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In this paper we investigate the stabilization and the rate of stabilization for
t — oo of the solutions of the equations

(1) w(t) + A()u(t) = f(t) (0<t< o), u0)=u,,

where A(f) (t 2 0) are monotone, coercive, in general non-linear operators from
a real, reflexive B-space V into its dual space V*. Let H be a real Hilbert space. We
assume that the imbedding V = H is continuous and that V is dense in H. Under
sufficiently general conditions which guarantee the existence and uniqueness of the
solution u(z) of (1) (see Remarks 1 and 2) we prove in § 1 that u(t) —» 0in H for t — oo
provided f(¢) decays for t — oo in some sense. If A(t) is a strictly or strongly mono-
tone operator (see (13,), (13,), (13;)) then u(t) - u,, in H for t — co provided f(z)
tends to £, and A(r) tends to A4, for t > oo (see (9,), (12)), where u,, is the solution
of the stationary equation A,u, = f,. (If A(f)= 4, then A, = 4). In §1 we
obtain results which are modifications of those in [5], [6], [11]. In § 2 we study the
rate of the stabilization of u(t) for t — co. For a certain class of stationary operators 4
we prove that the solution u(r) stabilizes in finite time, i.e., there exists t, = to(uo)
such that u(t) = 0 for t = t, provided A(t) = A and f(t) = 0. If f: (0, T) - H is
continuously differentiable in ¢ and of bounded variation on {0, oo) then we prove
that u(f) - u,, also in the norm of the space V. In § 3 we present some applications
of the results from § 1 and § 2 to parabolic initial-boundary value problems.

NOTATION AND DEFINITIONS

Denote by H . [ , ” . II* and II the norms in V, V* and H, respectively. If we identify H
with its dual H* then we have

Ve HcV*.
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The duality between ve V and fe V* will be denoted by (f, v). If f,ve H then
(f v) coincides with the scalar product in H.

Let X be an arbitrary Banach space (X* its dual space) and 0 < T £ 0. By
L0, T:X) = Z (1 £ p < o) we denote the Banach space (see, e.g., [15], [7]) of
all measurable abstract functions v : (0, T) — X satisfying

T
v||f = v(t)|kdt <o for 1<p<
Il = | ol

o

and
Jo]z = ess sup Jo(d)]x < w0 for p=co.
T)

Henceforth, let p > 1, ¢ 2 1 be conjugate numbers (p~' + ¢~ ! = 1). The dual
space Z* to Z is L0, T; X*) (see, e.g., [7]). By C(0, T; X) (C'(0, T; X)) we denote
the space of continuous (continuously differentiable) abstract functions v : <0, T) —
- X. By C,(0, T; X) we denote the set of all abstract functions v: (0, T) - X
satisfying (x*, v(t)) € C(0, T) for all x* € X*. The abstract function du/dz : (0, T) - X
is the weak derivative of u(t), iff (d/dz) (x*, u(t)) = (x*, du(t)/dt) for all x* e X*.
We denote Cy,(0, T; X) = {v: (0, T) » X for which dv/dt e C,(0, T: X)}. If dv/dt e
e L,(0, T, X) then there exists v'(t) (the strong derivative) and v'(t) = dv(t)/dt for a.e.
te(0, 7).

We shall assume that f(f) is an abstract function f:<0, c0) - V* such that
feL 0, T; V*) (for all T < o) and u, from (1) is an element of H. In some special
cases f and u, will be supposed to be more regular.

Under the solution of (1) we understand an abstract function u : (0, 00) » V
with the following properties: u € L,(0, T; V), u’ € L (0, T; V*), u(0) = u, and u(t)
satisfies (1) for a.e. t € (0, o).

In the following remarks we introduce some results concerning existence and
uniqueness of the solution of (1).

