Czechoslovak Mathematical Journal

Ivan Dobrakov
On integration in Banach spaces, III

Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 3, 478-499

Persistent URL: http://dml.cz/dmlcz/101628

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101628
http://dml.cz

Czechoslovak Mathematical Journal, 29 (104) 1979, Praha

ON INTEGRATION IN BANACH SPACES, 1II

IvaN DoBRrAKOV, Bratislava

(Received January 23, 1978)

INTRODUCTION

Let T and S be non empty sets and let 2 and 2 be J-rings of subsets of T and S,
respectively. Let X, ¥ and Z be real or complex Banach spaces, and let m : # —
— L(X, Y)and I : 2 - L(Y, Z) be two operator valued measures countably additive
in the strong operator topologies with finite semivariations m” and /*. In this part
of our theory of integration we investigate the existence of the product measure
I®m:2® 2~ L(X, Z), countably additive in the strong operator topology, and
the validity of a Fubini type theorem for Z ® 2 — measurable functions f: T x S —
— X. Here 2 ® 2 denotes the smallest d-ring containing all rectangles 4 x B,
Ae?, Be2, and (I ® m)(A x B) = I(B) m(A). The main results of the paper,
namely Theorems 1 and 15, were announced in [9].

In Theorem 1 we prove that the most natural condition: “for each E€e 2 ® 2
and each x € X the function s —» m(E°) x, s € S, is integrable with respect to I”, is
necessary and sufficient for the existence of the product measure /@ m: 2 @ 2 —
— L(X, Z), and that if it is satisfied, then (I ® m)(E)x = [s m(E°) x dI for each
Ee? ® 2 and each x € X. As a consequence, in Theorem 3 we prove that the con-
tinuity of the semivariation /* on 2(B, € 2, B, \ § = I"(B,) \ 0, see the *-Theorem
in Section 1.1 in [6]) is sufficient for the existence of the product measure ! ® m
on ? ® 2, and the continuity of /* on 2 and m”" on £ imply the continuity of

(Igb\m) on #Z ® 2. Results similar to Theorem 3 were obtained by different ap-
proaches and in various settings by M. DucHON in [10]—[16] and CH. SWARTZ
in [28], [29] and [30], see also [2], [4], [17], [18], [25], [28] and [32].

Using Theorem 1, in Theorems 4 and 5 we establish the validity of the Fubini
theorem for functions which are uniform limits of 2 ® 2 — simple functions, par-
ticularly for elements of Co(T x S, X).

Let the product measure /@ m: 2 @ 2 - L(X, Z) exist and let the function
f: T x S — X be integrable with respect to / ® m. Then, as the very simple example
at the beginning of § 2 shows, the function ¢ — f(t, s), t € T, need not be intcgrable
with respect to m for any s € S, even if the variations of both m and / are bounded.
Hence in a general Fubini type theorem we must suppose that for each se S the
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function t — f(t, 5), t € T, is integrable with respect to m. Adopting this assumption,
our main task is to establish the 2-measurability of the partial integral gz, g4(s) =
= [gf(*,s)dm, s € S, for each E € &(? ® 2). Although the author did not succeed
in solving this problem in general, in § 2 we establish the 2-measurability of g in
the following important cases: 1) the semivariation m” is continuous on £ (Theorem
9), 2) Y is a separable Banach space (Theorem 10), and 3) £ is generated by a count-
able family (Theorem 12). Further we prove the [-essential 2-measurability of g,
see Definition 2, which is also sufficient, in the following important cases: 4) Z is
separable or is a dual of a separable Banach space, and 5) / is countably additive in
the uniform operator topology on 2, see Theorems 13 and 14. Note that case 5)
includes the following important subcase 6): I : 2 — L(¥, Z) is given by an equality
I(B)y = u(y, y(B)), where u : ¥ x Z, — Z, Z, being a Banach space, is a separately
continuous bilinear map and y: 2 — Z, is a countably additive vector measure.
Indeed, by the Uniform Boundedness Principle u is bounded on Y x Z;, hence
1:2 - L(Y, Z) is countably additive in the uniform operator topology.

Assuming the integrability of f(+, s) with respect to m for each se S, and the
L-essential 2-measurability of g, for each Ee S(Z? @ 9), in § 3 we prove the Fubini
theorem and an important special case of it. This special case includes the recent
results of Theorems 8 and 9 from [16], where the integral of R. G. BARTLE [3] is
used.

Let 9 be a d-ring of subsets of S. We say that g : S — Y is 9-measurable, if there
is a sequence g,, n = 1, 2, ... of 9-simple functions (on S with values in ¥) such that
9.(s) = g(s) for each s e S. In addition to the information about this measurability
given in § 1 in Part I (from now on [6] will be referred to as Part I and [7] as Part
II) see also [24]. If g : S — Y is integrable with respect to /: 2 — L(Y, Z), then
by [sg dI we understand the integral [, g dl, where D = {s€ S; g(s) + 0} € S(2).

We note that a nice and deep Radon-Nikodym theorem for our integral was
proved by H. B. MAYNARD in [26, Theorem 5].

As is well known, to each countably additive vector measure on a o-ring there is
a finite non negative countably additive measure on that o-ring with the same zero
sets; for a short proof see [20, Theorem 3.10]. Such a measure is called a control
measure for the given vector measure.

Correction to Part 1. In the definition of p in the proof of Theorem 1 in Part I
the vector measures E — [ f, dm, E€ S(2), n = 1,2, ..., must be replaced by their
control measures.

1. PRODUCTS OF OPERATOR VALUED MEASURES

We shall use the notation and terminology introduced in Parts I and Il and in
Introduction. Let 2, and 2, be J-rings of subsets of T and S, respectively, and
let m: 2, > L(X, Y) and /: 2, - L(Y, Z) be operator valued measures countably
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additive in the strong operator topologies. Then 2 denotes the greatest d-subring
of #, where the semivariation m” is finite. By 2, we denote the greatest -subring
of 2, where m is countably additive in the uniform operator topology, and by 2~
we denote the greatest §-subring of 2, (equivalently, of 2, see Corollary of Theorem
5 in Part II), where the semivariation m” is continuous. Similarly we have 2, 2,
and 27.

For a class of sets &/, we denote by 6(.9/) the smallest o-ring containing &/, whlch
we call the o-ring generated by /. Similarly we have §(s), the o-ring generated
by &. If 9, and 2, are -rings of subsets of T and S, respectively, then clearly
S(2, ® 2,) = &(2,) ® S(2,). Further, for each Ee (2, ® 2,) there are
AeP,and Be 9, such that E =« A x B. Finally, for E = T x S and s € S we put
Ef={teT;(t,s)eE}.

Before proceeding to the next definition we note that the Hahn-Banach theorem
and the uniqueness of the extension of a finite scalar measure from a ring to the
generated o-ring, see [21, § 13], imply that if n,, n, : 2, ® 20 - L(X, Z) are two
operator valued measures countably additive in the strong operator topologies such
that n,(A x B) = ny(A x B) for each Ae #, and Be 2, then they are identical
on 2, ® 2, (Theorem E in § 33 and Theorem D in § 13 in [21] are also used).

Definition 1. We say that the product of measures m : 2, - L(X, ¥) and I : 2, —
- L(Y, Z) exists on 2, @ 2,, if there is a necessarily unique L(X, Z) valued measure
countably additive in the strong operator topology on Z, ® 2,, which we denote
by I @ m, such that (I ® m) (A x B) = I(B) m(A) for each A€ 2, and B 2,.

