Czechoslovak Mathematical Journal

Milan Medved
On two-parametric systems of matrices and diffeomorphisms

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 2, 176-192

Persistent URL: http://dml.cz/dmlcz/101871

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101871
http://dml.cz

Czechoslovak Mathematical Journal, 33 (108) 1983, Praha

ON TWO-PARAMETRIC SYSTEMS OF MATRICES
AND DIFFEOMORPHISMS

MILAN MEDVED, Bratislava

(Received September 1, 1978)

The topological structure of trajectories of a difftomorphism near its fixed or
periodic point (see e.g. [12]) essentially depends on the fact whether the matrix of its
linear part, computed at this fixed or periodic point, respectively, has eigenvalues on
the unit circle Sy, whether they are real or complex, and on the number of such
eigenvalues.

If D" = D'(R") is the set of all C" diffcomorphisms on R" endowed with the C”
Whitney topology, then there is a residual set D} (a set which contains a countable
intersection of open dense subsets) in D" such that if f € D}, x, is a fixed or periodic
point of f and L (f) is the matrix of the linear part of f at x, then L(/f) has no
eigenvalues on S, (Kupka-Smale theorem for diffeomorphisms; see [12, Theorem
2.4]).

Denote by G" = G"(R", R") the set of all one-parametric systems of diffeomorphisms
on R" of class C" endowed with the C" Whitney topology. The papers of Brunovsky
[7, 8] contain the following result: There is a residual subset G, in G" such that if
g€ G,, then there exist one-dimensional submanifolds K,(g) of R' x R" (k =
= 1,2,3,...), for which (no, xo) € K(g) implies that x, is a k-periodic point of g,
(9, € D", g,(x) = g(u, x)) and the following holds:

(1) The matrix A = L.(9,,) has no double eigenvalue on S;.

(2) For every k = 1 the matrix A* has no non-real root of 1 as its eigenvalue.

(3) If an eigenvalue of A* lies on S, then there is no other eigenvalue on S, except
its complex conjugate.

(4) The set of all (o, xo) € R* X R" for which the matrix L.(g,,) has an eigen-
value on S, consists of isolated points.

In this paper we generically classify the set of all two-parametric systems of matrices
by their eigenvalues on the unit circle and we apply the results obtained to two-
parametric systems of difftomorphisms.

The topological structure of trajectories of a vector field near its critical point
essentially depends on the fact, whether the matrix of its linear part, computed at
this critical point, has an eigenvalue with zero real part, and on the number of such
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eigenvalues (see [1], [3]). For the generic classification of k-parametric systems of
matrices and vector fields (k = 1, 2) from this point of view, we refer to the papers
[2]-[6], [10], [11], [13], [14]. The equations tor eigenvalues defining various
classes of diffeomorphisms are more complicated than those corresponding to the
case of vector fields. We use a special method developed for this purpose by P.
Brunovsky (see [8]) and we extend its practicability to a wider class of parametric
systems of matrices and diffeomorphisms.

1. TWO-PARAMETRIC SYSTEMS OF DIFFEOMORPHISMS

Let H" = H”(RZ, R") be the set of all two-parametric systems of diffeomorphisms
on R" with values of parameter in R?, of class C" and endowed with the C" Whitney
topology. For h e H'(R?, R") denote by Z, = Z,(h) the set of all (i, x)e R* x R",
for which x is a k-periodic point of h,,.

Lemma 1. There exists a residual subset H; < H" such that for he H{ the set
Z,(h) is a 2-dimensional submanifold of R* x R", Z(h) is closed.

The proof of this lemma nearly coincides with the proof of the similar assertion
for one-parametric systems of diffeomorphisms (see [7, Theorem 1, (i)]). To demon-
strate the idea of the proof, we prove the lemma for k = 1.

It is clear that the set Z,(h) is closed for h e H". Define the mapping ¢ : H" —
— C'(R* x R", R" x R"), o(h) (1, X) = (x, h(p, x)). This mapping is a C" representa-
tion (see [1]). The set 4 = {(x, x)|x e R"} is a closed submanifold of R" x R"
of codimension n. The mapping ev,: H" x R* x R" — R" x R", evy(h, pi, x) =
= g(h) (u, x), transversally intersects the submanifold 4. Therefore by [1, Theorem
19.1] the set H, = {he H"| o(h) W A} (~ is the symbol for the transversal inter-
section) is residual in H". By [1, Corollary 17. 1], if h € H,, then Z,(h) = [e(h)] ™" (4)
is a 2-dimensional submanifold of R*> x R™.

Since we are interested in the generic classification of the set of two-parametric
systems of difffomorphisms by their linear parts, it suffices to give the generic classi-
fication of the set of all two-parametric systems of matrices. For this purpose we
need to stratify some algebraic and semialgebraic varieties in the spaces M, x RZ,
M, x R* M, x R® where M, is the set of all n x n matrices, and to estimate the
codimension of their strata.

2. STRATIFICATIONS OF SEMIALGEBRAIC VARIETIES

A semialgebraic variety in R™ is the set of all x = (xy, x,, ..., X,,) € R™ satisfying
the inequalities P{(xy, X, ..., X,,) 2 0, i = 1,2, ..., n. (An algebraic variety is given
by the equalities Py(x) = 0.) We shall be frequently refering to the following Whitney’s
theorem on stratification of semialgebraic varieties into smooth manifolds.
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Lemma 2 ([15], §11]). Let W be a semialgebraic variety. Then W= W, L
UW,U...u W, where W; (j =1,2,...,p) are smooth manifolds with a finite

p
number of components, ) W; is closed for all 1 < ¢ £ p, codim W; < codim W,
j=e
forj=12,...,p— 1
A decomposition of a semialgebraic variety W into a finite union of smooth
manifolds with the propesrties mentioned in Lemma 2 is called the stratification

of W and the manifolds W; are called the strata of W.

