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A compatible tolerance on an algebra A = (A4, F ) is a reflexive and symmetric
binary relation on 4 having the Substitution Property with respect to all operations
of & with non-zero arities. In particular, if Lis a lattice and T is a reflexive and
symmetric relation on the support of L, then T'is a compatible tolerance on Lif and
only if (a, b) € T, (c, d) € Talways imply (a v ¢, b v d)e Tand (a A ¢, b A d)eT.

Let L, be lattices for ye I and L = [[ L,, let T be a compatible tolerance on L.
yel

The tolerance Tis called directly decomposable if there exist compatible tolerances T,
on L, (for each y € I') such that T = [] T, (this means that (a, b) € T if and only
vel

if (pr, a, pr, b)e T, for each y € I', where pr, means the projection onto the y-th
direct factor of L).

Some conditions for the direct decomposability of compatible tolerances were
investigated in [4]. The paper [3] contains the complete solution of the problem of
direct decomposability of compatible tolerances on lattices in the case of I' finite.
If A, € ¥ for finite I' and a given variety 7”, the problem is completely solved in [2].
However, the case of I infinite hasstill remained open.

An analogous problem for congruences on (infinite) direct products of lattices was
partially solved in [1] and [5]. We shall use the methods from [1] and [5] to obtain
a similar result in the case of tolerances. Let us recall some notions from [5]. Suppose
L=]][L,and xeL, yeL. Denote x(y) = pr, x. Further denote by f(x, y,y) the

yel

element of Ldefined by
JCeym) () = x()5
f(x,,9)(0) = (&) for del', o#7.

The following lemma is a generalization of that in [5]; the application of transitivity
in that proof is avoided.

Lemma. Let T be a compatible tolerance on the lattice L =[] L,, let xe L,
vel

yeL,(x,y)eT Then (f(x, z,7), f(y. z, y)) € T for each ze Land each yeT.
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Proof. Clearly x A y < f(y,x,7) £ x v y. Hence (x.y)e T implies (x A y,
x v y)e Tand (x, f(y, x, 7)) € T in virtue of the convexity of T. By the Substitution
Property we have

(x A f(x 2, 9), £ %, 9) A S(xs 2, y)eT.
Since
f(ay, by,9) A flaz by y) = f(ay A az by A bayy),
we obtain
(f(x.z A x,9), f(x Ay, z Ax,7)ET.

By using the operation v and the pair (f(y, z 7). f(», z,7)) € T, we obtain
(f(x v ,2,7), f(», z, 7)) € T. Analogously we can prove (f(x, z,y), f(x v y,z,7)) €
e T. Using the operation A, we obtain (f(x, z, y), f(¥, 2, 7)) € T, which was to be
proved.

Let T be a compatible tolerance on a lattice Land let m be a given infinite cardinal
number. The tolerance T is called conditionally v-m-complete, if (a,, bs) € T for
de 4 with |4] = m imply (v as, v bs) e T provided that both V a; and V b,

ded oed
exist in L. Dually we can deﬁne a condztwnally A-m-complete tolerance.

Theorem 1. Each conditionally v-m-complete tolerance on the lattice L =

=[] L, with |F[ = m is directly decomposable. Each conditionally A-m-complete
yel

tolerance on Lis directly decomposable.
Proof. Put
T, = {(x,, »,) | x, = x(v), », = ¥(y) for some (x, y)e T},
where T is a conditionally v-m-complete tolerance on L = [] L, with IF| =

yel
Clearly T, is a compatible tolerance on L, for each y € I" and

Te][lT,.

yel

We prove the converse inclusion. Let (x, y) € [ | T,. With respect to the convexity of
yel”

compatible tolerances it suffices to consider only the case x < y. Then (x(y), y(y)) e T
foreach y € I', i.e. there exist elements a and b of L such that(f(x, a, y),f(y, b, 7)) € T.
By Lemma, this implies

(f(/(x a9), %, v) f(f(y, b,7), %, 7)) € T.

Since  f(f(x,a,9),x,7) =x and f(f(y, b,7),x,7) = f(y, %, 7), Wwe infer
(x, f(ps x, 7))e T. As x < y, we conclude y = Vf(y, x, 7). Since T is conditionally

v -m- complete we obtain (x, y) € T, which was to be proved. Dually we can prove
the assertion for conditionally A -m-complete tolerances.
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Corollary (cf. [3]). Each compatible tolerance on the lattice L= L, x ... x L,
is directly decomposable.

Now we shall turn our attention to semilattices. The operation on a semilattice
will be denoted by ®.

Consider a semilattice S = st where IF[ =m = N,. A conditionally m-
vel
complete tolerance can be defined analogously to the above defined similar concepts

for lattices.

Theorem 2. Let S = H S,, where S, are semilattices with zero elements and |F] =
yel

=m = N,. Then there exists a conditionally m-complete tolerance which is not
directly decomposable.

Proof. For each y € I let the zero element of the semilattice S, be denoted by z,.
Let T be the tolerance on S defined so that (a, b) € Tif and only if either a = b, or
there exists an infinite subset I'(a, b) of I' such that a(y) = b(y) = z, for each ye
e I'(a, b). We shall prove that T is a conditionally m-complete tolerance on S. Let
(as, b;) € T for 6 € A, where |A| =m. If a; = b, for each d € 4, then ® a; = ® b;

ded ded

and ( ® a; ® b;) € T. If there exists ¢ € 4 such that a, # b, then there exists an in-
ded ded

finite subset I'(a,, b,) of I' such that a(y) = b(y) = z, for each y e I'(a,, b,). Now
® ay) = ay) ® 2, @) =2, ® 2, ay() = z, @ byfy) = b(») ®

® ® biy) =z, ® ® bs(y) = z, foreachyel"(as,b)and( ® as, ®b,;)e

ded—{e} A—{e}
e T. Now define agam T, = {(x,» »,) | x, = x(y), ¥, = ¥(y) for some (x, y) eT}.
For each y eI let a,, b, be two arbitrary elements of S,. Let c,, d, be the elements
of S such that ¢/(y) = a,, d(y) = b,, ¢,(6) = d,(0) = z, for each seI — {y}.
Clearly (c,, d,) € T, hence (a,, b,) € T,. As a,, b, were chosen arbitrarily, T, is the
universal binary relation on S, for each y € I'. Therefore [] T, is the universal binary
relation on S, while Tis not and T # [] T, vel

yel
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