Lemma 1. For each x€ X let there be a countably additive Z-valued vector
measure w, on Po @ 2 such that p(A x B) = I(B) m(A) x for each Ae P, and
B e 2. Then the product measure Il ® m exists on 2, ® 2.

Proof. For E€ 2, ® 2 and x € X put (I ® m) (E) x = p,(E). We have to prove

(a) "¢x1+ﬂxz(E) =0ao. "xn(E) + ﬁ p'xz(E) and
(b): hm p(E) =0, xe X, for each E€ 2, ® 2, all x, x, € X and all scalars «, ﬁ.

Denote by % the ring of all finite unions of pairwise disjoint rectangles 4 x B,

A€ P,, Be 3, see Theorem E in § 33 in [21]. We shall need the following fact:

(c): Let z*eZ* and let Ec %, ® 2. Then the obvious inequality |z* p.(E;) —
— 2* uy(E,)| £ v(z*p., Es AE,), Ei,E; €2, ® 2, and Theorem D in §13
in [21] imply that for each ¢ > 0 there is a set F € # such that |¢* p(E) —

— 2 (F)| < e
Let o, B and x,, x, be given. Then (a) is true for E € &, since p(4 x B) =

= I(B) m(A) x for each 4 € 2, and B € 2, the values of / and m are linear operators

and p, is additive. Thus by (c) and the Hahn-Banach theorem (a) is true for each

Ee?, ® 2.
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To prove (b), let E€ #, ® 2 and take A€ P, and Be 2 so that E = 4 x B.
Let FeZ n (4 x B). Without loss of generality we may suppose that F =

= (4; x B)), A;€P,, B, 2, i =1,...,r, with pairwise disjoint B;. But then
i=1

[2* )] P = | Tlds x B = Ié'(B‘) m(A) x| < |x| . |m| (4) . 1"(B)

for each z* e Z* with lz | 1. Since B € 2, we have l"(B) < +00. By Uniform
Boundedness Principle we conclude |m| (4) = sup [[m(+) x| (4) = sup sup

lx|S1 ¥ =1

o(y*m(+) x, A) < +oo. Thus 11m |z r(F)| =0 umformly for Fe® n (A x B)

and z* € Z* with |¢*| < 1, hence usmg (c) we easily obtain (b) for each E.

Lemma 2. Let 9 be a é-ring of subsets of S. Then:

1) for each E€ 2y ® 2 and each x € X the function s > m(E*) x, s € S, is bounded
and @—measumble,

2) for each E€ #, ® 2 the function s > ||m(E*)|,
surable, and

3) for each E€ 2~ ® 2 the function s > m"(E®), s€ S, is bounded and 9-mea-
surable.

mea-

Proof. 1) Let E€c 2, ® 2 and let xe X. Take A€ #, and Be 9 so that E
< A x B, and denote by ./ the class of all sets M € Z, @ 2 n (4 x B) for which
1) holds. Then clearly .# contains the ring # n (4 x B), where 2 is the ring of all
finite unions of pairwise disjoint rectangles A, x B;, A; €%, B;€ 2. Since
sup [m(M* x| < |m(+) x| (4) < + oo for each M € ./, and since the 2-measurable
seS

functions are closed under the formation of pointwise limits of sequences, see
Section 1.2 in Part I and Lemma 1,2 in [24], the countable additivity of m(+) x
on 2, implies that .# is a monotone class. Thus # = 2, ® 2 n (A x B) by
Theorem B in § 6 in [21], hence E € /.

2) and 3) may be proved similarly using the continuity and finiteness of the semi-
variations |m| on 2, and m* on 2~ respectively.

Theorem 1. The product measure | ® m : P, @ 2 —» L(X, Z) exists if and only
if for each E€ 2, ® 2 and each x € X the function s - m(E*) x, s € S, is integrable
with respect to I. In that case

1)  lemE)x= f m(E*) x I
-Js ]
foreach Ee 2, ® 2 and each x € X.

Proof. Suppose that the product measure I ® m : 2, ® 2 - L(X, Z) exists and
let x € X. Denote by 2 the class of all sets D.e Z, ® 2 for which the function
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s = m(2°) x, s € S, is integrable with respect to / and for which the equation (1) is
valid. Then clearly 9 is a subring of 2, ® 2 which contains all rectangles 4 x B,
AeP,, Be 2, hence we have to prove that 2 is a §-ring, see Theorem E in § 33 in
[21]. Let D,e2,n =1,2,...,let D, \ D, and let F € &(2, @ 2). Then m(D) x —
— m(D®) x for each s € S by the countable additivity of the vector measure m(*) x :
P, — Y, hence the function s — m(D‘) x, s€ S, is 2-measurable, see Section 1.2
in Part I ard Lemma 1.2 in [24]. Further, (1) and the countable additivity of the
vector measure (I @ m)(*)x: 2, ® 2 > Z imply that [ m(D;)xdl > (I ® m)
(D N F)x for each FeS(?,® 2) (FAnDeP, ® 2 for each F e S(2; ® 2)).
Thus by Theorem 16 in Part I the function s — m(D*) x, s€ S, is integrable with
respect to / and (1) is true for D. Hence D € 2, so 9 is a é-ring. Since x € X was
arbitrary, the nccessary part of the first assertion and the second assertion of the the-
orem are proved.

Suppose now that for each E € 2, ® 2 and each x € X the function s — m(E®) x,
s € S, is integrable with respect to I For x€ X and Ee 2, ® 2 put p(E) =
= [sm(E*) x dI. Since p (4 x B) = I(B) m(A) x for each Ae 2, Be 2, and x€ X,
according to Lemma 1 it suffices to prove that for each xe X, p,: 2, ® 2 > Z
is a countably additive vector measure. Let x € X, and suppose that E, e Z, @ 2,
n =1,2,... are pairwise disjoint sets with |J E, = E€ 2, ® 2. We have to show

n=1

0
that p(E) = Y. p(E,), where the series converges unconditionally in Z. Take 4 € 2,
n=1

and Be 2 so that E = A x B, and consider the o-ring 2, ® 2 N (4 x B). Since
B2, ® 20 (4 x B) > Z is additive, by the Orlicz-Pettis theorem, see 1V.10.1

in [19], it is sufficient to prove that z* p,(E) = le* n.(E,) for each z* € Z*, where

the series converges unconditionally. Let E,, n = 1, 2, ... be any rearrangement of
the sequence E,, n = 1,2, ..., and let z* € Z*. Then for each n = 1,2, ... we have

Iz* n(E) _-;1 z* px(E,’,)| = |z* ""(.},,{L 1E;.)| =

= ( f (U B dl)l -
<[ Im)21 @ O mD st ),

see the paragraph after Theorem 7 in Part I and Lemma 2.2. Since

J‘Sm([i =t:j+ 1E£]s) * d(Z*l) =<

[m(-) x| [ U EiI) »0as n— 400 for each se S by the countable additivity
i=n+1

of the vector measure m(+) x : 2, — ¥, since |m(-) x| ([ igHE;]s) < |m(+) x| (B) <

< +owforeachseSandn = 1,2,..., and since o(z*/, B) = z*I (B) < |z*|.1*(B) <
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< + 00, see Example 5 in Section 1.1 in Part I, we conclude [ [|m(+) x|| ([ U EJ")
i=n+1

dv(z*l, ) — 0 as n —» + oo by the Lebesgue dominated convergence theorem. Thus

Y z* p(E}) — z* p(E), which was to be shown. The theorem is proved.

i=1

Let g : S — Y be a 2-merasurable function. In Definition 1 in Part II we defined
its L;-norm 7~ (g, B) on a set B € S(2) (actually, it is in general only a L,-pseudonorm)
by the equality I*(g, B) = sup {|[hdl|; h:S - Y is 2-simple and |k(s)| < |g(s)|
for each s € S}. Obviously this definition is meaningful for any real valued function g
on S. What is more important, Theorems 1, 2, 3, 5 and 6 remain valid in this case,
and if the functions considered are 2-measurable, then also the important Theorems
16 and 17 are valid. (We mean theorems from Part I1.) In the following we shall use
these facts freely.