Remark 1. From [1], [2], [3], the following results follows: If the following
assumptions hold:
a,) A(t): V> V* (for t 2 0) is demicontinuous,
b;) (A(t) v, w) is measurable in ¢ for all fixed v, we V,
¢;) (A(t)v — A(t)w,v —w) 2 0 forall t >0 and v,weV,
dy) (A(t) v, ) 2 Cyfp]? = €5, €1 > 0,1 < p < 0,
e) [|4(®) v = € + |v|?~*) for all t >0,
f;) feL (0, T; V') for all T < oo,
&) up e H,

then there exists a unique solution of (1).

Remark 2. Existence of a more regular solution of (1) can be guaranteed by
stronger assumptions on f(¢), A and u, as in Remark 1. Let ¥ and H be separable
spaces and let A(f) = A.
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If the following assumptions are satisfied:

a,) A:V — V* is demicontinuous and bounded,

b,) (Av — Aw,v — w) 2 0 forall v, weV,

Cz) “v“_l (4v, v) > oo for ”v“ - 00,

d,) ugeV and AuyeH,

e,) f:<0, TY - H is Lipschitz continuous on each compact subset of (0, c0),

then there exists a unique solution u(t) of (1) (see, e.g., [5], [6]) with the following
properties:

u : <0, oo) — H is Lipschitz continuous on each compact subset of <0, oo), ue
€ L,(0, T; V), u’ € L,(0, T; H) and Au € L,(0, T; H).

Moreover, if fe CY(0, T; H) then ue CL(0, T: H), Aue C,(0, T; H) and if we
replace u'(t) by du(t)/dt then (1) is valid for all t > 0 (see [8], [9]). The estimate

du(r)

3| SO+ o + [ lro]a

holds (see [8], Remark 2 and Lemma 5). A similar result (but under some ad-
ditional assumptions) is proved also for the nonstationary case A(t) £ A4 in [10].

Positive constants will be denoted by C and the dependence of C on the para-
meter ¢ by C(e). Constants C and C(e) may denote also various constants in the
same discussion.

1

In this paper we assume that there exists a unique solution (in the previously defined
sense) u(t) of (1). Since u € L,(0, T; V) and u’ € L (0, T; V*), we have u € C(0, T; H)
for all T < oo and

() - uG)? =2 J' (1), u(t)) dt

forall 0 < r,s < oo (see [1], [7]).

Let y() be a continuous function satisfying: y(0) = 0, y(f) > 0 for t > 0 and there
exists > 0 and t, > 0 such that y(t) > 6 for t > ¢,.

Coerciveness of A(t) will be assumed in some of the following forms:

(31) (A(t) v, 0) 2 0,
(32) (A(t) v, v) Z ¥(|jv
(33) (A(t) v, v) = C|jp

Clearly, (3,) implies (3;). We shall assume f(¢) to have the following properties:
(4,) feLy(0, T; H),

(45) f € L(0, c0; V),
(43) fe L0, T; V*) for all T < co.

),

P (1 <p< o).
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Lemma 1. Let one of the assumptions i) or ii) be satisfied, where
i) (3:): (41),
i) (33), (42).

Then u € Ly,(0, o0; H).
Proof. i) From (1) we deduce
) (o). () + (40) ut). () = (79 ().
Integrating (5) over <0, £ and using (3,) we have
(O = a0 2 [ 176 Juo)] 8.
which implies (u e C(<0, £, H))
max @) = WO + 2max u@)] [ /9] .

From this inequality we easily obtain

0] 5 w0 + 2 [ 1709 s

for all t = 0 which proves the assertion.
ii) In this case (5) and (3;) imply

©) @ (@), u(®) + Clu@)]” = [+ [v@)] =

< o) + & Ju),
q p

where Young’s inequality has been used (¢ > 0). Integrating (6) over (s, r) for
a suitable ¢ we obtain

0 L = o+ ¢ Juolrar s e, [ rofs a
where C; = C,(¢). From (7) (for s = 0) and (4,) we deduce the required result.

Theorem 1. Let one of the assumptions i) or ii) be satisfied, where

i) (32), (41),
ii) (33), (42).

Then u(t) - 0 in H for t - 0.