We can give a smooth structure on the set M, induced by the natural identification
of M, with R™. Now we shall define some subsets of M, by the properties introduced
in the following table. We write m(Z) instead of the multiplicity of an eigenvalue.
Let Z be the set of all natural numbers.

eigenvalues

notation on S, m(2)  m(p)  other properties
4, A > - -
A, A > - -
Ay(+1) A= +1 =2 — -
Ay(—=1) J=—1 > - -
As, A >1 - L +1, 20 =11eZ
As A > - A4 41, FkeZ: =1
A, A >3 - -
By(+1,0) A= +1; p >1 > p 4 +1
By(—1,¢) A= —1; >0 21 p# +l
B,(+1, —1) A=+4lip=—121 21 -
B, A 1 =1 =1 A+ +1
B,(+1,¢) A= +1 >2 >1 A% +1
By(—1,¢) = —1 >2 =1 i+ 4l
B, (e, i) A=1;u >2 >1 p# +l,ut=1,1ez
By(c, +1) J=+1; u =2 =1 op £l =1
By e, —1) A=—1n 22 21 p#Ftlpt=1
By(c, 1) A=1i; p =2 =1 wE +1, FkeZ: yk =1
By(c, +1) A= +1; pn =2 >1 wE +1,dkeZ:pt =1
By(c, —1) = —1; p =2 =1 uE +1,3keZ:ph=1
B, A =2 =1 Ao F £1
By, Y 21 21 ApFtlp=1
B, An >1 >1 Au++l,dkeZ: pk=1
C Ayl V all of the Aty v F +1
mult. =1

Now for the sets of the type 4, B, C we can define the corresponding semialgebraic
varieties in M, x R?%, M, x R* M, x R°®, respectively, for which we shall use the
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same symbols as for the sets of the type A4, B, and C, but with a tilde. If 7, : M, X
x R¥ - M, is the natural projection, then m,(4) = A4, ny(B) = B and n4(C) = C.
We shall use P(1) = P,(A;, A,) + iP,(4;, 4,) to denote the characteristic polynomial
of a matrix 4 € M, and

dP d?p

P'=— =P, +iP,, P'=— =P + iP}.
a0 izt

notation equations defining the set

L N

Pl 2,) =0 (i = 1,2) B+2Z-1=0
P2y, 2;) = P2y, 2,) = 0 B4+ i-1=
(i=1,2)
Ay(+1) - A=1=0,1,=0
A (-1) —,— A+1=04=0
A3(2105 220) Py, 2) =0 (i =1,2) A = 2 =0,
Ay — Ao =0
A, P2y, 23) = Pi(Ay, 43) = M+12-1=0
=Pi(A, 2) =0 (i = 1,2)
Bi(+1,¢) P(l,2) =0, P,=Pu,p)=0 A —1=0,1,=0
(i=12) pi+ i —1=0,
uy F 1
By(—1,¢) — M+1=0,4=0
B+ —-1=0,
Hy F £l
Bi(+1, 1) —— Ay —=1=0,4=0
By +1=0, 4, =0
B, —— A4l -1=0,
A * 1,
pi+u;—1=0,
Ky + il
Ay —p 0
By(+1,¢) P2y, ;) = Pi(Ay, 25) = 0, M+ -1=0,
P, =Pu,p)=0(=12) A F £1
Hy — 1 =0, Uy = 0
By(—1,¢) PAy, A2) = Pi(A, A) = 0,4,) =0, A7+ 43 —1=0,
P,=Pu,p,)=0 (i =12) A %+l
by +1=0, pp =0
gz(ﬂm, K20, i) T Ap=0,4,-1=0
By — 10 =0,
B2 — Hao =0

N
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notation equations defining the set

Ez(ﬂloa K20, +1) —»= Ay—=1=0,4,=0
B — pyo =0,
B2 — Hao =0

Bz(.uxo: K205 “1) T Ai+1=0,4,=0
By — pyio =0,
Ba = Hao =0

By(c, i) - A =0,4—-1=0
B+ p—1=0,
Hi + +1

EZ(C, +1) - A4 —1=0,4,=0
B+ us—1=0,
ny F+ +1

B,(c, —1) S A+1=0,1,=0
Wi+ —1=0,
uyF £1

B, - 242 —1=0,
Ay # *1
B+ us—1=0,
uy F £1

Es(ﬂxo- H20) P2y, 4;) = 0, P, = Pi(#u#z) =0 A+43-1=0,
AL #F +1

(i=12) Ky — Hio = 0,

Ha = P20 =0

C P(/Ll,/z)—OF—P(ul,yZ)—O A+ A-1=0,

Pi=P(v,v,)=0(i=1,2) A F 1

0+ —1=0,
By F E1
vi+ v =1
vi = +1

Il
k=

We shall denote by Wi/, WP/, Wi/ or Wi(J), W} ’(J) Wi+(J) the strata of sets
of the type A4, B, C, respectively. For instance, 4, = UW2 , By(+1,¢) =
= U W5I(+1, ) are stratifications.