From Theorem 1 and from the definitions we easily obtain

Theorem 2. Let the product measure IQ m: P, ® 2 — L(X, Z) exist, let Ee
€S(P, @ 2 andletf:T x S — X be a P, ® 2-measurable function. Then

[7® m| (E) < 1°(|m] (E), 5)

and
P
(1 ® m)(f, E) < I"(m"((:, 5), E*). 5)..
S
Particularly, | @ m|| (A x B) < |m| (4). 1"(B) < + o0, and (I® m)(A x B) <
P

< m*(A). I"(B) for each A€ P, and B e 2. Hence (I ® m) is finite on ? ® 2.

Theorem 3. The product measure [ ® m exists on P, ® 27, on 2, ® 2~ it is

PN
countably additive in the uniform operator topology, and its semivariation (I @ m)
is continuous on 2~ @ 2.

Proof. Let E€ 2, ® 2~ and let x € X. By Lemma 2.1 the function s — m(E°) x,
s € S, is bounded and 2~ -measurable. Since {s € S, m(E*) x + 0} € 27, and since the
semivariation /" is continuous on 27, by Theorem 5 from Part I the function
s —» m(E°) x, s€ S, is integrable. Since E€ 2, ® 2~ and x € X were arbitrary, by
Theorem 1 the product measure I @ m exists on 2, @ 2~.

It is easy to see that the product measure I ® m is countably additive in the uniform
operator topology on Z, ® 2~ ifand onlyif E,€e 2, ® 27,n = 1,2,...and E, \« @
imply that |/ @ m| (E,) 0. Let E,e#, ® 27, n =1,2,... and let E, \ 0. By
Lemma 2.2 the functions s — ||m| (E;), se S, n = 1,2,... are bounded and 2~ -
measurable. Since {s € S; ||m| (E$) # 0} € 2, they belong to & (I), sec Definition 4
and Theorem 1.c) in Part II. Since m is countably additive in the uniform operator
topology on £, and since E; € 2, for each se S and n = 1,2, ..., we obtain that
“m" (Ef.) N Oasn — + oo for each s € S. Thus by Theorem 17 in Part IT and Theorem
2 we have |l ® m| (E,) < I"(|m| (ES), S) \ O, which was to be shown.
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The last assertion of the theorem may be proved similarly as the second assertion.

Denote by J,(Z? ® 2) the closure of the set J (2 ® 2) of all Z ® 2-simple func-
tions on T x S with values in X in the sup norm |+ s, in the Banach space of all
bounded X valued functions on T x S. For elements of J,(2 ® 2) we have the
following Fubini type theorem.

Theorem 4. Let the product measure I @ m exist on 2 ® 2, let fe 3(? ® 2)
and let Fe? ® 2 (if m"(T).I"(S) < +oo, then let Fe &(? ® 2)). Then f. xr
is integrable with respect to I @ m, for each s€ S the function f(+,s). xs(*, s) is
integrable with respect to m, for each E € S(? ® 2) the function s — [g.f(*,s).
. x(*, s)dm, seS, is integrable with respect to I, and (pf.yp d(l ® m) =
= s e f(*>5) . xe(*, s) dm dl for each Ee S(? @ 2). ,

Proof. Let f, € 3(2 ® 2) be such that ||f, — f|rxs >0, n = 1,2, ..., and take
Aoe? and Bye 2 so that F = 4, x B,. (If m"(T).1*(S) < + o0, we take such
Ao € &(2) and B, € &(2).) Then f(t,s) - f(t,s) for each (1,5)e Tx S. If E€
€S(2? ® 2), then f, . yz € J(? @ 2) for each n = 1,2, .... Thus by the definition

PN

of the semivariation (l ® m) and Theorem 2 we have

fﬁ,.x;d(l@m)—fﬁ.x,,d(l@m)

J' (f, - f)d(l @ m) <

P .
< | = fillrxs - (U ® m) (F) < | f = fillrxs - m* (4o) - 1"(By)
foreach E€S(? ® 2) andeach n,k=1,2,....

Since m*(4,).1"(By) < + 0, we obtain by Theorem 7 from Part I that f. y, is
integrable with respect to / ® m, and

J‘f,,.xpd(l®m)—»J‘f.de(l®m) foreach E€S(Z @ 2).
E E

Let se S. Then

fﬁ,(-, s). xe(+, 5) dm —J.f;‘(-,s).xp(gs) dm| <

S | — filrxs - m*(4o) foreach Ae&S(#) andeach n k=1,2,....

Since m"(4p) < +0o, by Theorem 7 from Part I the function f(,s). x¢(*, 5) is
integrable with respect to m and

ff..(', s). xe(*, s) dm > ff('; 5). .xp(', s) dm
" foreach AcS(@); particularly,
® £ 8)  ae(s ) dm > | £(,5) . xs(", 5) dm
e for each -E e efg’ ® 2).

¢
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Let E e (2 ® 2). Then using Theorem 14 from Part I we have

) J;Jéﬁtsﬂ-xAus)dmdl-JB (9 1l am ] <

< sup
seBo

= — fi| rxs - m"(A,) . I"(B,) for each Be &(2) andeach n, k=1,2,....

wawawﬂm@m

Since m"(A4,) . I"(By) < + oo, the relations (1) and (2) imply according to Theorem
16 from Part I (||f, — £i]|rxs = 0 as n, k - +o0) that the function s — [z f(., s).
. x#(*, s) dm, s € S, is integrable with respect to / and that

J~ ﬁ,('.s).xF(-,s)dmdl—»j £ s) . e+, s)dmdi.

Es Es

It remains to observe that owing to Theorem 1

Lﬁ.na@m) =.U £(9) - 2e(e 5) dm

s

foreach EcS(? ® 2) andeach n=1,2,....

Let now T and S be locally compact Hausdorff topological spaces. By QO(T),
B(S) and By(T x S) we denote the d-rings of relatively compact Baire subsets
of T, S and T x S, respectively. According to Theorem E in § 51 in [21] we have
Bo(T x S) = B(T) ® B(S), and according to Theorem 8 in Part I we have
Co(T x S, X) = J(B(T x S)). Hence Theorem 4 yields immediately the following
result:

Theorem 5. Let T and S be locally compact Hausdorff topological spaces, let
m:Bo(T) > L(X,Y) and I: B(S) - L(Y, Z) be Baire operator valued measures
countably additive in the strong operator topologies with m"(T).I"(S) < + oo,
let their product I @ m exist on B(T) @ B(S) = Bo(T x S) and let fe Co(T x
x S, X). Then f is integrable with respect to I @ m, f(,s) is integrable with
respect to mfor eachs € S, for each E € S(%(T x S))the function s — [ f(+, s) dm,
s € S, is integrable with respect to I, and

(1) f REEE L f A dmat

for each E € S(B(T x S)).