Proof. i) Integrating (5) over the interval s, r) and using (3,) we obtain
®) () - [u@) + 2 j W([u()]) dr < 2 J ()] Ju()] d .
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Using Lemma 1 and (4,), we deduce from (8) that

[ty as <

which implies: There exists a subsequence {t,,}, t, > oo for n — oo, such that
Hu(t,,)“ — 0 for n —» oo. Thus, u(t,,)| — 0 for n - o since ¥V < H. From this fact
and from Lemma 1, (4,) and (8) we obtain the required result.

ii) From (7) (for s = 0), (4,) and Lemma 1 we deduce

Jj”u(t}””dt <w.

Hence, using (7) and (4,), by the same argument as in Assertion i) we deduce the
required result.

Let f,, be an element of the space H or V*. We shall assume that f(¢) tends to £,
for t — oo in the following sense:

[

0,) J°°|f(r> — £ dt < oo,

9) j:n £ = fulsdt < oo

Let A, be an operator from Vinto V* and let u, € V be a solution of the equation
(10) Ay = fo -

We shall assume that A(t) tends to A, for t — oo in the following sense:
(11) r)nA(t)uao — Ajug|idt < .
]
Assumption (11) is clearly satisfied, if
(12) j "4 v - Agolt dr < o
0

holds for all v € V. In particular, if A(f) = A for t > 0, then 4 = Ao-
Monotonicity of A(f) will be considered in the form

(13,) (A()v — A()w, v — w) >0 forall v,weV, v+ W,
(13) (Ao — A@D)w. o —w) 2 9(Jo — w|) forall vweV,
(13;) (A@) v — A w, v —w)2 Cllv — w|? (1 < p < )

for all v, we V. Clearly, (13;) implies (13,).
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Theorem 2. Suppose (10). Let one of the assumptions i) or ii) be satisfied, where
i) (9,), (13,), A(t) = 4,
i) (92), (133), (11).

Then u(t) - u,, in H for t - oo.

Proof. i) From (10) and (1) we obtain

(14) (@'(2), u(t) — uy) + (Au(t) — Aug, u(t) — u,) =
= (f(t) = foos u(t) - uw) .

Integrating (14) over (s r) and using (13,) we deduce

(15) () = ua? — u(s) — uf? + Zer(llu(t) —ugf)dr =

< 2J'|f(z) — fo| [u(t) — u,|dt.

From (15) and (9,) similarly as in Lemma 1, we deduce u € L,(0, oo; H). Hence,
from (15) we conclude

f :y(nu(t) —u,)dt < oo.

From this fact, analogously as in Theorem 1, the required result follows.
ii) From (1) and (10) we have

(16) ('(2), u(t) — up) + (A() u(t) — A(t) ug, u(t) — u,) =
= (f(t) = foor u(t) — uy) — (A() Uy — Agtie, u(t) — u,,).
Using (133), (9,), Hélder’s and Young’s inequalities in (16) we obtain

(17) (w(t), ut) — u) + Clut) — u,|? < %;_" lu(t) = u | +
-q
+ — (0 = Fall + 40O 1o - Acuaff).
Integrating (17) over the interval (s, r) for a suitable ¢ > 0 we deduce
u(r) — wal? — [u(s) — wa? + clj'uu(t) ~ug|Pdr =

< ¢, j 1O = Lol + [A@) 10 — A, ]t) o
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(Cy = Cy(e)). Hence, analogously as in the previous part we successively deduce
=
ue L,(0,0; H), J “u(t) — uw“" dt < ©
o .

and then the required result.
Consequence. Theorem 2 implies that the solution u,, of (10) is unique in V.

Remark 3. If in (3;), (13;) [v — w| is replaced by |v — w|, then Theorems 1
and 2 remain true. Moreover, in this case the assumption V' < H can be weakened
to the assumption that V' n H is dense in V and H.

Theorem 3. Suppose A(t) = A, (9,), (10) and a,), c,), d,) (from Remark 2).
Assume that f : {0, ©) - H is continuously differentiable and satisfies

(18) Jj\f’(t)[ dt < .

i) If the imbedding V < H is compact and (13,) holds then u(t) > u,, in H for
t — o0.

ii) If (13,) holds then u(t) - u,, in V for t — oo.