Lemma 3 (Brunovsky [8, Lemmas 1, 4, 5]).
(a) codim W5'! = 4,
(b) codim W' = 3.
() If 230 # 0, then codim W& (410, Jz0) = 4.
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Lemma 4.
(a) codim W5"' = 4,
(b) codim W;'l(;wm )~20) =4

Proof. Assume ! = [0, 2] x [0, 2] and consider the mapping F : I x R* - M, x
X R?, F(t,s, Ay, ;) = (A(t, ), Ay, A,), Where

t 1+t 1 0
. ~1—11 0 1

(a) A(1, s) = diag { 0 0 S 4] 0,...,0},
0 0 —1—55

. 2n 2n
t + sin — s+cos?
(b) A(t, s) = diag { , 0,...,0}.
n . 2
—S — COS— [ + sin —
k k

By Lemma 3, codim Ws*' = 4, codim W3*! (119, 50) = 4. If codim W3>! > 4, then
it would follow from [1, Corollary 17. 2] that there exists a small C" perturbation 4
of A4 such that no value of it has the eigenvalue 1 € S; of multiplicity 2. This, however,
is obviously impossible and hence codim W' = 4. By the same argument the aser-
tion (b) is valid.

Lemma 5. codim W»' = 5.
For the proof of this lemma as well as for the estimation of codimensions of the
other above defined algebraic sets, we need the following lemma.

Lemma 6 ([8, Lemma 2]). For any A€ M, the set of all matrices similar to A
is an immersed submanifold of M, of codimension Zn.

Corollary. Let p : M, — R" be defined as p(A) = (ay, as, ..., a,), where P(y) =
=y +ay"" '+ ...+ a, is the characteristic polynomial of the matrix A,
and let p,: M, X R* - R"** be defined as p, = p X idgx. Then for any point
x € R"™ , p;1(x) is a finite disjoint union of immersed submanifolds of M, x R*
of codimension =n.

Denote by V < R"*? the set of points (ay, as, ..., a,, A1, 4,) such that 1 = 1, +
+ 12, € Sy (4; # £1)is a root of the polynomial P(y) of multiplicity =3. Obviously
Py(A,) = V.

Lemma 7. The mapping p,|A, : A, - V is open (in the topologies on A, and V,
induced by their imbeddings into M, and R"*?, respectively).
The proof of this lemma coincides with the proof of [8, Lemma 3].

Proof of Lemma 5. Vis a semialgebraic variety in R"*2 defined by the poly-
nomials P4y, 4,) = Pi(Ay. 23) = P{(Ay,2;) =0, A + 23 — 1 =0, 1, + £1. Let
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V = [V, be its stratification. The definition of the stratification implies that the set V;
i

is open in V. First we shall prove that dim V; < n — 3. By [15] codim V; = rank,V
for any x € V;, where rank,V is the dimension of the linear space spanned by the
differential at x of the polynomials of the ideal associated with V.

Pi(Ags 20) = oo+ a,5(A3 = 23) + ay_ Ay + a,.
Py(Ays Ag) = oo 4 @y—2(2212,) + 12y,

Pi(Ay, Ay) = oo+ 20, 321 + ay_y s

Py(lyy Aa) = v + 2a,_34,,

Py(Ay, A3) = ... + 6a,_3A, + 2a,_,,

Py(Ays 23) = oo + 6a,_375 -

Then for x € V we have
dP1 = (’ j’% - ’151 }'1, 1, 0’ 0)’

dPy = (..., 24,45, 42, 0, 0,0),,
dP; = (..., 41, 1,0,0,0),

dP} = (..., 24,,0,0,0,0),
dP] =(...,2,0,0, 8P}[04,, OP{[d1,),
dPj = (...,0,0,0, 0P3[0A,, OP3[04,),

d(Af + 253 = 1) =(...,0,0,0,24,,24,) .
Now we introduce the following notation. Given a system of vectors

vy = (vx,m» Vim—15+ - Uu)’ e U = (vk,m’ Ukm—15 ++ > vk,l) ,

where k < m, denote

Dlvg,..,y] =det|............. ...

By simple computations, it is possible to show that
D(x) = D[dP,,dP,,dP},dP;,d(A] + 15 — 1)] =
— 41,2 _ ;5 %P2\ 41y Re aP(h)
a1 o,
It suffices to prove that the set {x € V| D(x) % 0} is dense in V.

It is clear that the set of x e V for which P”(4) =& 0is dense in V. If 1 € Sy is real,
then A P”(1) = Re 2 P"(2) # 0 if P"(2) & 0. Assume that A€ S, is not real and
Re 4 P"(4) = 0. For a nonzero real ¢ define the polynomial P(y) = P(y) + ¢ ¢(y) =
=)y +a,y"" '+ .. +a, where o(y)=(y—4)?( —1)° Obviously x, =
= (e oo Qur Ao Aa) €V (A= Ay + ids); APY(A) = AP"(A) + 6ed(h — I, ie.
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Re 4 P/(2) = 6 Re (A — 1)® = 12e43 + O since A is not real. We have proved
that for any neighbourhood U(x) of the point x there is an ¢ # 0 such that x, €
e U(x) = Vand D(x,) # 0, which we were to prove. This implies that codim V; = 5,
ie.dimV, =n+ 2 —codimV, <n - 3.

Now we shall prove that codim W' = 5. The set W, = W;"' is open in 4, and
by Lemma 7 the set p,(W,;) is open in V. Therefore there exists integer i such that
pz(Wl) N V; £ 0. Let i be the first index for which the set p,(W;) N V, is nonempty.

