %, and all constants.
Clearly rl%, = I%,. Sets R(X) and [©,] are partially ordered by inclusion.
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Theorem 2.1. Let X be a €y-sequentially regular convergence space. Then:
(i) 16, is the largest element in [%,].

(i) If 6,€[6,), a€ A, then ) G, e[%,].

(iil) ¥, € [%,)- oed

(iv) There is a class €, = €*(X) such that €, ~ €.

Proof. It is easy to see that if ¥, = %(X) and X is ¢;-embedded in oo(X), then
%, < 1%,. Conditions (i), (i), and (iii) follow from Corollary 2.4 in [12]. Condition
(iv) follows from the fact that for ¢; = %*(0o(X)) | X the space X is %,-embedded
in 0o(X) and, by Lemma 1.7 (condition (iii)) in [12], o¢(X) has the property p with
respect to €*(oo(X)). Theorem 2.2 in [12] gives now the result.

Remark 2.2. Note that [%,] need not contain the smallest element. Consider the
following example. Let X = ]0, 1] and let %, consist of the identity mapping on X.
Then X is €y-sequentially regular and ¢o(X) = [0, 1]. If €, consists of the function
sin restricted to X, then ¥, ~ %4, but ¥, and ¢, are incomparable minimal elements
of [€,]- Moreover, rings r%, € [¢,] and ré, € [¢,] are incomparable. Since their
intersection contains only constants, there is no ring in [%,] which is smaller than
both r%, and r%,.

Remark 2.3. Let X be a sequentially regular convergence space. In [7] it was proved
that (K(X) ~ %*(X) Condition (iv) in Theorem 2.1 generalizes this fundamental
feature of o(X) to %,-sequential envelopes. Namely, if we study properties of ay(X),
then it suffices to consider R*(X) = {%, = *(X): X is %,-sequentially regular}
and the restriction of ~ to R*(X). Clearly, if €, e R¥*(X), then the ring I*¢, =
= ¢*(04(X)) | X is the largest element in the restricted equivalence class con-
taining %,.

Problem 2.4. Characterize rings %, € R*(X) such that %, = I*%,,.
Our next objective is the interplay between closure operators for $*(X) and the
equivalence relation ~.

Remark 2.5. Let w be a closure operator for ¢*(X) and w its topological modifica-
tion (i.., the finest of all topological (idempotent) closure operators for #*(X)
coarser than w). Since W can be obtained from w via a transfinite construction using
only iterations and unions of w-closures, it follows (cf. condition (ii) in Theorem 2.1)
that W€, ~ €, whenever w#¢, ~ €,. Consequently, we restrict ourselves to topo-
logical closure operators.

Let X be a sequentially regular convergence space. Let 4 be a countable subset of X,
¢ a positive real number, and fe #*(X). Sets 0,(4, £) = {g € €*(X): sup | f(x) —

xeA

— g(x)| < &} form a fundamental family of neighborhoods for a topology u
for €*(X). Clearly, u is coarser than the metric topology, but it is finer than the topo-
logy of pointwise convergence.
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Theorem 2.6. If %, € R¥(X), then €, ~ u%,.

Proof. Let (S, a) be the #,-sequential envelope of X. First, we have to prove that X
is u%,-embedded in (S, o). By Corollary 6 in [6], it suffices to show that if A and B
are countable subsets of X such that ¢l f[4] n clf[B] = 0 for some f € u®,, then
0”'A " c®B = 0. Put ¢ = (1/3)d(f[4], f/[B]). Then there is a function he %,
such that he O/(4 U B, ¢) and hence ¢l h[A] n cl h[B] = 0. Since h can be con-
tinuously extended over S, we have ¢°'4 N ¢”'B = . Secondly, by Theorem 2.2
in [12], it suffices to prove that (S, o) has the property p with respect to u%o(S) =
= {f€%(S): f|X eu®,}. But this follows from @(S) = u%,(S) and the fact
that (S, o) has the property p with respect to ().

Corollary 2.7. (i) If %, € R*(X) and 6, < 6, < u%,, then €, ~ %,.
(ii) If %1, %, € RX(X), then u%, ~ u%, iff €, ~ €.

Remark 2.8. Let X be a sequentially regular convergence space. It can be shown
that for each %, € R*(X) we have rur%, = ur®,. Let X be the completely regular
modification of X(cf. [13]). Then %*(X) = ¢*(X). Since ur®, is ring containing
constants and it is closed in the metric topology, it follows from Lemma 16.2 in [2]
that ur®, is a sublattice of ¢*.