Proof. i) From the estimates (2), (18) and the equation
(19) dz_(t) + Au(t) — Au, = f(t) = f, forall t>0
t

(see Remark 2) we deduce that there exist Cy, C, such that

(20) (—i%(—t—) <C, forall t>0
t

and

(21) |[Au()| £ C, forall t>0.

From (21) and ¢,) we conclude

(22) ”u(t)” <C,, Iu(z)l <C, forall t>0

(Cs, C, are suitable constants)

since |A u(t)| = |4 u(®)] = [u(®)] " (A4 u(t), uip)) and V < H. Hence, integrating
(14) over (0, o) we obtain the estimate

0o

Jw(A u(t) — Aug, u(t) — u,)dt < C5<J~:|f(t) — fo dt + 1).
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Thus, there exists a sequence {t,}, t, - oo with n — oo such that
(23) (Au(t,) — Aug, u(t,) — uy) >0 with n— 0.

From (21), (22), from the reflexivity of the space ¥ and from the compactness of the
imbedding V =« H we conclude that there exists ye H and ve Vn H such that
Au(t,)— yin H (weak convergence in H) and u(t,,) — v in H for k - oo ({t,} is
a suitable subsequence of {t,}). From these facts and the monotonicity of 4 we
deduce easily y = Av. Then (23) implies (4v — Auy, v — u,) = 0 and hence (13,)
yields v = u,,. From u(t,) - u,, in H, (9;) and the formula

(24) |u(r) - uwlz - |u(s) - ut,ol2 < C6Jr|f(t) —fw| dt

we obtain the required result.

ii) From (23) we deduce u(t,) » u,, in V for n — oo and hence u(t,) > u,, in H
for t — co. Thus, from (24) we conclude u(f) - u,, in H for t — o0. On the other
hand, from (19), (13,) and from the estimates (22) we obtain the estimate

p([Ju(t) — us|) = Cilu(t) — u,| for >0

which yields the required result.

2

Estimating the rate of stabilization of the solution u(t) of (1) (for t - o) we use
the following assertion on the asymptotical behaviour for the solution y(t) of the
equation

(25) Y(t) = —Coy(t)* + o(t) (0 <t < o0, Cy>0)

where y(0) = 0, 0 < «, and ¢(t) is a measurable nonnegative function.

Assertion 1. a) If ¢(t) > 0 for t — oo, then y(t) = 0 for t — co.

b) Let0 <o < 1.

i) If o(f) = 0, then y(t) = 0 for t Z y(0)' ~*/Co(1 — a) (C, is from (25)).

ii) If o(t) = 0(t™%) (B > 1), then y(t) = O(t~#*1).

c) Let o = 1.

i) If o(t) = O(t™%) (B > 1), then y(t) = O(t7¥).

ii) If ¢(t) = Oe™*) (A > 0), then y(t) = O(e™%) where & = min (C,, A).

d) Let 1 <a < oo. If ¢(t)=0(t"%) (B> 1), then y(t) = O(t™°), where & =
= min (1/(« — 1), Bla, p — 1).
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Remark 4. Assertion 1, d) and Assertion 1, b) (ii)) can be deduced from a more
general result due to Hardy (see [13], Chap. V, Theorem 3, where a, § are integers)
via the transformation u* = y if « = r[s and z™ = tif § = n[m.

Theorem 4. Suppose (3;), (43) and f(t) > 0 in V* for t - co. Then u(t) > 0 in H
for t - . Moreover, if f(t)=0 and 1 <p <2 then u(t)=0 for t=
2 2C,|uo|*~?/C(2 — p) (C is from (3;) and Cy is from (27)).

Consequence of Theorem 4. If (3;) (for 1 < p < 2) holds then the converse
problem

uw(t) + Au()=0 0<t<T,
u(T)=0
has many different solutions for sufficiently big T.

In the following theorems we assume that (10) is satisfied and u(t) is a solution
of (1).