This theorem may be combined with results on representation of bounded linear
operators on spaces of the type Co(T; X), see [4] and [8], to obtain results about
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bounded linear operators on Co(T x S, X) which are of the form Wf = U(Vf(:, 5)),
feCy(T x S, X), where V:Co(T,X)— Y and U:Cy(S, Y) » Z. (The fact that
Vf(+, s)e Co(S, Y) for fe Co(T x S, X) follows immediately from the boundedness
of ¥ and from the easily proved fact: Let fe Co(T x S, X), let se S and & > 0.
Then there is an open neighbourhood O(s) of s such that |£(t, s) — f(t, s')| < & for
each ¢ € T'and each s’ € O(s).)

We present one such result for illustration.

Corollary. Let X be a reflexive Banach space and let V:Cy(T, X)— Y and
U: Cy(S, Y) > Z be unconditionally converging bounded linear operators. Then
W :CT x S, X)— Z defined by the equality Wf = U(Vf(,s)), fe Co(T x S, X),
is weakly compact.

Proof. According to Theorem 3 in [8], ¥ and U have representations Vg =
= [rgdm, geCy(T, X), and Uh = [shdl, he CyS, Y), where m : S(B,(T)) -
- L(X,Y) and I:S(%,(S)) > L(Y, Z) are operator valued measures, and the
semivariations m” and [" are continuous on S(%,(T)) and S(%,(S)), respectively.
According to Theorem 3 the product measure ! ® m exists on S(%,(T)) ®

N

® S(B(S)) = S(Bo(T x S)), and its semivariation (/ ® m) is continuous on
&(%(T x S)). By Theorem 5 we have Wf= [r,sfd(I® m), fe Co(T x S, X).
N

Since X is a reflexive Banach space, the continuity of the semivariation (l ® m)
on S(A(T x S)) is a necessary and sufficient for the weak compactness of W,
see Remark 1 in [8]. The corollary is proved.

Some special cases. 1. Let Z contain no isomorphic copy of ¢,. Then by the *-Theo-
rem in Section 1.1 in Part I the semivariation /* is continuous on 2. Thus by Theorem
1 the product measure / ® m exists on 2, ® 2. By Theorem 2 the semivariation

SN
(I ® m) is finite on 2 ® 2, hence by the *-Theorem it is continuous on Z ® 2.

2. Let X be the space of scalars and let ¥ = Z be a commutative Banach algebra,
or let X =Y = Z be a commutative Banach algebra, or let X = Y = Z and let
I(B) m(A) = m(A)I(B) for each A € 2 and B e 2. Suppose further that the product
measure / ® m exists on ? ® 2. Then by Lemma 1 the product measure m ® [
existson 2 ® Z = # ® 2 and is equal to / ® m. Thus in this case

f f(-,s).xr(-,s)dmdl=j f(t, ). xelt, »)dl dm ,
sJEs TJE:
in Theorem 4 and similarly
J‘ f(-,s)dmdl=f f(t, +)didm

N T

Es Et
in Theorem 5.
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Results on the products of operator valued measures have applications in con-
volutions of vector measures, see for example [34], [23], [14].

2. MEASURABILITY OF THE PARTIAL INTEGRAL

Example. Let T= S = {1,2,...}, let Z = 2 =27, let X be the space of real
numbers, and let ¥ = Z = c¢o. Let m : 27 —» L(X, ¢,) = ¢, and 7: 25 — L(c,, ¢o) be
defined by the countable additivity from the following elementary values:

/o if k is even,,
(k) =k

1
(O, ...,0,—,0,0, ...)ec0 if kis odd ,
k2

/0 if kis odd,
=, &

(0,...,0,l,0,0,...)eco if k is even .
k2

Then clearly m and ! are operator valued measures with bounded countably additive
variations and their product  ® m = m ® I exists and is identically equal to zero.
Thus every function f: T x S — X is integrable with respect to ! ® m. Now it is
easy to see that the function f(-, s), f(t,s) = £**, (t,5)e T x S, is not integrable
with respect to m for any se S = {1, 2, }

From this example it is clear that in a general Fubini theorem we must suppose
that for a 2 @ 2-measurable function f: T x S — X, the function ¢ — f(t, s),
t e T, is integrable with respect to the measure m for each se€ S. Since a 2 ® 2-
measurable function is, by definition, a pointwise limit of a sequence of P ® 2-simple
functions, we conclude from Theorem A in § 34 [21] and from the fact that the
P-measurable functions are closed under the formation of pointwise limits of sequen-
ces, see Section 1.2 in Part I and Lemma 1.2 in [24], that the function f(+, s) is
Z-measurable for each se S provided f: T x S — X is ? ® 2-measurable.

Let f: Tx S — X be a 2 ® 2-measurable function and let f(*, s) be integrable
with respect to m for each s e S. In this section we investigate the 2-measurability
and the essential / — 2-measurability of the partial integral g, gx(s) = [ f(*, s) dm,
seS, Ee G(ﬂ ®,@). In fact, 2 is replaced in Theorems 6—12 by an arbitrary
o-ring @ of subsets of S. Besides, we obtain results on the Z-measurability of the
function hg, hg(s) = m*(f(+, s), E°), s€ S, and important results which are needed
for the proof of the Fubini theorem in § 3.

Theorem 6. Let & be a 6-ring of subsets of S and letf:TxS—>Xbea?” ®@ 2-
measurable function. Then' for each Ee S(P @ D) the function hpg, hE(s) =
=m"(f(:,s), E°), s€ S, is @-measurable.
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Proof. Let Ee 6(9 ® 9) and let f,, n =1,2,... be a sequence of 2~ ® 2-
simple functions such that £,(z, s) > f(t, s) and |£(t, s)| 7 |f(t, s)| for each (t,s)e
e T x S, see Section 1.2 in Part I. According to Theorem 4 in Part II we have
m*(f(+, s), E*) = sup [g|f(*, 5)| dv(y*m, *) for each s e S. The same equality holds

ly*|=s1

for each f,, n=1,2,.... Hence m"(f(-,s), E°) = lim m"(f(-, s), E°) for each

se S by the Fatou lemma. Therefore it suffices to prove the theorem for each
P~ ® PD-simple function f: T x S - X.