The next example shows that if v is the topology of pointwise convergence for ¢*,
then %, ~ v%€, need not hold.

Example 2.9. Let X = 0, 1] and let %, be the set of all polynomials on X. It is
easy to see that ¢(X) = [0, 1]. Since v%, contains functions behaving in the neigh-
borhood of 0 like sin (1/x), €, and v%, are not equivalent.

Remark 2.10. Let X be a sequentially regular convergence space. Trivially, the
discrete topology is the finest topology for *(X) such that cl¥, ~ %, whenever
%o € R¥(X). Let €, € R*(X) and let {¢,} be the set of all topologies for ¥*(X) such
that 1,4, ~ %,. Then sup t, (defined by sup t,# = t,#, F = €*(X)) is a closure
operator for €*(X) and its topological modification is the coarsest topology for *(X)
such that c1 %, ~ %,. In the same way it can be shown that there is the coarsest topo-
logy ¢ for €*(X) such that 1%, ~ %, for all €, in R*(X). It follows from Theorem
2.6 that 1 is coarser than u. Note that for X = ]0, 1] the topology of pointwise con-
vergence for €*(X) is strictly coarser than ¢ (cf. Example 2.9). It might be interesting
to study the properties of ¢ more closely.

Let A be a ring of sets and o(A) the generated o-ring, both considered as con-
vergence spaces. Let 2, be the set of all Dirac measures on A and 2 the set of all
probability measures on A. Then (cf. [17]) 2, = 2 < ¥*(A) and o(A) is both the
P,-sequential and the #-sequential envelope of A.

Problem 2.11. Find a topology for ¥*(A) such that Z = cl 2, and cl 2, ~ 2.
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Finally, we give a necessary and sufficient condition for two classes €,, ¢, € R(X)
to be equivalent. Recall that the % ;-sequential envelope ai(X) of X is characterized
by the following three proporties (cf. [12]): X is sequentially dense in o(X), each
f€%; can be (uniquely) continuously extended over ¢/(X) (i.e., X is %;-embedded
in 6/(X)), and o(X) is sequentially complete with respect to the extended functions.
A natural way to give a necessary and sufficient condition comprising the three
properties is in terms of separating countable subsets by functions (cf. [7], [6]).

Theorem 2.12. Let X be a sequentially regular convergence space. For i€ {0, 1}
let ;€ R(X) and let (S;, 0;) be the €;-sequential envelope of X. Then €, ~ %,
iff the following condition is satisfied:

(~) Let i,je{0,1}, i + j. Let a,beS;, let A and B be countable subsets of X
such that a € 6" A and b € ¢?' B, and let cl f[A] n ¢l f/[B] = 0 for some fe .
Then there are subsets A’ =« A, B' = B such that acd{'A" and bec?'B,
and cl g[A'] n ¢l g[B'] = 0 for some geb,

Proof. 1. Let ¥; ~ %,. Then there is a homeomorphism h: (Sy, o) = (S2s 0'2)
leaving X pointwise fixed. Clearly, it suffices to prove that condition (~) holds for
i =1, j = 2. Suppose that the assumptions of (~) are satisfied. Then h(a) € 0%'A4
and h(b) € 69'B. If f is the continuous extension of f over S,, then f(h(a)) + f(h(b))
and hence a # b. Thus there is a function § € %(S,) such that g = g | X € ¢, and
g(a) + g(b). It is easy to see that there are subsets A’ = A and B’ = B such that
acoi'A and beo}'B’, and cl g[A"] ncl g[B] = 0.

2. Suppose that condition (~ ) holds. Using Corollary 6 in [6] it can be shown that
for i + j the space X is % ;-embedded in S;. Since S; is the ¥(S;)| X-sequential envelope
of X (cf. Corollary 2.4 in [12]), for i # j we have %; = (S;) X. It follows from
Theorem 6 in [17] that there are continuous mappings @:(Sy, o) = (S,, 6,) and
¢5:(S,, 6,) = (Sy, 0,) such that @,(x) = @,(x) = x for each x € X. The extension
of identity principle (cf. [11]) implies that ¢, o @, is the identity mapping on (S, 7).
Consequently, ¢, is one-to-one, ¢, is onto, and ¢, | ¢,[S;] = ¢7". In the same
way it can be proved that ¢, is onto. Then ¢, = @7 ' and hence ¢, ~ %,.