Theorem 5. Suppose (4,), (13;) and f(t) > f.,, A(t) u, > Ay, in V* for t > oo.
Then u(t) - u,, in H for t > oo.

Theorem 6. Let p = 2 and let (135) hold.
) If | f(t) = folx = O and  |A() ue — Aguy|s = O(t7™%), then

() = o = 0,
ii) If |£() = fo|« = O(e™*) and NA(t)u — Agtig]lx = 0(e™*) (A > 0), then
u(t) — ug|* = 0(e™?), where 5 = min (C,, A) and C, is from (28).

Theorem 7. Let p > 2 and let (135) hold. If |f(t) — fo|« = O(t?) and
[A() o — Aguy|x = O(t7F), then |u(t) — u|* = O(t™°), where

6=min( 2 ,zg,qﬂ——l>.
p—2 p

Proof of Theorems 4—7. From (17) we deduce the estimate

(26) S u(t) - + <c - 2%) [u() - ua|? <

(150) = £l + [AQ) v — Aqua]8)

L&
q

for a.e. t > 0, since |u(t)‘2 is an absolutely continuous function in ¢ and
d 2 ’
SO = 260, )
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holds for a.e. t > 0. Due to the imbedding ¥V = H we have
(27) |v| < C,nv“ forall veV

and hence from (20) for a suitable ¢ > 0 we deduce
(28) di|u(z) —u,t = —Cyfu(t) — ua P +
t

+ C3(Hf(t) _foo“?l: + “A(t) Uy — Aw”w“i) ,

where C, = C,(C, Cy, ¢). In the case of Theorem 4 we obtain the estimate
d
3 [HOF = = Cu@Py + G| £ -

Thus, putting z(f) = |u(t) — uwlz, o = 4p and
o(1) = C5(|£(0) = fols + [A() uoo — Asuir][$)

we obtain the differential inequality
(29) Z'(t) £ —Cy z(t)* + o(t)

where z(t) 2 0, ¢(t) = 0 for ¢ > 0. Comparing any two solutions y(t) of (25) and
z(t) of (29) with y(0) = z(0) = 0 we conclude that z(t) < y(z) for all ¢ > 0. From
this fact and Assertion 1 we successively obtain Theorems 4—7.

Theorem 8. Let A(t) = A and let the assumptions of Remark 2 be satisfied.
If (9,), (18) and (133) hold then the estimate
lu() — o] = Oflu(t) = ua|"" + [£(t) = £a[¥")
takes place.

Proof. From (19) and (13;) we deduce

du(?)

Clufo) - ualr = | 2

[u(t) = wa] + [£(2) = il () = war] -

Hence, using (20) and Young’s inequality, we obtain the required result.

Remark 5. In many applications it is more suitable to replace the assumptions
[[A(t) ue — Aiy|« = O for t > 00 and [|A(t) u,, — Agu|« = O(+) in Theorems
5, 6 and 7 by stronger assumptions

(30) |A(t)v — Aov|x >0 for t—> o0 forall veV
and
(31) |A(t) v — Av||s = O(+) for an arbitrary veV,
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which can be directly verified. Then, in Theorems 5, 6 and 7 it suffices to assume the
existence of the solution u,, of (10), which is guaranteed by certain properties of 4.

3

Let us consider nonlinear parabolic equations of the form
(32) M S (=1)¥ Diay(t, x, Du) = f(1, x)
ot iz«

in the domain Q = Q x (0, o), where Q is a bounded domain in EV (N-dimensional
Euclidean space) with a Lipschitzian boundary 0Q, x e Q, t > 0, i is a multiindex
and Du is the vector function Du = (D'u, |i| £ k).

The functions a,t,x &) &eE? (d = card {i, [l| < k}) for |l| < k are supposed
to be real, defined for 0 £ t < o0, x € Q and |é| < oo, continuous in all the variables
(it suffices to assume Caratheodory’s conditions).