Let f:Tx S—> X be a 27 @ Z-simple function of the form f= Zx XEw

x;€X,E,e?" @ PandE,nE;=0fori % j,i,j=1,..,7, andletEeG(?@@)
Since 2~ @ 2nS(2?® 2)=2" ® P, and since E,e@ ®9, i=1,.

we may suppose without loss of generality that E € 2~ ® 2. Take A € #~ and B € .@
so that E = 4 x B. Let xe X and |x| = 1, and let d: T— X be the #~-simple

function defined by the equality d = (Y |x;|) . x. x4 Then clearly de & ,(m), see
i=1

Theorem 1c) and Definition 4 in Part II. Denote by # the ring of all finite unions
of pairwise disjoint rectangles C x D, Ce 2~ and D € 2, see Theorem E in § 33

[21]. If F;e # (A x B)foreachi = 1,...,r, then for g = ) x;. x, the function
i=1

s > m"(g(-,s), A), seS, is clearly @-measurable. Denote by ., the class of all
sets F; €2~ ® 92 n (4 x B) for which the function s — m"(g(:,s), 4), seS,

is 2-measurable provided g = Zx xr, and F,,...,F,e 2 n (A x B). Then

R (A x B) < M,, and since lg(t s)| £ |go(t)| for each (t,s)e T x S, M, is
a monotone class by Theorem 17 from Part II. Thus 4, = 2~ @ 9 n (A x B)
by Theorem B in § 6 [21]. Similarly, if ., is the class of all sets F, € 2~ ® 2 n
N (A x B)for which the function s —» m*(g(+, 5), 4), s € S, is @-measurable provided

g=Y%.%, Fiesy and F;,..,F,e Zn (A x B), then M, =P Q@D n
i=1

N (4 x B). Continuing in this way we obtain that #, = 2~ ® 2 n (4 x B),
which was to be shown. The theorem is proved.
Let us remind that a subset 4 = ¥* is called norming (or total) for Y if |y| =
= sup Iy*yl for each yeY, see Definition 2.8.1 in [22]. It is well known, see Theorcm
yted

2.8.5in[22], that separable Banach spaces and their duals have countable norming sets.
Theorem 7. Let 2 be a 6-ring of subsets of S, let f: Tx S—> Xbea P Q 2-

measurable function and let Y have a countable norming set. Then for each E e
€ &(2 ® 2) the function hg, hy(s) = m*(f(-, ), E*), s€ S, is 9-measurable.

Proof. Let y¥e Y*, n = 1,2, ... be a countable norming set for ¥ and let Ee
€&(? @ 2). Then by Theorem 4 from Part II, hg(s) = m*(f(*,s), E¥) = sup
n
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[l (-, s5)| do(y}m, +) for each se S. Hence by Theorem A in § 20 [21] it suffices
to prove the @-measurability of the function s — [g|f(*, s)| do(yym, *) s€ S, for
each n = 1,2, .... But this follows immediately from Theorem 6, since by assump-
tion the function fis £ ® 2-measurable, and since u(y,’f m, +) is a countably additive
finite non negative measure on 2 for each n = 1, 2, ..., see Example 5 in Part I.

Theorem 8. Let & be a 6-ring of subsets of S, let f: Tx S > Xbea P ® 9-
measurable function and let f(-,s) e & (m) for each se S (see Part II). Then for
each E€ S(P ® D) the functionsgg, g5(s) = [ef(+,s)dm, s €S, and hg, hy(s) =
=m"(f(*,s), E°), seS, are @-measurable. If @ = 2, if the product measure
I ® mexists on ? @ 2, and if hyyse L4(1), then fe (I ® m).

Proof. Let f,, n = 1,2, ... be a sequence of 2 ® Z-simple functions on T x S
such that f£(t, s) - f(t, s) and If,,(t, s)[ 2 |f(t, s)l for each (t,s)e T x S, see Section
1.2 in Part I. Then clearly f,(+,s)e £ (m) for each n = 1,2, ... and each s€ S,
hence fis 2~ ® Z-measurable. Thus by Theorem 6 the function hy is Z-measurable
for each Ee (2 ® 2). Further, according to Theorem 17 in Part I we have
m*(f(+,s) — £,(+,5), T) > O for each se S. Let E€ &(2? ® 2) and put g, x(s) =
= [pf(+,s)dm, se S, n =1,2,.... Then according to Lemma 2.1 the functions
gnp 1 = 1,2,... are 9-measurable. Applying Corollary of Theorem 2 from Part II
we obtain that Ig,,,E(s) - gE(s)[ =m"(f(*,s) = £i(*,s), T) > 0 as n— oo. Thus
9..5(s) = gx(s) for each s e S which proves the @-measurability of g since the 2-
measurable functions are closed under the formation of pointwise limits of sequences,
see Section 1.2 in Part I of Lemma 1.2 in [24].

Concerning the second assertion of the theorem we have to show that the L,-

pseudonorm (l/®\m) (£ ) is continuous on S(# ® 2). Let E,e (2 ® 2), k =
=1,2,..., and let E, \ 0. Since by assumption f(-,s) e £,(m) for each se S,
we have hEk(s) — 0 for each se S by Theorem 17 in Part II. By assumption h;,g€
€ &,(1), hence I*(hg,, S) > 0 again by Theorem 17 in Part II. Thus by Theorem 2

SN
we have (I ® m)(f, E,) < I"(hg,, S) — 0, which completes the proof of the theorem.

Theorem 9. Let 9 be a 6-ring of subsets of S, let f: Tx S—> Xbea 2~ ® 2-
measurable function and let for each s € S the function t - f(t, s), te T, be inte-
grable with respect to m. Then for each E e &(P ® 9) the function gg, gi(s) =
= [pf(+,5)dm, s€ S, is D-measurable.

Proof. Put F = {(t,5)e T x S, f(t,s) + 0}. Then F e (2~ @ 2), hence there
are A€ &(2?") and Be &(2) such that F = 4 x B. Take 4,e 2™, n=1,2,...
sothat 4, ~ A.Clearly F, = {(t,s)e T x S,[f(t,s)| < n} e &(?~ ® 9)and F, / F,
n=1,2,.... Now it is easy to see that H, = (4, x B)n F,e 2~ ® &(2),H, » F
and f(, s). xu,(*» 5) € £,(m) for each n = 1,2, ... and each s € S. Thus by Theorem
8 the functions g, gn5(s) = [e=f(,5). xu,(:,s)dm, seS, n=1,2,... and
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E e G(? ® 9), are D-measurable. Since the integrability of the function t — £(t, s),
te T, for each s € S implies that g4(s) = lim g, x(s) for each E € S(? ® 2) and each
n—o

s € S, the theorem is proved.

Theorem 10. Let 9 be a d-ring of subsets of S, let f: Tx S > Xbea P ® 9-
measurable function and let the function f(+,s) be integrable with respect to m
for each s € S. Then for each E € S(? ® 9) the function gg, gi(s) = [ f(*, 5) dm,
s€ S, is weakly 9-measurable. Hence, if Y is a separable Banach space, then g
is 9-measurable for each E € S(? ® 9).

Proof. Let Ee (2 ® 2) and let y*e Y. Then y* gx(s) = [ f(*, s) dy*m for
each s € S, see the paragraph after Theorem 7 in Part I. According to Example 5

P
in § 1 in Part I we have o(y*m, A) = y* m(4) < |y*| . m"(4) < + o for each A € 2,
P
hence y*m is continuous on £. Thus the Z-measurability of y*g follows from Theo-

rem 9. For the second assertion of the theorem see Theorem 3.5.3 in [22].

Theorem 11. Let 9 be a 6-ring of subsets of S, let f: T x S—> Xbea P @ 2-
measurable function and let f(-, s) be integrable with respect to m for each s€S.
Let further

n

fi=Y % - Agis Xni€X, E €29, n=12,..., i=1,..,r1,,
i=1

be a sequence of # ® D-simple functions such that f,(t, s) - f(t, s) for each (t,s) e

€T x S, and let X, be the closed linear span of X, =) U x,;in X. Then for each
n=1i=1
seS thefunctionf(-, s) is integrable with respect to the restricted measurem : ? —

r

— L(X;, Y) and the set of all finite sums of the form ) m(A))x;, A;e 2, x;€ X,,

Jj=1
j =1,..,ris dense in the subset {{, (-, s)dm; A € &(P), se S} of Y.

