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Our terminology and notation in the theory of I-groups is mostly standard (as
in [1]). There are some items which ought to be reviewed here at the outset. If M
is a convex [-subgroup of the I-group G, and M is maximal with respect to not
containing some element 0 = ge G — all our groups being written additively
unless otherwise indicated — then M is called a value in G, and also a value of g.
The values in G are precisely the meet irreducibles of the lattice of convex I-subroups
of G, ([1], theorem 1.6), and thus each value M has a cover M*; in precise terms,
M* is the intersection of all the convex l-subgroups properly containing M.

G is finite valued if each non-zero element of G has at most finitely many values.
G is normal valued if each value M in G is a normal subgroup of its cover M*. It is
well known that all finite valued I-groups are normal valued. There are now several
known characterizations of normal valued I-groups. Shortly we shall need one which
looks at the notion in the language of permutation groups.

Now to the central definition of this note: suppose G is an I-group; G is said to be
pairwise splitting provided one has for all 0 < x, y € G a decomposition x = x; +
+ X,, where x; A x, = 0, x; € G(y), the convex I-subgroup generated by y, and
x, > x, A'y. (Recall that a < b signifies that, for positive elements a and b, na < b
for each positive integer n.) With regard to G(y) recall also that its positive cone
consists of all 0 < g € G such that g < my, for some natural number m. We should
also like to make a local definition: for 0 < x, y € G, say that x splits by y if the
above decomposition occurs. Thus G is pairwise splitting if and only if each x > 0
splits by each y > 0.

Recall that 0 < s € G is special if it has only one value.

Lemma 1. For an l-group G, each special element splits by any y > 0, and
conversely, any y > 0 splits by any special element.

Proof. Suppose 0 < y € G, and 0 < s € G is special; let M be the lone value of s.
If M is contained in a value of y then s € G(); if M is incomparable to all the values
of y, s A y =0, and certainly s > s A y. Lastly, suppose M is strictly above values

545



{N; ] A € A} of y; then the values of s A y are precisely these N, and it is clear
that s > s A y. This shows that s splits by y.

Next let us split y by s; if M is properly contained in some value of y we have
s <y, le s Ay <y If Mcompares to no value of y, s A y = 0, and once again
we have what we need. And finally, suppose M contains values of y. There are two
cases: if M is a value of y, then for a sufficiently large natural number n, ns + M >
> y + M. (Note: as s is special, M is normal in its cover M*, [1], theorem 2.14,
and we view the previous inequality in M */M , Which is a subgroup of R, the additive,
naturally ordered reals.) Consider y, = y A ns; clearly y, € G(s), and moreover M
is its only value. It is easy to verify that y, = y — y, is disjoint from y,, and finally,
that y, > y, A s, since in fact y, A s = 0.

The other case occurs if M properly exceeds the set {N, | A€ A} of values of y.
The reader can easily check that by taking y; = y A s, y; has precisely the values N,
(A€ A) and that if y, = y — y,, y, A s = 0, which is sufficient for our purposes.

It is conceptually easy to verify from lemma 1, albeit somewhat messy, that all
finite valued I-groups are pairwise splitting. We present a more elegant argument
a bit later. From the definitions it is evident that any hyper-archimedean Il-group is
pairwise splitting. (For the basic fact about hyper-archimedean I-groups, do consult
[3].) In fact, if G is archimedean, it is pairwise splitting exactly when it is hyper-
archimedean.

We now present a class of (abelian) I-groups which are pairwise splitting, yet are
neither hyper-archimedean nor finite valued. First, let us review a definition: a p.o.
set A is a root system if no two incomparable elements have a common lower bound.
For each root system A construct the v-group V = V(A, R;), where for each 1€ 4
R, = R, consisting of all real valued functions whose supports satisfy the ascending
chain condition. It is well known that this is an I-group, and that any abelian I-group
can be embedded in one of these. ([1], theorem 4.3)

Let P = P(A,R;) = {ve V|{v,| A€ 4} is a bounded set of real numbers}. It is
easy to verify that P is an [-subgroup of V(4', R;), and that P is pairwise splitting.

Our first theorem makes some later arguments easier.

Theorem 2. A pairwise splitting I-group is normal valued.