Condition (~) is a clumsy one. Remark 2.13 indicates why it is so.

Remark 2.13. Let X be a sequentially regular convergence space and %4, ¢, € R(X).
Consider the following conditions.

(i) Let i,j€{0,1}, i #+ j. Let A and B be countably infinite subsets of X. If
clf[A] nclf[B] = 0 for some fe%;, then cl g[A] ncl g[B] = 0 for some
gesE;.

(i) Leti,je {0,1}, i # j. Let A and B be countably infinite subsets of X. If cl f[A] n
N cl f[B] = 0 for some f € %, then there are infinite subsets A’ = 4 and B’ = B
such that clg[A4"] ncl g[B] = 0 for some g€ %;.
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Condition (i) clearly implies ¥; ~ %,, but Example 2.14 shows that €; ~ %, does
not imply (i). On the other hand, condition (ii) follows from %; ~ %,, but Example
2.15 shows that €, ~ %, does not follow from (ii).

Example 2.14. Let X be the space of rational numbers. Let €, be the set of all
uniformly continuous functions on X. Let %, be the set of all continuous functions f,,
re X, defined as follows: f(r) = 1; f(x) = 0 for xe X — [r — 1, r + 1]; and f,
is linear on [r — 1, r] and [r, r + 1]. It is easy to verify that X is € -sequentially
regular and the real line is the % -sequential envelope of X. Hence ¥, ~ %,. It can
be shown that condition (i) does not hold.

Example 2.15. Let X be the subset of the plane consisting of points (1/m, 1/n),
there m and n are natural numbers. Let %, be the set of all functions f of the form:
for each n, f((1/m, 1/n)) = 1/n for all but finitely many m. Let %, be the set of all
functions f;, ¢ = (&(n)) € {0, 1}¥, of the form: for each n, f(1/m, 1/n)) = &(n)
for all but finitely many m. The discrete space X is ;-sequentially regular. Put
S; = X u (U ((0, 1/n))) U ((0, 0)). Consider the following convergence of sequences

neN

in S;: for each n, (0, 1/n) = lim (1/m,, 1/n) whenever {m,) is a subsequence of (m);

(0,0) = 1im (0, 1/n;) whenever <n;> is a subsequence of ¢(n); and for each se€ S,
the constant sequence {s) converges to s. Let ¢; be the induced closure operator.
Put S, = S, — ((0,0)) and let (S,, g,) be the corresponding subspace. It is easy
to verify that (S;, o;) is the -sequential envelope of X. Hence %, non ~ %,. It can
be shown that condition (ii) holds.

3.

It was shown in [7] that a sequentially regular convergence space X has at most
two topologically different % ;-sequential envelopes, E € E;. Namely, either a5(X) =
= 049,1y(X) (Whenever X is {0, 1}-sequentially regular and E does not contain an
interval) or o,(X) = o(X) (Whener E contains an interval). In this section we construct
a {0, 1}-sequentially regular convergence space X such that ¢ 1,(X) # o(X). This is
a solution of Problem 2.5 in [7].

The space X is the usual topological space N U A, where 4 is an infinite maximal
almost disjoint family of infinite subsets of N (i.e., A" is infinite and it is maximal with
respect to: card (M) = o for M e A", card (M, n M,) < o for different M, M, €
e A — for basic properties see, e.g., [1]), N is an open discrete subspace, and for
Me & sets {M} U (M — F), F is a finite subset of N (here {M} is a singleton and
M — F is a subset of N), form a local base at M. For technical reasons, we shall
consider the elements of A" as one-to-one sequences. Thus X is Fréchet, completely
regular, separable, pseudocompact, scattered, locally compact, locally countable,
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not normal, not realcompact, and not countably compact. Also, our space X is
0-dimensional but not strongly 0-dimensional. An example of A" such that N u A~
is not strongly 0-dimensional was constructed in [18]; our example is stronger in the
sense that the Banaschewski 0-dimensional compactification of N U 4" equals to
one-point compactification of N U .# while the Cech-Stone compactification of
N u A has the remainder of cardinality at least continuum.

Our task is to find a family /4" such that o,,(N U A") + (N U A"). It suffices
to construct 4 such that the topological modification To (N U A7) of
10.1,(N U A") is the one-point compactification of N U 4" and card (B(N U ") —
— (N u &) > 1. Indeed, then To, (N U A") is compact and the topological
modification Te(N U A°) of o(N U &) is either not compact or To(N U &) =
= B(N u A). In both cases a9, 1J(N U &) * a(N U ).