Let us consider the first initial — boundary value problem

(33)  u(x,0) = ug(x), Dju(x,t)|saxo,m =0 for 1=0,1,...,k—1,

where D! is the outward normal derivative of order I with respect to €.
The functions a(t, x, &) are supposed to satisfy the growth condition

(34) |ait, x, &) < C(1 + [¢P7") for |i| <k,

where 1 < p < 0. Let W, be the Sobolev space (W, = {u e L,(2); D'ueL,(Q)
for |i| £ k} with the norm |-y = Y. | D'u|,). By the duality form
sk

A@ v, W)=Y j D'wayt, x, Dv)dx for v, we Wy
lilsk J o
we define an (in general nonlinear) operator
A(f) : W » W% (W, " is the dual space to W),
which is continuous and bounded because of Nemyckij’s theorem;

a;(t, x, &) = ‘ai'%—cig (il [ < %)

Remark 6. Monotonicity and coerciveness of A(¢) is guaranteed by
&) [0 = atx ] =) 2 0,
(36) Y at,x, &) & 2 Gyl - ¢, .

lil sk
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Remark 7. Let p = 2. If the estimate

(37) Z aij(t’ X, é) W]; ; C Z léi‘p_z ’7:2
lil,1il sk lil=k

holds for all &, 7 € E* and ¢ > 0, then A(t) satisfies (13;) — see [12].

Remark 8. Let p = 2 and ay(t, x, &) = g4(t, x) |£,-|”‘2 & (|1| < k), where g (1, x) €
€ C(Q) N L(Q) (|i| £ k). If

(38) git.x)=C>0 forall |ij=k, g, x)=0 forall |i|<k

then we can verify by elementary computation that the operator A(z) generated by
aft, x, &) (|i| £ k) satisfies (13;).

Now, let A(t), A be generated by at, x, &), a(x, &) ( |l| < k), respectively.

Assertion 2. Let at,x, &), ayx, &) satisfy (34). If aft,x, &) - afx, &) with
t - oo for all fixed M <k xeQ and lé] < oo, then (30) holds with A = A,,.

Proof. We have
(39) |4(t) v — 404 = Sup lI(A(t) v— Av, z)| <
3 loox, Do) - afs. Do,
where ||+||4 is the norm in W,”*. From (34) we deduce the estimate
lai(t, x, &) — ai(x, &) = C(1 + [¢[~Y) for |i| < k.

Since
|ai(t, x, Dv) — ay(x, Dv)l" sc+ Y ‘Djvl")
1Sk

and ayt, x, Dv) - a(x, Dv) with t - oo for all x € Q, Lebesgue’s convergence
theorem and (39) yield the required result.

Using the estimate (39) we can estimate also the rate of convergence
|A(f)v — Av|x >0 for t— oo.

If, e.g., ai(t, x, &) = g,(t, x) ai(x, &) (|i| < k), where g (t, x) are continuous functions
for x € @, t = 0, then we easily deduce

|A() v — Av|s = O( max |gy(t, x) — 1]).
|1l Sk,xeRd
Now let us consider a nonhomogeneous problem (32), (33"),

(33) u(x, 0) = ug(x,0), D} u(X, 1)|oax(,0) = Dy to(%: )|sax 0, »
1=0,1,..,k—-1,
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where uy(x, t) is a sufficiently smooth function in @ x (0, 00). Considering u in the
form u = u, + z we can transform (32) (33') into a homogeneous problem (32%*)
(33%):

(32%) k= + Y (=) D' af(t, x, Dz) = f*(x, 1),
li|<k
(33*) Z(x, 0) = Oa D\'r Z(X, t)laﬂx(o ©) = 0’ I = 0’ L. k-1 ’

where aj(t, x, Dz) = a,(t, x, Duo + Dz) (|i| £ k), f*(x, t) = f(x, t) — dufot.

By means of a,(t, x, &) (|i| < k) we define the operator A*(¢). If a(t, x, &) satisfy
(34), (35), (36), (37), respectively, then A*(t) has the corresponding properties as
A(f) — see Remarks 6, 7 and 8.

Let uq(x), uo(x, t) Wa() (for all t > 0). We shall assume

(40) ug(x, 1) > ug(x) in Wy(Q) for t— oo
and
(41) ||UQ(X, I)HW k(Q) é C forall t>0.