Since U V; is open in V, then M; = p; (U V,) = p; (V) is open in W, and thus
i=t

p2(M;) is opzn in V;. By Sard’s theorem (see [1, Theorem 15.1]) there exists an
A € M, such that the mapping p, is regular at A. Therefore p; '(p,(4)) = is a sub-
manifold of W, where dim p;'(py(4)) = dim W, — dim V; = dim W, — n + 3.
By Corollary of Lemma 6 we have codim p; '(p,(4)) = n, ie. dim p;'(p,(4)) <
< n® — n. Therefore n* —n=dimW, —n + 3, ie. dim W, £ n* — 3. This
implies that codim W, = n* + 2 — (n*> — 3) = 5, and the proof of Lemma 5 is
complete.

Lemma 8.
(a) codim W' ! +1 =
(b) codim W'(—1,¢) = 6
(c) codim Wy (+1 —1) =6,
(d) codim W' = 6.

Proof. (a) The proof is similar to that of Lemma 5, but instead of the space
M, x R? we deal with the space M, x R*. Similarly as above, denote by ¥V < R"**
the set of points (ay, @z, -.., @y Ay, Ao, fiy, piz) such that L = 4y +id, = L= py +
+ ipy € Sy, g + +1 are zeros of the polynomial P(y) of multiplicity = 1. Obviously
pa(W)'(+1,¢)) = V. The set V is a semialgebraic variety in R"** defined by the
equations Pyd;, 4,) =0, Pi=Pu,p)=0 (i=12), 44 —1=0, 4, =0,
W+ pd—1=0,u + +1. Let V= |V, be its stratification. It suffices to prove
that codim V; = 6. Indeed, if this inequality is satisfied, then dim V; = n + 4 —
— codim V; < n — 2. Similarly as above, it is possible to prove that there is a point
Ae W, = W' such that the mapping p, is regular at this point and hence Q =
= ps '(pa(4)) is a submanifold of W;, where dim Q < n® — n (see the proof of
Lemma 5). This implies that dim W, = n® — 2 and therefore codim W, = n® + 4 —
- (n* -2)=6.

Now, we prove that codim Vy 2 6. Let x = (ay, ay,...,a, 1,0, g, p) € V.
Denote D(x) = D[dB,, dP,, d(u; + w3 — 1), dp,, d(ﬂq — 1),d4,]. Then

a.“z
and it suffices to prove that the set H = {x € V| D(x) # 0} is dense in V.
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Assume that x = (ay, ay, ..., a, 1,0, u,, iy) €V and D(x) = 0. For a nonzero
real ¢ define the polynomial P(y) = p(y) +eg(y) = )"+ ag)" "4+ a,,
where ¢(y) = (v — 1)(y —W =B =y —Qu + )y +Qu+1)y—1L
Obviously x, = (1 +--s Gy 1,0, iy, ) € V. Let Py(p) = Poy(py, 12) + iPoa(pys pa)s
a(pys p2) = 6!//(/u, 12)[0y1, blps, 2) = (s, p3)[0yz, y = 1 + ivas Yly1s y2) =
= Re ¢(y) = (i = )T = ¥3 = 2uyy, + 1) + 2p,93 - D(x,) = D(x) +
+ e(py — 1) a(pys f2) + p2b(py, 3) = D(x) + 2epu3(u; + 1). Therefore if D(x) = 0,
then in any neighbourhood of the origin there is a number ¢ such that D(x,) * O
and hence the set H is dense in V.

The proof of (b) proceeds in the same way as the proof of (a). Proof of (c). Let
V < R"** be the set of all points (ay, a,, ..., a,, 1, Ay, iy, Hz) such that A = A; +
+ il = 1, p = py + ip, = —1 are the roots of the polynomial P(y) of multiplicity
21. It suffices to show that the set H = {x e V] D(x) # 0} is dense in V, where
D(x) = [dPy, dP,, d(4; — 1), dA,,d(uy + 1), dp,]- However, D(x) = 2 for allx e V
and thus the proof is complete. Proof of (d). Let W(c, i) = {(4, Ay, A2, iy, H2) €
eM, x R* ' Pi(A1; 42) = Py(Ay, 22) = 0, Py(n,, 1) = Py(uy ) = 0, 23 + A=
=1, u =0, pu, = 1} and let V be the corresponding semialgebraic variety in R"**

defined similarly as above. Let W(c, i) = U W; be a stratification. It is easy to show

that D[dP,, dP,, dP, dP,, d(u,), d(p2 —1)] = — [P'(A))* + 0 and therefore
codim W, = 6. (We shall even prove that codim W, = 7, see Lemma 10, (d).)

Let B,\W(c, i) = |J W, be a stratification. It suffices to show that codim W, 2 6.
j=1

Let U be the semialgebraic variety in R"** defined by the polynomials P,(1y, 1,),
Plpina)y i=1,2, 3+ 23 =1L pf+p3 =1, 4, 0, 1, 0, uy £0, p + 0,
which corresponds to the set B, \ W(c, 1) For x € U we have
D(x) = D[dP,,dP,,d(2} + 43 — 1), dP,,dP,, d(u} + p3 — 1)] =
= 4[(2; — uy) (uyByy + #2312) (41411 + 224,,) —
— Zo(uyByy + 12By3) (11A12 — JAy,) +