Before giving the proof, a few comments are in order. We will need a result of
JoHN READ (see [5]) which gives a characterization of normal valuedness in terms of
permutation groups. So we should review briefly the basic aspects of that theory.
If Tis a totally ordered set, we let &/(T) denote the I-group of order preserving
permutations of T under composition. Holland’s well known theorem ([1], theorem
1.10) states that each I-group may be embedded in some &#(T).

Read’s theorem can then be stated thusly: G is a normal valued I-group if and only
if in G, thought of as an Il-subgroup of M(T) for a suitable chain T, the following
doesn’t occur: there are elements g, h > 1, and an se T so that sh™! < s < sg,
sgh = sg and sh™ g = sh™1,

546



Now for the proof of theorem 2: suppose G is pairwise splitting but not normal
valued. Then, with the same notation of the previous paragraph, there are elements
1 <g,heG,so that sh™! < s < sg, sgh = sg and sh™'g = sh™!, for some se T.

Split g by h: g = ab, with a A b =1, aeG(h) and b > b A h. Since a and b
are disjoint they commute and so tg = ta or tb, for all te T. Suppose sg = sa;
by iterating h, sah” = sa, for each natural number n. Since a € G(h) this implies
that sa®? = sa, ie. sa = s, which is a contradiction. We conclude therefore that
sg = sb.

As b > b A h, we have that if tb > t, then tb > th. For suppose to the contrary,
that tb < th; then th*> < thb, tbh < th?, and min {tb?, tbh} < tb. Since tb > t,
the inequality th? < tb is impossible, whence tbh < tb, and in fact tbh = tb. As
tb < th we get that tbh < th, and from that tb < ¢, which is a contradiction. We
conclude then that tb > th as claimed.

In summation then: if tb > t it follows that tb > th. But we know that sb =
= sg > s, and deduce immediately that sb > sh, ie. sg > sh. By symmetry, split-
ting h by g, we obtain sh > sg. This absurdity implies that G must be normal valued.

One immediate consequence of theorem 2 is the uniqueness of the splitting in
a pairwise splitting I-group.

Corollary. Suppose G is pairwise splitting; the splitting decomposition of x > 0
by y > 0 is unique.

Proof. Suppose x = x; + x, = a; + a,, where x;, a, € G(y), X; A X, =
=a, Aa,=0, and X, > X, Ay, Gy > ay A Y. ay = (ay A xy) + (az A x,),
and if a, A x; > 0, let Q be one of its values. Q is then a value of x; or a,.

If Q is a value of x; then y ¢ Q, and Q is a value of x with x + Q = x; + Q.
Since y A a, < a, and G is normal valued, Q is properly contained in a value of a,,
which is a contradiction since a value of a, is also a value of x. If on the other hand Q
is a value of a,, and x; ¢ Q¥ then a value N of x; — and hence x — exceeds Q
properly. Since N and Q are values of x this is absurd.

So a, = a, A x,, and by symmetry x, = a, A x,. Thus, x, = a, and hence
X, = a;.

The next lemma is important in a technical sense.

Lemma 3. Suppose G is normal valued and 0 < x, y € G; the following are
equivalent.

a) x splits by y;

b) there is a positive integer n so that for each value M of y, not properly con-
tained in a value of x, we have ny + M = x + M,

c) there is a plenary subset 2 of values, and a positive integer n, so that if M
is a value of y in P, not properly contained in a value of x (in P), then ny + M =
= x + M.
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(Recall: a subset 2 of values is plenary if 1) each 0 + g € G has a value in 2,
and 2) if x ¢ M € 2 there is a value N € 2 of x containing M.)

Proof. b) — c) is obvious. To see that a) implies b), split x by y: x = x; + x,
withx; A x, = 0,x, € G(y) and x, > X, A y. There is a natural number n such that
ny = x,. If M is a value of y, not properly contained in a value of x, and x € M it
is clear that ny + M > x + M. If x ¢ M then M is also a value of x; in fact, M must
be a value of x, since otherwise x, would have a value in common with x, A y.
As x, > x, A y and G is normal valued, this would be a contradiction. Since
nyzx,ny+MzZx,+M=x+ M.

c) - a) Suppose 2 is the plenary subset of values with the stipulated condition;
suppose further that m is the smallest natural number satisfying condition c) with
a strict inequality. Put z, = (n + 1) y A x — ny A x (n 2 m). If M is a value of z,
in 2, then either (n + 1) y A x or ny A x are not in M; eitherway x, y ¢ M. M is
contained in a value N (resp. Q) of x (resp. ).