We do not know whether N U A = a(N @] ./V) i.e., whether N U A is sequential-
ly complete (cf. Problem 1.23).

In our construction we modify some of the ideas used by S. Mréwka in [15],
proof of Theorem 2.5 (there is a family 4 such that card((N v #) — (N U A)) = 1).

Example 3.1. The construction of X is done in three steps. The corresponding spaces
TuZ,i=1,2,3, are equipped with the same type of topology as N u /4". The
underlying sets of all three spaces can be visualized as subsets of the closed unit
cube in R, where points of T have positive third coordinates and the elements of 7
are indexed by the points of the base of the cube. Sometimes it is convenient to identify
an element of ; with its index.

Denote by T the subset {(k/n, I[n, 1/n): k,1 =10,1,2,..., n =1,2,3,...} of R®
and by S the closed unit square [0, 1] x [0, 1]. For x € S denote by T, the set of
points of T contained in the closed pyramid (turned upside down) with S x (1) as
its base and (x) x (0) as its top vertex. Then °; = {T: x € S} is an almost disjoint
family (because T, considered as a one-to-one sequence, converges in R* to (x) X
% (0)). Let f be a continuous function on the space TuU 4. If we identify I,
with S, then the restriction f| S is of the first Baire class on S equipped with its

usual topology (we can continuously extend f to f over (U (S x (1/n))) U S, e.g.,
n=1

linearly in both directions, and f‘ S is the pointwise limit of continuous functions
FI(S x (1/n)), n =1,2,3,...).

For x € S let 7, be a maximal almost disjoint subfamily of one-to-one sequences
of points of T (i.e., countably infinite subsets of T') converging in R* to (x) x (0);
we may suppose that T, e 7, and card (7 ,) = 2°. It follows from the Bolzano-
Weierstrass theorem that () , is a maximal almost disjoint family in T. Denote

xeS
Ty =7,— (T, and S(r) = (r) x [0,1]. Let ¢ be a bijection of I, onto |J 7,

xeS

such that for each re[0,1] ¢ maps{T,:xeS(r)} onto ) 7% Then 7, =
xeS(r)
={T.vo(T): xe S} is a maximal disjoint family in T which is coarser than 7 ;.
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Let f be a continuous function on the space Tu J ,. Again, if we identify , with
S, thenfl S is of the first Baire class. According to a known property of measurable
functions, for each a € R the set f‘l(a) N 7, is either countable or has cardinality
2. If f ranges in {0, 1}, then f~%(a) n J, cannot be countably infinite (because
{(T, U o(T)) nf~*(a): aeS nf*(a)} is a maximal almost disjoint family in its
union). In this case we prove even more.

Lemma. Let f be a continuous function on TN I , into {0, 1}. Then at least one
of the following four statements is true.
(i) card (7, nf7Y(0)) < w;
(it) card (7, n f (1)) < w3
(iii) card ({r e [0, 1]: card (f[S(r)]) = 2}) = 2%
(iv) There is a point r, € [0, 1] such that card (S(r;) 0 f~*(0)) = card (S(r;) N
Af YD) = 2°.

Proof. Suppose that statements (i), (ii), and (iii) are not true. Since C; = {re
[0, 1]: f[S(r)] = i}, i € {0, 1}, are open subsets of [0, 1] (recall that f | S is of the
first Baire class and hence f ~*(i) n Sis both G, and F,)and card (S(r) n f ~*(i)) = 2°
whenever r € cl C;, the required point ris any point of ¢l C, N ¢l C (this intersection
is not void provided both C, and C; are not void) or any point r such that
card (S(r) n f (i) = 2* and card (f[S(r)]) = 2 provided C,_; = 0.