+ HZ(MBlz - #2311) (j'lAll + 2,45,),
where

oP, 4. _ 0P oP, B oP,

11 ail H 12 — 8/125 11 a#l > 12 &= 6#2

It suffices to prove that the set H = {x € U | D(x) % 0} is dense in V. Let D(x) = 0
for some x € V and let & be a nonzero real number. Define P,(y) = P(y) + ¢ o(y),
where o(y) =(y -2y - —w(y—r) and let Y(y;, y,) = Reo(y) =
=1 =92 =22y + D01 =33 = 2y + 1) =400 = 20) (0 — wi) ¥3, ¥ =
= y; +iy; Let P(y) = Py(y1, y,) + iPa(yi ¥2) = V" + @ )" ' + ... + a,,
Au(s) = 5Pe1(}~1, /12)/6}’1’ Alz(e) = aP;z(lu iz)/ah’ B“(s) = aPn(ﬂx: ﬂz)/a)ﬁ,
By,(e) = 0P, (uy, 15)|0y,, x, = (@g1s Qezs -+ Qens A1s A2, By, pz). D(x,) = D[dP,y,
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dP,,, d(23 + 43 = 1), dP,, dP,, d(u} + 15 — 1)](P; = Pi(Ay. 23), Py = Pi(uy, 13),
i = 1,2) has the same form as D(x), but instead of 4;;, B;; it involves A;;(¢), B;;(¢),
respectively. From the form of D(x) we have that D(x,) = D(x) + & + a,e?,
where o; = d/D(x,)/de’|,—o. If D(x) = 0 and a, + 0, then obviously D(x,) # 0 for
sufficiently small ¢ # 0. If D(x) = 0 and a; = 0, then D(x,) = &’«,, where a, has
the same form as D(x), but with A;;, B;; instead of A, B;;, respectively; 4,, =
= ‘413(21 - /11)’ A = _4'11/12(/11 - ﬂl): By, = 4#%('11 - #1)’ By, =

= 4pupus(A; — wy)- Using the expression for D(x) we obtain that o, = —512(4, —
— ul)illzu“uz =+ 0 and so the lemma is proved.

Lemma 9.

(a) codim W{'(+1,¢) = 6,
(b) codim W{'(—1,¢) = 6,
(c) codim W '(+1, —1) = 6,
(d) codim W' = 6.

Proof. Assume I = [0,2] x [0,2] and consider the mapping F:I x R* —
= M, x R* F(t,s, 21, ..., A4) = (A(t, 5), Ay, ..., A4), Where

A(t,s):diag{(_i _t:+’>, [ +350,...0}.

By Lemma 8, codim W}''(+1,¢) = 6. If codim W{*!(+1, ¢) > 6, then it would
follow from [1, Corollary 17. 2] that there exists a small C" perturbation Aof A
such that no value of ithas the eigenvalue A = +1 and a comlex eigenvalue u € S,.
This, however, is obviously impossible and hence codim W{' = 6. By the same
argument it is possible to prove (b)—(d), where the mapping F : I x R* - M, x R*
is defined as follows: F(1, 5, Ay, ..., A4) = (A(1,5), 2y, ..., Ag),

(b) A(t, 5) = diag{(_tl — 1t+ '), —1+s5,0,...,0},

(c) A(t,s) = diag{l +1, =1 + 5, 0,...,0},
. t 1+t s L1 +s
(d)A(t,s)—dxag{(_1~” )’(~1,1—ss ) 0,...,0}.

Lemma 10.

(a) codim W(+1,¢) = 7, codim Wy"'(—1,¢) = 7,

(b) codim W} (0, a0, 1) 2 7,

(c) codim W3"'(s10, a0, +1) = 7, codim W3 (10, 20 —1) 2 7,
(d) codim WPi(c, i) = 7,

(¢) codim W3(c, +1) = 7, codim W;*'(c, =1) = 7,

(f) codim Wyt = 7,

(g) codim st’l(ﬂlo’ thao) Z 7,

(h) codim we1 = 9.
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Proof. (a)
D(x) = D[dPy,dP2, dP,, dP,, d(s, — 1), dpy, d(A2 + 22 — 1)] =

0P, oP;
=4 [/12 o + A ai] =4 Re (A7'P"(2)).
It suffices to prove that the set H = {x IS V, D(x) % 0} is dense in ¥, where V' < Rn+4
is defined similarly as in the proof of Lemma 8. Suppose that for some x ¢ V,
Re (271 P"(4)) = 0. For a nonzero real number ¢ defined the polynomial P,(y) =
= P(y) + ¢ ¢(y), where o(y) = (y — 1) (y — 2)*(y — 2)*. Since Re (A" P}(4)) =
=¢Re (A4 — 1) (2 — 2)?) = —4(1 — A;) 43 + 0 the density of the set H is proved.
The other part of the proof of (a) proceeds as in the proof of Lemma 8.
The proofs of the inequalities (b) and (c) are easy.

(d) Let us stratify the set By(c, i) in the following way: Denote B,(k)=
= UB,(tt10» #20,1), Where the union is taken over all fi50, 29 such that (u;q +
+ilye) +1,1=3,4,....k, 1, = 0. Rewrite the set By(c,i)in the form B,(c, i) = ﬁz(k) U
U (By(c, i)~ By(k)), where k > 6. By part (b) the set B,(k) has a stratification [ Wj(k),
where codim W; (k) 2 7. Therefore it suffices to prove that if B,(k) = B,(c, i)\
N\ By(k) = UW/(k) is a stratification, then codim w(k) = 7.

The set B,(k) is defined by the polynomials Py, P,, P, Py, Ay, 4, — 1, P, P,,
12 + u? — 1and by some inequalities which express the fact that B,(k) n B,(k) = 0.