IfN <« Qthenny A x + N =x + N,and z,€ N, ie. M < N. Likewise if N = Q,
M = N. But z,e M* and so ny. A x + M* =(n + 1)y A x + M*. The cosets
modulo M* form a chain, and the canonical map from G/M* to G/Q is order
preserving; consequently, by the choice of n = m, ny + M* > x + M*, and ny +
+M>x+ Maswell. Thenz, + M =[(n+ 1)y Ax + M| — [ny A x + M] =
= M, a contradiction.

It follows that Q < N and ny A x + Q = ny + Q, which implies that z, + Q =
= y + Q and hence that M = Q. To summarize: every value of z, in £ is properly
contained in a value of x, ie. z, < x. But we’ve also shown that every value of z,
in £ coincides with one of y and y + M = z, + M for each such value. This, and
additional details, as in the previous paragraph show that y = z,, and z, A
Ay —z)=0.

Next, if M is a value in £ for z, then by the above ky A x + M = ky + M,
for all k = m, so that z,, + M = z, + M. It is also clear by now that all the z,
(n = m) have exactly the same values, and in fact that z, = z,, foralln = m.

So we have ¢ = z,, < y such that ¢ A (y — ¢) = 0 and ¢ < x. This is equivalent
to the splitting of x by y, and we prove it in the following lemma. As soon as that
has been done the proof of lemma 3 will be complete.

Lemma 4. Take G to be normal valued, and 0 < x, y € G. x splits by y if and only
if there is an element ¢ = 0 such that c <y, ¢c A(y—¢)=0, c<x and ¢ =
=+ 1)y Ax—ny Ax, for all n exceeding a suitably chosen natural
number m.

Proof. Necessity. Let us suppose that x splits by y: let x = x, + x, be the split-
ting decomposition, with x; € G(y). Select n sufficiently large, so that ny > x,.
Then ny A x =x, v (ny A x;) and n(x, A y) = x; A n(x, A y) =X, A ny, so
that ny A x =x; vV n(y A x;) =x; + n(y A x;). Thus, (n+ 1)y A x —ny A
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A X =y A X, which is independent of n. Set ¢ = y A x,; clearly y = ¢ and ¢ <
<%, £x.If d =y — c then d is disjoint from x, — ¢, and since x, > ¢, and G
is normal valued, x, and x, — ¢ have the same values, proving that d A x, = 0,
ie. d Ac=0.

Sufficiency. Write y = ¢ + d, withc A d = 0, ¢ < x and so that ¢ = (n + 1) Y A
A X — ny A x,for all positive integers exceeding some m. If M is a value of d, ce M
andd + M = y + M, with y e M*. So(n + l)y A x and ny A x are both in M*,
(n+l)y/\x+M=nyAx+M,whenceny+ng+MandxeM*.

For each positive integer k, x — (x A kd) and kd — (x A kd) are disjoint, and if M
is a value of kd then x € M* by the above paragraph. For large enough k, kd — (x A
Akd)+ M=ky+M—(x Aky)+ M=ky —x+ M > M, ie. M is a value
of kd — (x A kd). Conversely, it is easily seen that if k is large enough, any value
of kd — (x A kd) is a value of kd. Thus, for a sufficiently large positive integer k, kd
and kd — (x A kd) have precisely the same values. Consequently, kd and x — (x A kd)
are disjoint, and so are x A kd and x — (x A kd). For such a k pick x; = x A kd
and x, = x — x;; then x; Ax, =0, x, Skd<ky and x, A y=x, Ac+
+xAd=x,Ac+(x—(xAkd) Ad=x,Anc.Alsoc =X Ac+ X, Ac=
=(xAkd Ac)+x, Ac=x, A c; hence ¢ < x, and therefore x, A y < x,.

This lemma says that in a pairwise splitting I-group G there is a “‘second splitting”
besides the usual one. If 0 < x, ye G we can split x by y: x = x; + x, with
x; € G(y), x; A x, = 0and x, > x, A y. According to lemma 4 we can also write
x =a + b, witha < y,a A b =0 and so that no value of b is properly contained
in one of x. It is clear that a < x,, so that x;, = a + (x1 A b), and x =a +
+ (xl A b) + x,. We therefore get a splitting of x by y into a trio of pairwise
disjoint elements, so that every value of the first is a value of x properly contained
in one of y, every value of the second is a value of x coinciding with a value of y,
while every value of the third is a value of x which contains a value of y properly,
or else is incomparable to all of them.