Proof. In the proof of Theorem 15 in Part I we found, under the assumptions of
the theorem and for each s € S, a set N(s) € §(2), a sequence F,(s) € 2 and a sub-
sequence m(s), k=1,2,..., such that lim [,f, (", 5). Xrsyone(*> s) dm =

k-

= [4f(+, 5) dm uniformly with respect to 4 € S(). It remains to observe that for
each s e S the integrals on the left hand side of the last equality are of the form

Y. m(A;) x; with A;€ P, x;€X,, j =1, ..., r. Note that the semivariation of the
i=1 ‘
restricted measure m : 2 — L(X,, Y) is less than or equal to the semivariation of
m: 2 — L(X, Y), hence it is finite on 2.

Using Theorem 10 we immediately have

Corollary. Let 2 be a -ring of subsets of S, let f: T x-S—> X be a ? ® Z-
measurable function, let the function f(+, s) be integrable with respect to m for each

490 ¢



se S the and let {m(A) x; Ae P} be a separable subset of Y for each x € X. Then
1) {[4f(-, s)dm; Ae &(P), s € S} is a separable subset of Y, and

2) for each Ee€ &(? @ ) the function gg, gi(s) = [pf(-, 5)dm, s€ S, is 9-
measurable.

Theorem 12. Let & be generated by a countable family of subsets of T, let 9
be a 6-ring of subsets of S, letf: T x S - X be a P x D-measurable function and
let the function f(-, s) be integrable with respect to m for each s € S. Then

1) {J4f(-,s)dm; Ae S(P), se S} is a separable subset of ¥,
2) for each Ec &(? @ 9) the function gg, gi(s) = [p=f(-,s)dm, se€S, is 2-
measurable, and

3) the function v, o(s) = sup |[,f(*, s) dm|, s € S, is finite valued and @-measurable.
Ae®(2)

Proof. Without loss of generality we may suppose that £ is generated by a count-
able ring # = {R,, n = 1,2, ...}, see Theorem C in § 5 [21].

1) and 2). According to Corollary of Theorem 11 it suffices to show that ¥, =
= {m(A) x; A € 2} is a separable subset of ¥ for each x € X.

Let xe X. Put Z,=(Ryu...UR,)Nn# and &, = &(&,), n =1,2,.... Then
clearly 2 = 6(#) = U &,. We will show that the set ¥, of all finite sums of the
n=1

form Y m(R,,) x is dense in Y, (¥, is clearly countable). Let A € 2. Then there is
i=1

an n, such that Ae&, . Let 1,,: 4, , = <0, +oo) be a control measure for the
vector measure m(+) x : &,, — Y. Then the desired assertion immediately follows
from Theorem D in § 13 [21] applied to 1,, and from the simple inequality
|m(A1) x — m(4,) x| < |m(4, — A;) x| + |m(4, — 4;) x| < 2|m(-) x| (4, A 4,),
A, A, €Sy,

3) Since 4 — [4f(+ s)dm, Ae S(#) is a countably additive vector measure
on a g-ring, v is finite valued, see IV.10.4 in [19]. By Theorem IV.10.5 in [19] and
Theorem D in § 13 [21] we have v(s) = sup |[x,f(*, s) dm| for each s € S, hence 2)

and Theorem A in § 20 [21] imply the 2-measurability of v.

Theorem 13. In the following cases: 1) X is separable, 2) Y has a count-
able norming set, and 3) &(2,) > 2; for each A€ &S(P) there is a countably
additive measure 14 : S(2?) - <0, +0) such that Ce &(#?), A(An C)=0=
=>m"(AnC)=0.

Proof. Let A € (%) and take 4, € #,n = 1,2, ...so that 4, ~ A.Sincem"(C) =
= sup v(y*m, C) for each C e &(#), see Lemma 1 in [8], we have m"(4 n C) =

Iy*=1
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= lim m" (4, n C) for each C € S(2). Suppose that the theorem is proved for each

n— o

A€ 2, take countably additive measures 1, : S(2) — <0, + ) so that C e S(2),
(4, C)=0=m"(4,nC)=0,n=1,2,..., and put

AA(C) — g‘l ﬂn(An N C)

1
— , Ceg(2).
WS 2 1+ 2(T) @)

Then clearly A, has the required properties. Consequently, it is sufficient to prove
the theorem for each 4 € 2.

1) Let Ae? and let x, € X, k = 1,2,..., be a dense subset of X. For each k =
=1,2,...let 4 : A n S(2) > <0, + ) be a control measure for the vector measure
m(+) x,: A 0 &(2) > Y. Then clearly
o 1 4(4n0C)

)'A(C) = Z

k1261 + A(4)”

C € &(#), has the required properties.

2) Let Ae 2 and let yieY* k=12, ... be a countable norming set for Y.
Then m*(4 0 C) = sup v(yym, A n C) for each Ce &(2), see Lemma 1 in [8].
k

Now clearly it suffices to put

24(C) = i 1 v(yim, A C)

, Ceg(2).
k=1 251 + o(yim, A) @)

3) Similarly as at the beginning of the proof we may suppose that 4 € #,. But
then m: 4 n (#) > L(X, Y) is countably additive, hence a control measure for it
has the required properties.

Definition 2. A function u : T — X is called m-null if there is an N € S(2) with
m"(N) = 0 such that {te T; u(f) + 0} = N. A function f: T— X is called m-
essentially P-measurable (integrable) if it can be written in the form f =g + u,
where g is #-measurable (integrable) and u is m-null. In the case f is m-essentially
integrable we extend the integral defining [, fdm = [, g dm for each 4 € &(2).

Clearly our theory of integration extends with obvious modifications to m-essen-
tially measurable (integrable) functions. Particularly, if f,: T—> X, n=1,2,...
are m-essentially Z-measurable and lim £,(t) = f(f) € X a.e. m, then fis also f-essen-

n— o
tially Z-measurable. Hence in the theorems of our extended theory the limit function
is automatically m-essentially #-measurable. Note also that the range of an m-null,
hence also of an m-essentially Z-measurable function, need not be separable.

Theorem 14. Let f: T x S — X be a # ® 2-measurable function, let the function
7G, s) be integrable with respect to m for each s € S, and for each B € 6(.@) let there
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be a countably additive measure Ag: S(2) — <0, +o0) such that D e &(2),
4s(B " D) = 0= I"(B " D) = 0, see Theorem 13. Then for each set Ec S(2 @ 2)
the function g, gg(s) = [gsf(+,5) s € S, is L-essentially 9-measurable.