D(x) = D[dPy, dP}, dPy, di,, d(4, — 1), dP,, d(u] + u3 — 1)] =
= 44, I:ul ?& — Iy QEZ:I = 4 Re yﬁ’(u).
Oua Opty

We shall prove that the set H = {x € V| Re uP'() # 0} is dense in ¥, where V
< R*™* is the set of such points (ay, dy, ..., dy, Ag, 4y, ,ul,uz)eR"*“ for which
A = J; + ik, =1 is the zero of the polynomial P(y) = )" + a;y"*! + ... + a, of
multiplicity =2 and u = p; + iy, € S; is the zero of the polynomial P(y) of multi-
plicity =1, such that u# 1 for [ =3,4,...,k Assume that for some xeV,
Re pu P'(u) = 0. For a nonzero real ¢ defined the polynomial P(y) = P(y) + & ¢(y),
where ¢(y) = (y* + 1)*(y — 1) (v — f1). It is clear that the corresponding point
(@yes o uer 0, L, iy, p) €V, Re p Py(u) = & Re p(2ip,) (1 + p?)? = 26, Im p(1 +
+ u?)*. We have to prove that Im p(1 + p?)* # 0.

Since p €Sy, we have u = ¢'* for some a. Then p(l + p?)* = ei*(1 + ¢*)* =
= (e"/? + ¢>*/?)2. For a complex number a + ib, Im (a + ib)*> = 2ab and there-
fore it suffices to prove that cosia + cos3a #+ 0 and sin 3o + sin 3o # 0 for
x = (ay,.0,a,, 0, 1, py, pp) € V.

The following identities are valid:

cosgc+cos§oc=2cosg 1 —4sin22);
2 2 2 2
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sin & + sin > o= —2sin2 (1 — 4cos® ¥).
2 2 2 2
(1) Assuming cosdx =0 we have o = m + 251, s€Z, ie. p=e 0=
but this is impossible.
(2) If cos a = 0, then p = e™?**Mi je. y* = 1. This is impossible because we have
assumed k > 6 and therefore p! & 1 for | = 3,4, ..., 6.
(3) If sindo = £, then = e*™3>**™i and ;S = 1, which is again impossible.
Thus, we have proved that cos o + cos 3o =+ 0 for x € V. The proof of the second
inequality is similar. This implies density of the set H and so codim W' = 7.
The proof of () follows the same lines as the proof of (d).
() Define the set C(k) = By(+1,¢) U By(—1,¢) U By(e, i) U By(c, +1) U
3
U By(e, —=1) U (U Cy(k)), where C,(k) = UB,(1t10, i20.1), Ca(k) = UB1(ky0, 0,
j=1
+1), C3(k) = UB,(ity0, 20, —1) and the unions are taken over all 0, f154 such that
(B1o + ipao)' = 1 for I =3,4,..., k, pyo =+ 0.

Now rewrite the set B, as B, = C(k) u C(k), where C(k) = B,\ C(k). By the
previous parts of Lemma 10 all strata of the set C(k) have codimensions =7 and there-
fore it suffices to prove that the set C(k) also has such a stratification.

C(k) is the set of (4, Ay, Az, 1y, p2) € M, x R*for which Py(Ay, ;) = Pi(Ay, 2,) =
=0,P, =Pfup,p)=00=12),3+5-1=0,pi+p5—1=0,2 % pu,,
Jo 0,0+ +1, 0+ +L,=1forl=12,..k

Suppose that k > 6.

D(x) = D[dP,, dP}, dPy, d(27 + 43 — 1).dP,, dP;, d(pi + p3 — 1)] =

oP oP,\ [/, oP, . 0P,
:4/1§<”2~_g “lh“‘—%)(/bz_] st ‘—1‘) =
Opy ou, 0/ 025

= 423(Re p P(u)) (Im A P"(2)) .

We shall show that the set H = {x ¢ Vl Re p P'(1) & 0, Im A P"(4) # O} is dense
in ¥, where the set V corresponds to the set C(k) such that p,(C(k)) = V. (1) We shall
show that Re pu P'(1) # 0 for a dense subset of V. Assume that Re u P'(1) = 0 for
some x € V. Similarly as above, define the polynomial P(y) = P(y) + & ¢(y) =
= )"+ ayy""' + ... + a,, where ¢ is a nonzero real number and ¢(y) = (y — 1) .
(y = i) (y — 2)*(y — 2)*. Obviously x, = (ay....,u;)eV. Re uP;(g) = 2ep, .
Imop(p — 2)? (0 — Z)*. Since p, 2€ Sy, there are o, f such that g = e, 1 = ¢if,
Then we have '
(i — A (u — 2 = ele(ei* — e') (e — ) =
_ [eia/l(ia _ eiﬂ) (eix _ eia)]z _

— [eizll(el’xi _ e(a+ﬂ)i _ e(a—/])i + 1)]2 — [Ql(“: [}) + in(OC, B)]Z ,
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where
Q,(a, B) = cos 3 — cos (3u + B) — cos (3 — B) + cos da,

Q,(, B) = sin Ja — sin (3o + B) — sin (3 — B) + sin Ja.

Since Im p(u — A)* (u — 1)* = 2Q,(«, B) Qy(x, B), it suffices to prove that for
xeV, Q,(o ) + 0 and Q,(«, f) * 0. The following equalities are valid:

0Q,(a, B) = 2 cos Ja(cos o — cos f), Qs ) = 2 sin 2a(cos a — cos f).
(1) If cos Sa =0, then p = ¢* = ™3 +2%/3)i and so u® = 1, which is impossible
because k > 6.
(2) If sin 24 = 0, then p = ¢2/*" and so u® = 1, which is impossible as well.

(3) Due to the definition of the set C(k) the equality p; = cos a = cos § = A; does
not hold for x e V.