Since card (6(T U 7 ,, {0, 1})) < 2°, we can assign to each f of # = {fe 4(Tu
U T ,,{0,1}): card (7, n f~4(0)) = card (7, n f (1)) = 2°} points s, a;, b, e
€ [0, 1] such that f((s;, as)) = 0, f(ss, bs)) = 1, and for f # g we have b, # b, #
# a; # a,. Denote A = {(s;, ay)eS: feF}, B={(s;,b;)eS: feF},and T, =
= {Tx v (P(Tx): X € (S - (A v B))} v {T(Sf,af) v QD(T(Sf,ﬂf)) Y T(Sf,bf) v (P(‘T(Sfrb!)):fe
€ #}. Then 7 5 is a maximal almost disjoint family in T. Let f be a continuous func-
tion on the locally compact space TU J 5 into {0, 1}. Then f can be continuously
extended over the one-point compactification of T U 75 (since J 5 is coarser than 7,
and the corresponding canonical mapping of Tu J, onto TU J 5 is a quotient,
foreach fe €(T L T3, {0, 1}) we have eithr card (73 n f~%(0)) < w or card (73 N
N f7Y(1)) < w). On the other hand, there is a continuous function f on TU 75
such that f((k/n, I[n, 1/n)) = k[n and hence f(M) = r for each M € 75 such that
T, © M < T. Since in every S(r) there “‘remains” a continuum of points by which
the elements of J 5 are indexed, card (B(TU 75) — (T U 7 3)) = 2°. Denote X =
= Tu 7 ;. It follows from the construction that X has the desired properties.

References
[1] W. W. Comfort - S. Negrepontis: The theory of ultrafilters. Springer-Verlag 1974.
[2] L. Gillman - M. Jerison: Rings of continuous functions. Van Nostrand, Princeton, 1960.

[3] J. de Groot: Groups represented by homeomorphism groups, I. Math. Ann. 138 (1959),
80— 102.

535



[4] R. Frié: Sequential envelope and subspaces of the Cech-Stone compactification. General
Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topo-
logical Sympos., 1971). Academia, Praha, 1972, 123 —126.

[5] R. Frié: On the completion of sequential structures. Topology and its Appl. (Budva 1972),
Beograd 1973, 94— 96.

[6] R. Frié: Extension of sequentially continuous mappings. Comment. Math. Univ. Carolin.
16 (1975), 273—276.

[7] R. Frié: On E-sequentially regular spaces. Czechoslovak Math. J. 26 (101) (1976), 604— 612.

[8] R. Fri¢é- M. HuSek: On projectively generated spaces. Comment. Math. Univ. Carolin.
20 (1979), 194.

[9] R. Fri¢- M. Husek: Epireflective subcategories of convergence spaces. Eight Winter School
on Abstract Analysis held January 27— February 10, 1980, Mathematical Institute of the
Czechoslovak Academy of Sciences, Praha 1980, 68— 72.

[10] R. Fri¢-D. C. Kent: Completion of sequential Cauchy spaces. Comment. Math. Univ.
Carolin. 18 (1977), 351—361.

[11] R. Fri¢- V. Koutnik: Sequential structures. Convergence structures and applications to
analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1979, NR 4 N. Aka-
demie Verlag, Berlin 1980, 37— 56.

[12] R. Frié- V. Koutnik: Sequentially complete spaces. Czechoslovak Math. J. 29 (104) (1979),
287—297. ’

[13] V. Koutnik: On sequentially regular convergence spaces. Czechoslovak Math. J. 17 (92)
(1967), 232—247.

[14] V. Koutnik.: Sequential envelopes and completeness. Proc. I. Internat. Sympos. on Extension
theory of topological structures, Berlin, 1967. VEB Deutscher Verlag der Wissenschaften,
Berlin, 1969, 141— 143.

[15] S. Mrowka: Recent results on E-compact spaces and structures of continuous functions.
Proc. Univ. Oklahoma Top. Conf. (1972), 168—221.

[16] J. Novdk: On convergence spaces and their sequential envelopes. Czechoslovak Math. J.
15 (90) (1965), 74— 100.

[17] J. Novdk: On sequential envelopes defined by means of certain classes of continuous func-
tions. Czechoslovak Math. J. 18 (93) (1968), 450—465.

[18] J. Terasawa: Spaces N U R need not be strongly 0-dimensional. Bull. Pol. Acad. Sci. 25
(1977), 279—281.

Addedin proof. Recently, Problem 1.23 has been solved positively by L. MiSik, Jr. provided

» = 29, a set-theoretical assumption weaker than Martin’s axiom. The solution will appear in

Czechoslovak Math. J.

Authors’ addresses: R. Fri&, 040 01 Kosice, Karpatska 5, CSSR (Matematicky ustav SAV —
dislokované pracovisko v Kogiciach), M. HuSek, 186 00 Praha 8, Sokolovskéa 83, CSSR (Mate-
maticky Gstav University Karlovy).

536



		webmaster@dml.cz
	2020-07-03T03:54:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