By means of aj(x, &) (af(x, Dz) = a,(x, Duy + Dz)) (|i| = k) let us define a sta-
tionary operator A*.

Assertion 3. Suppose a1, x, £) and a(x, £) (M < k) satisfy (34) and
(42) af(t, x, &) = afx, &) with t— ©

for all fixed x € Q uniformly for & from a bounded set in E°.
If (34), (40) and (41) are satisfied then (30) holds with A*(f) and A*.

Proof. Analogously as in the proof of Assertion 2 we have

(43) [4*(t) v — A*o] s <

=y ||a,~(t, x, Dug(x, t) + Dv) — a(x, Duo(x) + Dv)”Lq

lil =k
and
|a(t, x, Dug(x, t) + Dv) — ai(x, Dug(x, t) + Dv)|* < C(1 + Y |D'|?)
lilsk

because of (34) and (41). Thus, from (41), (42) and Lebesgue’s convergence theorem
we conclude
(44) * (adt, x, Dug(x, t) + Dv) — ay(x, Dug(x, 1) + Dv)) - 0

with ¢ — o0 in Ly(Q) for all v e W'
Due to the theorem of Nemyckij (see [ 14]) and (40) we have

(45)  ai(x, Duy(x, t) + Dv) > aj(x, Dug(x) + Dv) with t—co in L(Q)
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for all v e W,. The inequality
|a(t, x, Duy(x, 1) + Dv) — ay(x, Dug(x) + Dv)| <
< lai(t, x, Dug(x, t) + Dv) — a,(x, Duo(x, t) + Dv)| +
+ |a(x, Dug(x, t) + Dv) — a,(x, Duo(x) + Dv)|
together with (44), (45) and (43) implies the required result.

Remark 9. If a,(t, x, &) = a(x,¢) (Ji| £ k) then Assertion 3 holds true if we
assume uq(x), uo(x, t) € W, (R) (for all t > 0) and wuy(x, t) > ue(x) with t - oo
in Wy instead of (40), (41).

Investigating (31) we can easily prove

Assertion 4. Let a(t, x, &) = gi(x, 1) a(x, &) | ] < k), where g(x, t) (| | < k) are
continuous  functions in @ x (0, ©). Suppose uo(x), uo(x, 1) € W,y (2) and
[uo(x, )|w < C for all t > 0. If a(x, &) satisfy (34) and a;((x, &) satisfy

(46) jau(x, &) < C(1 + [¢7%) where pz2,
then the estimate

450 = vl = O max loite.) = 1] +

+ ”0”;’—2 ”uo(x, 1) — uo(x)“W + [[uo(x, 1) — uo(x)|5 )
takes place.

For the proof we use (43), the formula

ayx, D ug(x, t) + Dv) — ax, D uo(x) + Dv) =

) I i, D ) + 5 Do, 1) = () ds.

the stimate (46) and Holder’s inequality.

Remark 10. Let p = 2. If a(t, x, &) satisfy (34), (37), uo(x, t) € Wy (for all ¢ > 0)
and du(x, 1)[ot, f(x, t) € L (0, T; W, ) (for all T < o) then there exists a unique
solution u(x, ) of (32), (33') — see Remark 1 ((37) implies ¢,) and d,)). If u(x) € W,
f(x)e W, " and ay(x, &) (|i| < k) satisfy (34)—(36) then there exists a solution u(x)
of the stationary problem
(47) Y, (=DM D*ax, Du) = f(x),

li|=k
(48) D} u(x)|sg = Dy to(x)|og, 1=0,1,...k—1.