Thus we have proved the density of those points v € V for which Re p F’(,u) + 0.
(IT) We shall show that Im 4 P"(4) # 0 for a dense subset of the set V. Assume
Im A P"(2) = O for some x € V. Let P,(y) be the polynomial as above. Since A P(1) =
=AP"(A) + 264 — pu)(A — 1) (2 = 7)* 2 we have ImAPji)= —32434,(1, —
— pty) ¢ * 0 for all x € V and the proof is complete.
(g) D(x) = D[dPy,dP,,d(2] + 2} — 1), dP,, dP,, d(u; — pao), (s — pao) =
= dpy(uy — 2y) Dy(x), where

Dy(x) = (71 — 1) Lillnt) _ gy il o),
ayy 0y,
P(y) = Py(y1, y2) + iPo(yi y2) = V" + app" ' + ... + a,,

y=yi+iy,, Pi=Plu,p), i=12.
It suffices to prove that the set H = {x & V| D,(x) # 0} is dense in V, where ¥ =
= {x} = (ap, o0 @y Ags Dy s ) R | A= Ay +idy €Sy, 1= py +inyeS;
are roots of the polynom1a1 P(y)and p* = 1}. Let x = (ay, ..., @y, Ay, A2, Hyo» Hac) €
€ Vand D,(x) = 0. For a nonzero real number ¢ define the polynomial Pv) =
=P(y) +e(y) ="+ ;)" " + ... + ay = Pi(y1, y2) + iPalyy, y2), Where

o(») = =2 (=7 (y — u)(y — ). Then obviously X, = (a, ..., dy A1, 4y,
Hios ,“20) € Vand

Di(x) = (12 — 2 )aPle(Al,zz) 2,11/125}’“(11"12):

9y, 0y,
= i) + o[ 0 = ) HEe) oy, L],
0y, 0y,

where Y(y;, y2) = Re @(y) = (b1 — y3 — 24y + 1) (0} = ¥3 = 2uy0y1 + 1) —
—4(y1 = 4,) (1 = p10) ¥3- Therefore if Dy(x) = 0, then D,(x,) = 4eA3(A; — pyo) *
=+ 0 and hence the set H is dense in V.
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(h) Let ¥ = R*6 be the set of all points x = (ay, g, -+, @, 415 A2y Hys K2, V4, V2)
such that A = A, + 1A, €Sy, p=uy + i, €8, v=v; + ivz € S, are roots of the
polynomial P(y) = Py(y1, y2) + iPa(yy, y2) = y" + a)" "' + ... + a, of multi-
plicity =1.

D(x) = D[dPy, dPy, d(2] + 23 — 1), dP( Py, d(uf + 43 — 1),

dP,dP,, d(v} + Vi —=1)] =4 - B+ C,
where
F.’_"Pi(ul’ﬂz)s - P(vl’VZ) i = 1>2:

p p oP oP P,

) I B
AN v, v, av, 04, aA
/oP P P P, P,

B: .a& j‘za_Pl _)'1?& + gﬂ)(vzi_l_vl _1> /”l (7__#16 )
L\ v, 02, 0l 04y av, v, ou, oy
/0P P p P

C = .‘?El 2y 6P1_/116_P_1)+ f&)(uza})l_ﬂl%il(v oP, be)-
L\ 0y 04, 04, 02, [J15 Oy v, v,

It suffices to prove that the set {x € V| D(x) + 0} si dense in V. For a nonzero real
number ¢ define the polynomial P,(y) = 3" + a,;,)" ' + ... + a,, 0(y) = (y — 4).
(=D = =) —v)(y— V) Obviously X, = (@yg . .» Gues Ays A2y fi1, Ko,
vi,v,) €V and D(x,) = A(e) — B(e) + C(e), where A(e), B(c), C(¢) have the same
form as A, B, C, respectively, but instead of the partial derivatives of Py, P, P
they involve the corresponding partial derivatives of Py, P,,, P,,, respectlvely.
D(x,) = D(x) + eoy + &, + &35, where «; = d/D(x,)[de/[,o, j = 1,2,3. If
D(x) =0, a; 0, or D(x) = oy =0, o, + 0, then obviously D(x,) # 0 for ¢ + 0
sufficiently small. If D(x) = «; = a, = 0, then D(x,) = &%03, Where 03 = a — f +
+ 7, where o, 8, y have the same form as A, B, C, respectively, but instead of the
partial derivatives of P, P,, pl they involve the corresponding partial derivatives
of ¥ =y(Ay, 4:), ¥ = ¥(ug, wa), ¥ = Y(vy, v,), respectively, where Y(yy, y2) =
=Reo(y) = (i —»3 = 22y + )1 = »3 = 2wy + )y = y3 — 20y +
+ 1) = 4y3(07 = v3 = vy + 1) (0 = A0) 0y — 1) — 45007 — ¥3 — 24401 +
+ 1) = ) (70 = vi) = 4307 = »3 = 2my; + 1) (v = 41) (v1 = ). There-
fore D(x,) = 64>, 2303v3 (21 — py) (Ar — vy) (s — vy)- Let U = {xe V|p; = 0}.
Since 1, 0, u, # 0, v, £0, 4, * u;, 4, * vy, #; * v;, we have shown that the

set H={xe V\U,D(x) # 0} is dense in V\U and hence if V\U = UV, is
i=1

a stratification, then codim V; = 9. Therefore it suffices to show that if | U; is
j=1
a stratification of the set U, then codim U, 2 9. Let x = (ay, ..., a,, 4, 42, 0, 1,

Vi vv)eU D(x) = D[dP,, dP,,d(i} + 23 — 1),dP,,dP,,d(,),d(p, — 1),dP;,dP,,
d(v{ + v3 — 1)] and let ¢(y), ¥(»), x, be as above. Then D(x) has the same form as
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D(x), but with 1, 1 instead of ft1, fta, respectively. Therefore D(x,) = D(x) + ¢ +
+ ape? + age3, where oy = 6423v3(4; — 1) (4, — v;)(v; — 1) # 0 and hence the
proof is complete.