Proof. Let Ee S(? @ 2). Take A€ S(#) and Be S(2) so that E < 4 x B,
and take the corresponding measure A : (5(.@) - (0, +oo). Let £,: T—> X, n=
=1,2,... be a sequence of 2 ® 2-simple functions such that £,(t, s) = f(t, s) for
each (1, 5)e T x S, and let X; be the closed linear span of the union of their ranges
in X. Then according to Theorem 11 we may replace X by the separable space Xj.
But then by Theorem 13-1), there is a countably additive measure p, : S(2) —
— (0, + o) such that C € (%) and p4(4 N C) = 0= m" (A n C) = 0, where m",
is the semivariation of the restricted measure m : 2 — L(X,, Y) (clearly m" ,(C) <

< m"(C) for each Ce &(#)). Obviously F =U {(t,s)e T x S; f(t,s) + 0} e
n=0

€3 (2 ® 2) = &(2) ® (2), where f, = f.Since 13 ® py: S(? @ 2) - 0, + )

is a countably additive measure, according to the Egoroff--Lusin theorem, see Section

1.4 in Part I, there is a set Ne S(#? ® 2), N c F, and a sequence F,e ? ® 2,

k=1,2,...such that (A3 ® ) (N) =0, F, » F — N,and oneach F,, k = 1,2, ...

the sequence f,, n = 1, 2, ... converges uniformly to f. Clearly g(s) = ge.r-n)(s) +

+ gean(s) = lim g p(s) + gEﬂN(s) for each s e S. Owing to Theorem 4 each func-
k-

tion gp.p,, k = 1,2, ... is 2-measurable. Thus to prove the theorem it is now suf-
ficient to prove that the function gy is I-null. Obviously {s € S; gz.n(s) + 0} = B.
Since 0 = (43 ® py) (4 x BAN) = [z, (4 N N*)dAs, there is a set De &S(2)
with 15(B n D) = 0 such that p,(4 N N*) = 0 for each se B — D, see Theorem A
in §36 [21]. But then m",(4 N N°) = 0, hence gp.(s) = O for each se B — D.
Thus {s€ S, ggn(s) + 0} = B n D. However I"(B n D) = 0, hence gy is I-null,
which proves the theorem.

Remark 1. Let 2 be a é-ring of subsets of S, let f: Tx S—>Xbe a Z ® Z-
measurable function and let for each se S the function f(+, s) be integrable with
respect to m. Then the P-measurability of the function gg, gx(s) = [z f(, s) dm,
se S, for each Ee G(g’ ® @), depends of course on the function f. Particularly,
if the range of f'is relatively o~compact in X, then Theorem 4 and Theorem 16 from
Part I immediately imply the Z~measurability of g for each E € (2 ® 2).

3. THE FUBINI THEOREM

For the proof of the general Fubini theorem we shall need also the following
lemmas:

Lemma 3. Let 9, and 9, be d-rings of subsets of T and S, respectively, and let
[:TxS—>X be a 9, ® D,-measurable function. Then there are sequences
A, €Dy, B,€ D5, n = 1,2, ... such that f is 5({A, x B,};-,)-measurable.
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Proof. According to the definition of a 2, ® %,-measurable function, see Section
1.2 in Part I, there is a sequence f;, k = 1,2, ... of 2, ® @,-simple functions such
Tk

that £(t, s) - f(t, s) for each (t,s) e T x S. Each f, is of the form f, = Y X¢i - X, ,
i=1

with x,,€X, E, ;€ 2, P,, E,;nE, ;=0 for i+j, i,j=1,...,r. Since
2, ® 9, is the smallest d-ring over all rectangles 4 x B, A€ 9, Be 2,, the
obviously valid é-version of Theorem D in §5 [21] implies that for each couple
(k,i), k=1,2,..., i =1,...,r, there are sequences 4, ;€ Dy, By ;€D,, j =
=1,2,..., such that E, ;€ 6({A4,;; x By ,}7=1). By a suitable enumeration of the
countable set {(k,i,j); k=1,2,..., i=1,..,r, j=1,2,...} we immediately
obtain the required sequences 4,€ 9, B,e D,,n =1,2,....

The following lemma is an immediate consequence of the Orlicz-Pettis theorem,
see Theorem 3.2.3 in [22] and Theorem IV.10.1 in [19].

Lemma 4. Let z,;€Z, k,n=1,2,..., let the series Z Z,.. be unconditionally
convergent in Z for each n =1,2,... and let for each I < {1,2,. ..} the series

Z )" 2, be unconditionally convergent in Z. Then the series Z Zn IS UnCON-
n=1 kel k,n=1

ditionally convergent in Z.

Using these lemmas we prove

Lemma S. Let f: T x S > X be a # ® 2-measurable function, let the function
f(+, 5) be integrable with respect to m for each s € S, and let the function gg, g(s) =
= [gf(*,s)dm, s€ S, be integrable with respect to I for each Ee S(? ® 2).
Then the set function E — (s [z f(+,s)dmdl, Ee &(? ® 9), is a countably ad-
ditive Z-valued vector measure on (2 @ 2).

Proof. Let E,eS(? ® 2), k =1,2,..., be pa1rw1se disjoint and let E, = U E,.
We have to show that (s [z.f(+,s)dmdl = Z |s Jeef(+, s)dmdl in the sense of

unconditional convergence. According to Theorem 16 in Part I it suffices to show
that the series on the right hand side is unconditionally convergent in Z.

According to Lemma 3 there is a countable family &/ < 2 such that E, € S(&/) ®
® &(2)foreachk = 0,1,2,....Take 4 € (&) and Be S(2) so that E, = A x B,
and a sequence B,€2, n =0,1,... such that B, » B and B, = 0. According to
Theorem 12-3), the function v, v(s) = sup_ | Jasnges £, 5) dm|, s € S, is finite valued

Aje

and 2-measurable. Therefore F, = {s e S 0=<(s)<n}e (5(.02) for each n =
=0,1,..,and F, /. Put G, =B,nF,—B,_,0nF,_;,n=1,2,.... Then G,,n =
=1,2,... are pairwise disjoint elements of 2 and | G, = B. Put z,, =

n=1

= J6, J5sf(s,s)dmdl, n,k =1,2,.... Using Lemma 4 we shall show that the
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series Y. g, is unconditionally convergent in Z, and this will prove the lemma,
nk=1
el

since then by Theorem 16 from Part I we have kzlz,,‘k =ki il_[(;" e F( 5)
dm dl = i fs [gsf(+,s)dmdl. Hence it remains to verify the validity of the
assumptiorslof Lemma 4.

Let n be fixed. We shall show that for each z* € Z* the equality z* [¢, [z f(*, 5)
dm dl = iz* Jou JEsf (v, s)dm dl = iz*z,,,k holds in the sense of unconditional
convergex:el, and this by the Orlicz-’i’;tis theorem will prove the unconditional
convergence of the series i Zoxin Z.

Since by assumption f (k, ;) is integrable with respect to m for each s € S, Theorem
16 from Part I immediately yields that [, f(-, s) dm = i fEsf(+, s) dm in the sense
of unconditional convergence in Z, for each s € S. o

From the definition of the function v it is clear that | " [z f(-, s) dm| < v(s) for
each se S and each K < {1,2,...}. Thus for any ﬁni‘;ZKK < {1,2,...} we have,

feu s f(-s5) dmdl| < |z%]. lfcn(th f(, s)
dm) dI| < |z*|. sup | Zj'Ek f( ,s) dm|.1"(G,) < |z*| . sup os) . l"(B) < |z*| . n

S€!

.1"(B,) < +o0. Hence the series Zz* Je. fEs (v s)dmdl = Z feu Jue £(55 5)
dm d(z*l) is unconditionally conver;rllt in Z, hence by Theorexl"n= l16 from Part I
32 = 3 o fef (-1 5) Amd@l) = o fnf (-1 ) Am(a#D) = 2* o, [ S 5)
dm dl, which was to be shown.

