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TOLERANCES AND CONVEXITY

IvaN CHAIDA, Pferov, and BOHDAN ZELINKA, Liberec

(Received March 20, 1978)

If R is a congruence on a lattice Land x, y are comparable elements of Lsuch that
(x, y) € R, then arbitrary two elements of the interval bounded by the elements x, y
are in R. We shall show that this property holds even without the requirement of the
transitivity of R and thus we shall characterize compatible tolerances among the
compatible relations on a lattice. A further well-known property of a congruence is
that each class of a congruence on a lattice is a convex sublattice of this lattice.
(Theorem 89 in [6].) In this paper it is proved that this result can be generalized for
blocks of a tolerance which are a generalization of congruence classes (see [1], [2],
[4]).

A binary relation R on a set A is called a tolerance, if it is reflexive and symmetric.
Let A = (A4, F) be an algebra, let R be a binary relation on 4. A relation R is
called compatible with U, if R is a support of a subalgebra of the direct product
A x A, ie. if it has Substitution Property [5] for all operations of the algebra .

Theorem 1. Let L be a lattice, let R be a reflexive compatible relation on L. Then
the following two assertions are equivalent:

(a) R is a compatible tolerance on L.

(b) If (a, b) € R, then (x, y) € R for any two elements x, y of L fulfilling a A b <
SxZavbaanb=Zy=Zavhbh

Proof. (a) = (b). Let (a, b) € R. The reflexivity of R implies (b, b) € R and by the
compatibility of R we obtain (a A b, b) € R. Analogously (a A b, a) € R, therefore
(@anb,avb)eR Letarnb<x<avbaanb=<y=<avhb As(x,x)eR,
we have ((a A b) v x, (a v b) v x) € R which means (x, a v b)e R. Analogously
we obtain (y,a v b)e R and the symmetry of R implies (a v b, y) € R. Then
(x,y)=(xA(avbd)(avb)AayeR

(b) = (a) is evident, because (b) immediately implies the symmetry of R.
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Definition. Let R be a binary relation on a set 4 (i.e. R € A x A). A non-empty
subset B of A will be called a block of the relation R, if

(i) Bx BSR;
(i) if B= C and C x C = R, then B = C.

Therefore, a block B of a relation R on 4 is such a non-empty subset of A that the
restriction of R onto B is a universal relation and B is maximal with respect to this

property.

Lemma 1. Let L be a lattice, let a, b, ¢, z be elements of L such thata < ¢ < b.
Let T be a compatible tolerance on L such that (a,b)e T, (a,z)eT, (b, z)e T.
Then also (¢, z)e T.

Proof. From (a, b)e T, (a, z) € T we have (a, b v z) e T; analogously (b, z) e T,
(z,z)e Timply (b v z,z)e T and, by the symmetry, (z, b v z)e T. Then by the
compatibility (b v z, a A z)e T. The elements ¢ and z belong to the interval
{a A z,b v z)and by Theorem 1 we have (¢, z) e T.

Lemma 2. Let T be a compatible tolerance on an idempotent algebra W = {A, F)
and let B be a block of T. Then (B, ¥ g), where F g is the restriction of & onto B,
is a subalgebra of A.

This was proved in [2], Theorem 4.

Theorem 2. Each block of a compatible tolerance on a lattice L is a convex sub-
lattice of the lattice L.

Proof. By Lemma 2, a block B of a compatible tolerance T on L is a sublattice
of L; thus it remains to prove its convexity. Let ae B, be B,ce Land a < ¢ < b.
Then (a, b) e Tand for all z € B we have (a, z) € T, (b, z) € T. Therefore by Lemma 1
we have (c, z) € T for each z € B and thus ¢ € B.

Remark. For blocks of tolerances on semilattices, an analogous assertion does not
hold. Let S be a semilattice with the operation o. For two elements x, y of S we shall
write x < y if and only if xo y = x. A convex subsemilattice of a semilattice S
is such a subsemilattice C of S thatifae C, be C,a £ x £ b, then xe C.

The set of all compatible tolerances on a given algebra 2 forms a complete lattice
with respect to the set inclusion [3]. If R is a binary relation on 2, there exists a com-
patible tolerance T on U = (A, #) which is the least one containing R. This
tolerance T is said to be generated by the relation R.

Lemma 3. Let S be a semilattice with the operation o, let the ordering < be that
from Remark. Let a, b, ¢ be elements of S, a < ¢ < b and let R be the relation
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on S such that R = {(a, b)}. Then for the compatible tolerance T on S generated
by the relation R we have (b, ¢) ¢ T.

Proof. Let T be the compatible tolerance on S generated by the relation R and
suppose (b, ¢) € T. Each compatible tolerance on S containing R evidently contains
all pairs (x, y), where X = Xy 0...0X,, ¥ = yy0...0 ), n being a positive integer,
and for each i = 1, ..., n either (x;, y;)€ R or (y;, x;)€ R or x; = y;; this follows
from the symmetry and the compatibility. On the other hand, all such pairs evidently
form a compatible tolerance on S; as T is the least compatible tolerance on S con-
taining R, it is equal to the described tolerance. Therefore there exists a positive in-
teger n and elements by,...,b,, ¢y, ...,c, of S such that b =byo...0b, ¢c=
=¢o...0¢, and for each i = 1, ..., n either (b;, ¢;)e R or (¢;, b;)eR or b; = c;.
If (b;, ¢;) € R for some i, then b; = a < b, which is impossible, because b = b, o ...
...o b, implies b; 2 b > a for each i. If (¢;, b;) € R, then ¢; = a < ¢, which is an
analogous contradiction. Therefore only the case b; = c; for each i remains. But
then b = ¢, which is again a contradiction.

Lemma 4. Let R be a binary relation on a set A, let C =< A and C x C < R.
Then there exists a block B of R such that C < B.

Proof follows from Zorn’s Lemma, because C fulfils the condition (1) from the
definition of a block.

Theorem 3. Let S be a semilattice. Then the following two assertions are equi-
valent:

(a) Each block of an arbitrary compatible tolerance on S is a convex subsemilat-
tice of the semilattice S.

(b) The semilattice S contains no chain (with respect to <) of the length 3.

Proof. (b) = (a). By Lemma 2, a block B of a compatible tolerance T on S is
a subsemilattice of the semilattice S. If a < ¢ < b, a € B, b € B, then by (b) we have
a = cor b = ¢, therefore ¢c € B and B is convex.

(a) = (b). Let S contain a chain of the length at least 3; then there exist elements
a, b, cof Ssuch thata < ¢ < b. Let R = {(a, b)} and let T be a compatible tolerance
on S generated by the relation R. Then (a,a)e T, (b,b)e T, (a,b)e T, (b,a)e T
and thus {a, b} x {a, b} = Tand by Lemma 4 there exists a block B of T such that
a e B, be B. Let B be an arbitrary block of T containing a and b and suppose c € B.
Then (z, c) e T for each z € B, which is a contradiction, because by Lemma 3 we
have (b, c)¢ T.
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