3. TWO-PARAMETRIC SYSTEMS OF MATRICES

Let I = R? be a compact interval and F" = F’(I) the set of C" mappings of I
into M,, endowed with the usual C" topology. Let T; = A4,, T, be the union of the
sets Ay, Ay(—1), A3, By, Ay(+1), By(+1, —=1), By(+1,¢), B)(—1,c)and T3 = M, \
N(T, U T).

Theorem 1. There exists an open dense set F in F'(I) such that if A € F'(I), then

(1) A(I) A Ty = 0.

(2) The set X,(A) = {pel l A(u) e Ty} has a codimension =1. The set X,,(A) <
< X,(A) of all pel, for which the matrix A(x) has an eigenvalue on the unit
circle S| of multiplicity 1, is a one-dimensional submanifold of 1.

(3) The set X,(4) = {nel ]A(u) € Ty} consists of isolated points.

Remark. Theorem 1 says that generically the following holds:

(I) There is a one-dimensional submanifold X,,(4) of I such that if e X,,(A4),
then the matrix A(u) has one of the following simple eigenvalues on S;:
2= +1;

2) 4= —1;
(3) L IeS, 4 +1, k=1,23,....
There are no other eigenvalues on S;.

(II) There is a set X,(A) consisting of isolated points and such that if p e X,(4),
then the matrix A(y) has one of the following eigenvalues on S,:
(1) 2= +1 of multiplicity 2;
(2) 2 = —1 of multiplicity 2;
(3) 2€ 8, of multiplicity 2, 4 + +1;
(4) 2= +1, v = —1 both of multiplicity 1;
(5) A€S; of multiplicity 1, 2 + +1, 2* = 1 for some k € Z;
(6) A= +1,veS, both of multiplicity 1, V" & +1, k =1,2,3,..;
(7) 4= —1,ve S, both of multiplicity 1, v* & 41, k =1,2,3,...;
(8) 1€ S;, ve S; both of multiplicity 1, 4, v + +1, Re 1 + Re v.

There are no other eigenvalues on S, (except for complex conjugate ones).
(III) For pelIN(X;4(A4) v X,(A4)) the matrix 4(u) has no eigenvalue on S;.

Proof of Theorem 1. Let J = R? be an opzn interval, I = J. Denote by F” the
space of all mappings F:J x R* - M, x RY, F = F x idg, F e R"(J), endowed
with the C" Whitney topology. The mapping ¢ : F* — F", o(F) = Fis a C" representa-
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tion and the mapping ev,: F" x J x R¥ —» M, x R* transversally intersects every
submanifold of M, x R¥. (For the definition of the evaluation mapping ev and of the
C" representation see [1].)

T, =T Ty =Ty Ty Ty = Ts,u Ty, wWhere Ty, Ty, Tie (i = 1,2, 3) are
sets of type A4, B and C, respectively. Let T;, = R"*?, T;, « R"** T.. = R"*® be
the corresponding semialgebraic varieties and let

ri(a) ri(b) ri(c)
T.=UGH, Ty=UG, T.=U G/
j=1 j=1 j=1
(i = 1,2,3) be stratifications. By Lemma 3, (b) codim G{"' = 3, by Lemma 4
codim G%' = 4, by Lemma 5 codim G%' = 5. By Lemma 9 codim G%' = 6, by
Lemma 10 codim G%' = 7 and codim G§' = 9.
ri(a)
Denote §(T,) = {Fe F(J) [ o)™ U ]G‘,-"j}, 1<s=<rfo), i=1273,
j=ri@)-s+
« = a, b, c. By [1, Theorem 19. 1] all sets (T;,) are dense in F'(J). Therefore if
U(T) = (GeF(I)| G = F|I for some Fe(T;,)}, then the set F, = (\y(T;,)
a=a.b,c
is dense in F"(I). Since I is compact, the openess of F; follows from [ 1, Theorem 18. 2].
From the above equalities and inequalities for the codimensions of the strata and from
[1, Corollary 17. 1] we obtain that if A € F,, then the assertions (1)—(3) hold.

4. APPLICATIONS TO ONE-PARAMETRIC SYSTEMS OF DIFFEOMORPHISMS

Theorem 2. There exists a residual set H, in H"(RZ, R") such that if he H,,
(o> Xo) € Zy(h) and h,(x) = A(u)x + R(u, x), R(u, x) = o|x])) for pel, xeU
(I is an open interval in R* containing the point p, and U is a neighbourhood of x,
in R"), then

(1) there is a one-dimensional submanifold X ,(4) of R*> n 1, for which the asser-
tion (1) from Section 3 holds;

(2) there is a set X{(4) = R*> NI, consisting of isolated points, for which the asser-
tion (II) from Section 3 holds.

Moreover, for the matrix A(x) the assertion (I11) from Section 3 holds.

The idea of proof of Theorem 2 is precisely the same as the idea of proof of the
results on generic properties of one-parametric systems of diffeomorphisms studied
in [7, 8] and we omit it. We only remark that for a given g € H(R?, R") the method
of bump functions can be used for the construction of an h € H(R?, R") sufficiently C"
close to g, whose linearization at a k-periodic point has the properties (1), (2) from
Theorem 2.
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