If in (35) the sign > holds for & # 7, then the solution u(x) is unique.
Applying certain results of this section and § 2 we obtain
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Theorem 10. Let u(x, t) be a solution of (32), (33') and let u(x) be a solution of
(47), (48). Let us assume (40), p = 2 and let a(t, x, &) (]ll < k) satisfy (34), (37).
i) Suppose that the assumptions of Assertion 3 or Assertion 4 are satisfied. If

6u0;;c, ) . f(x, 1) eW, Q) (forall t >0)
and
duy(x, t)

ot

then u(x, t) - u(x) in L,(Q) for t » oo.
ii) Suppose at, x, &) = a|x, &) (|i| £ k), uo(x, 1) = uo(x) and d,) (form Remark
2). We assume f € C'(0, o), L,(Q)),

® |lof(x, 1)
J 17

If in (35) the sign > holds for & % nand if p > pN|(N — kp), then u(x, t) - u(x)
in Ly(Q) for t - oo.

iii) Suppose that the assumptions of ii) are satisfied. If p = 2 and if (37) holds,
then u(x, t) - u(x) in W,(Q) for t - co.

Assertion i) is a consequence of Theorem 5. Theorem 3 implies Assertions ii)
and iii). ‘

Applying other results of §§ 1, 2 we can deduce the corresponding results on sta-
bilization of the solution of the initial-boundary value problems (32), (33) and
(32), (33), respectively.

The above results can be applied to the following examples.

-0, f(x,1)>f(x) in Wq—" for t— 0,

dt < o0 and J'w”f(x, t) —f(x)“L2 dt < 0.

Ly

Example 1. Let u(x, ), u(x) be the solutions of the problems

M 4 S (=1) Di(g(x) |Dufr~? D) = 0,
Jt  |il=k
u(x,0) = uo(x), Dju(x,t)|og = Dyuo(x)|eg for t>0, I=0.1,...,k—1.

We assume that ug(x)e W, (p > 1) and that g,(x)e C(Q) (|ll < k) satisfy (38).

If 2> p = p, then the identity u(x, ) =0 holds for t = 2C,(C(2 — p)C,)™*.

. |luo(x)||Z; ®- The constants C, C, are obtained from (38), (27), respectively, and C,

is obtained from the inequality Y. |D'u|,, = C,|uly for all u e W,(Q) (equivalence
lil=k

of norms in Wy).

Example 2. Let u(x, t), u(x) be the solutions of the broblems

Bt 3 (-0 Do ) Dl D) = ()5,

i|<k

553



u(x, 0) = s(0) u(x), D ulx, D)aax 0,00 = 5(t) D ug(x) |0

for t>0, I=0,1,...,k—1
and

T (1) D) D D) = 1),
D} u(x)|,o = D} up(x)|ae for 1=0,1,....k -1,

respectively. Suppose p 2 2, (38), f(x) e W,k uo(x) e Wy, gix, t)e C(Q) N L,(0Q)
and g,(x) € C(Q) (|i| £ k). '
i) Let s'(2), 7(t) € L(€0, T)) for all T < oo,

If s(f) > 1, s'(t) > 0, r(f) > 1 for t — oo, and if g(x,t) > g,(x) (|i| = k) for
xeQand t — oo then u(x, t) - ulx) in L,(Q) for t — co.

ii) Suppose g,(x, 1) = gi(x) (|i| < k), s(t) = 1 (stationary case). If
J‘ |F(1)| dt < o and f |r(t) — 1] dt < 0
0 . 0

then u(x, t) - u(x) in the norm of the space W, for t — co.
Example 3. Let u(x, t) be the solution of the problem
ou
— —du + f(x,u) =0,
o S, u)
u(x, 0) = uyfx),

a) u(x, t)|ag = 0 (t > 0); b) (du(x, 1)[6v)|so = 0 (¢ > 0) and let u(x) be the solution
of the stationary problem

—Au + f(x,u) =0
a) ufog = 0; b) du[dv|,q = 0.

- Let f(x, s) be a continuous function in all its variables. Assume

(f(x, &) = f(x,m)) (& —n) >0 forall &neE', &+n
and

Cyils| £ sf(x,5) £ Co(1 + |s|") for |s] < 0,

where r < 2N(N — 1)~! for N > 1 and r is arbitrary for N = 1. Then in the case
of the boundary conditions a) or b) we have u(x, t) - u(x) in W, () for t > oo.
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