Letnow I, < {1,2,...}, n=1,2,..., and put E = G (T x G,) n (U Ey). Since
G,,n=1,2,..., are pairwise disjoint, the integrability :;' :h: with respeéilzo ! implies
that the series i jG"".(kEI B f(*> s)dm dl = il(g!: Z,x) is unconditionally conver-

gent in Z. Thus the assumptions of Lemma 4 are satisfied, which was to be shown.

Lemma 6. Let f: T — X be a #-measurable function. Then there is a countably
additive measure A : S(P) - €0, + ) such that N e &(#), AN)=0=f.yy is
integrable with respect to m and [y fdm = 0.

Proof. Letf,: T— X, n = 1,2, ..., be a sequence of Z-simple functions such that
£{t) = f(¢) for each te T. To each vector measure A - [, f,dm, Ae &(P), n =
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=1,2,..., take a control measure 4,: &(2) - (0, + ). Now it suffices to put

A(A)._-ilﬁ_M#

, AeS(2).

n=1 2" 1 + ln(T) !
Theorem 15. (The Fubini theorem.) Let the product measure IQ m:? @ 2 —

- L(X, Z) exist and let f:Tx S— X be a ? ® 2-measurable function. Let

further the function f(+, s) be integrable with respect to m for each s€ S, and let

foreach set E € &(? ® 2)the functiongyg, gi(s) = [z f(*, s) dm, s € S, be l-essential-

ly 2-measurable. Then the following conditions are equivalent:

a) fis integrable with respect to | ® m, and

b) g is essentially integrable with respect to I for each E e &(2 ® 2),

and if they hold, then
(F) fefd(l ® m) = |5 [p: f(-, s)dmdl for each Ee &(2 @ 2).

Proof. Without loss of generality we may suppose that g is 2-measurable for each
Ee 6(9” ® .@) Letf,:T— X,n = 1,2, ... beasequence of Z ® 2-simple functions
such that £(t, s) > f(, s) and |£(t, 5)| 7 |f(t, 5)| for each (t,s)e T x S. For each
vector measure E — [ f, dI® m), E€S(? ® 2), n=1,2,..., take a control
measure 4, : (2 @ 2) - 0, + ) and put

A"(E)

- 1
M= i 1)

n=1

EcS(? ® 2).

Let X, be the closed linear span of the set {£(t,5); (t,5)e Tx S, n=1,2,...}.
Then X, is a separable Banach space, and according to Theorem 11 we may replace X
by X,, hence we may suppose that X is a separable Banach space.

Take Aoe &S(#) and Bye &(2) so that F = {(t,5)e T x S; f(t,5) + 0} =
< Ao % By. Then by Theorem 13-1) there is a countably additive measure 74, :
: §(2) - 0, + ) such that Ce &(2), y,,(4o N C) = 0=>m"(4on C) = 0.

Let Ec (2 ® 2). By assumption the function gg, gx(s) = [z f(*, s)dm, s€S,
is 2-measurable. Hence by Lemma 6 there is a countably additive wy : S(2) —
— (0, +00) such that D e &(2), wg(D) = 0 implies that g . x5 is integrable with
respect to /and [, gz dl = 0.

Put 415(G) = XG) + (0 @ 7,,) (G), Ge S(? ® 2). Then we conclude from the
above and from Theorem A in §36 [21] that if Ne (2 ® 2) and pg(N) =0,
then the function f. yy.z is integrable with respect to I ® m, the function gg.y
is integrable with respect to /, and [g.vfd(I ® m) = [sgg.ydl = 0.

According to the Egoroff-Lusin theorem, see Section 1.4 in Part I, there is an
N e &(2? ® 2) with ug(N) = 0 and a sequence F,e? ® 2, k = 1,2, ..., such that
F, 7 F — N and on each F,, k = 1,2, ..., the sequence f;, n = 1,2, ..., converges
uniformly to f. Thus by Theorem 4 the function f. Xe~r, is integrable with respect
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to I ® m for each k = 1,2, ..., the function ge~r, 1S integrable with respect to /,
and

(1 J fAd(I® m) = ngannG dl =
GnEnFy S
=J f f(+,s)dmdl for each GeS(?Q®3).
5 J (EnFunG)s

Since by assumption, the function f(-, s) is integrable with respect to m for each
s € S, we have

@ Ixar(s) = f £(,s)dm — L f(,s)dm =

(EnFy)s En(F-N)J*
= genrany(s) = gp-n(s) foreach seS.

a) = b) and (F). Suppose that fis integrable with respect to / ® m, and let B € &(2).
Then

3) JgEandl='[ fdl® m) -
B (Ao X B)nEnFi
- J' £3(1@ m) = fi(1@m).
(Ao XB)n(F—N)nE (Ao XB)nE

Thus by Theorem 16 from Part I, (2) and (3) imply that the function g¢-y, hence
also g, is integrable with respect to / and that [B ggdl = _f,, gy dl = j(AoXB)nE f
d(/ ® m) for each B e &(2). Taking B = B, we have also the equality (F).

b) = a) and (F). Suppose now that gy is integrable with respect to I for each E e
€S(? ® 2). Take E = A, x B, in the proof of a)=b) and (F) above. Then
S Xr. = f- X(40xBo)nF, i integrable with respect to /@ m for each k= 1,2, ...,
and

4) (f-xr) () > (f. xp-n) (t,5) foreach (t,5)eTx S.

Since by Lemma 5 the set function G — [5g¢ dI. G € S(2 ® 2) is a countably addi-
tive vector measure, by (1) we have

©) J.Gf A A ® m) = L Fd(1® m) =

(Ao % Bo)nFie

= J‘g(Ango)annG dl = f 9r.nG dl > ‘[ 9JGn(F-N) dl = j‘ gedl.
s s

N N

According to Theorem 16 from Part I, (4) and (5) imply the integrability of f
with respect to / ® m and the equality (F). The theorem is proved.
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From Theorems 3, 13-3), 14, 15, and from Theorems 5 and 14 from part I we
immediately obtain

Theorem 16. Let f: T x S — X be a bounded ? ® 2-measurable function, let
m*(T) < + oo, let the function f(+,s) be integrable with respect to m for each
seS (if 2~ = P = S(P), then by Theorem 5 from Part I this is always true),
and let 2~ = 2 = &(2). Then the product measure IQ m: 2 ® 2 — L(X, Z)
exists, the function gg, g(s) = (g f(+,5)dm, s€ S, is essentially integrable with
respect to I for each E e S(? ® 9), the function f is integrable with respect to
1® m, and [ fd(I® m) = [s [5f(+,s)dmdl for each E€ &(? @ 2).

Remark 2. Let the product measure I @ m : 2 ® 2 — L(X, Z)exist,letf: T x S —
— X be integrable with respect to / @ m, and let the function £(+, s) be integrable with
respect to m for each s € S. Then it is clear from the proof of Theorem 15, that if ug
is replaced in this proof by the measure A defined there, then there is a set N e
€ S(2 @ 2) such that g;_y is integrable with respect to / for each E e (2 ® 2)
and [pfd(I@ m) = [p_yfd(I® m) = [sg5_ydl for each Ee S(? ® 2). (Using
Theorem 13-1) we may take N € S(2 ® 2) such that (! ® m)(N) = 0.) However,
as Example at the beginning of § 2 shows, it may happen that N = T x S.
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