As a consequence of lemma 3 we obtain an embedding theorem for abelian pairwise
splitting I-groups.

Theorem 5. If G is an abelian pairwise splitting l-group then there is an l-embed-
ding o into V(4, R,), for a suitable root system A, so that for each pair 0 < x,
y € G there is a positive integer n, such that for each maximal component A of yo
not strictly below a maximal component of xa, we have nys, = xo0,.

Sketch of proof and remarks. The l-embeddings of abelian I-groups into
v-groups arise out of plenary subsets of values of the I-group, and each plenary
subset is a root system. (See [1], chapter 4 for details.) The maps themselves are
v-embeddings; ie. for each g > 0 there is a one to one correspondence between its
values in the plenary subset and the maximal components of its image go, so that
if A A and the value M correspond, then go; = g + M. (Note: R; is in fact
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M*|M.) With these remarks it is evident how lemma 3 gives the desired result im-
mediately. We should only observe that in view of our comments every such embed-
ding has the property of the theorem.

Our next result concerns special elements. Call g > 0 in the I-group G indecom-
posable if g = a + b with a A b = 0 implies that a = 0 or b = 0. Each special
element is indecomposable, and if values of special elements form a plenary subset
then ([2]) indecomposable elements are special.

Proposition 6. If G is a pairwise splitting l-group and 0 < g€ G is indecom-
posable, then it is special.

Proof. Suppose g has two values M and N; it easy to pick strictly positive ele-
ments a and bsothata A b =0, ae M*\M, be M and be N*\N, ae N. Con-
sider z = (g A a) + (9 A b); notice that neither g A a nor g A b is zero. We
split g by z; but by the indecomposability of g either g € G(z) or g > g A z, and the
latter is impossible. So there is a positive integer m such that g < mz = m(g A a) +
+ m(g A b). The Riesz interpolation property then gives g = g, + g, with g, <
< m(g A a) and g, < m(g A b), and as g is indecomposable and g, A g, =0,
we conclude that g, = 0 or g, = 0. Thus, g < m(g A a) or else g < m(g A b);
but g A ae N while g¢ N, and g A be M while g ¢ M. This is a contradiction,
proving that g is special.

Our final results have to do with the theory of torsion classes (see [4]); the author
first looked at pairwise splitting [-groups with torsion classes in mind. It turns out
that the class 24 of pairwise splitting I-groups do form a torsion class, but the
proof is non-trivial.

A class J closed with respect to isomorphic copies is a torsion class provided it is
closed under taking a) convex [-subgroups, b) I-homomorphic images and c) the join
of convex [-subgroups contained in 7.

Theorem 7. 2y is a torsion class.

Proof. The closure relative to convex [-subgroups and I-homomorphic images
is obvious. As for the third property, consider an I-group which is the join of convex
I-subgroups C; (i eI) belonging to Z4. In view of theorem 2, and since the class of
normal valued I-groups is a torsion class, we conclude that G is normal valued. The
rest of the proof depends upon the lemma:

Lemma 8. Suppose G is normal valued, and 0 < x,, x,, y € G. If x; and x, split
by y then so does x; + X,.

Proof. We use lemma 3: select a value M of y not properly contained in any
value of x; + x,, then M is not properly contained in any value of x; + x,, then M
is not properly contained in any values of x; or x,. There exist positive integers m,
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and m, (which are independent of M) such that m;y + M > x, + M and m,y +
+ M = x, + M. So if.m=m1 + my, my + M 2 X; + x, + M. By lemma 3,
X; + x, splits by y.

Now we continue with the proof of theorem 7: let P = {0 < xe G | x splits by
each 0 < ye G, and each 0 < z < x has the same property}. By lemma 8 x e P if

and only if G(x) € Zg; this is admittedly not obvious, but we shall leave its verification
to the reader anyway.

So we have C =V C;, with each C;€24. If 0 < ge G theng =g, + g, + ...
iel

... + g,, with g, € C,.. G(g,) € P and so g, € P, for each k = 1,2, ..., n. Again by

lemma 8, g € P and therefore splits by each positive element of G. Conclusion:
G is pairwise splitting.

Not every torsion class is closed under taking I-subgroups, but Py is.

Proposition 9. If G € 5 and H is an l-subgroup of G, then H € P.

Proof. Suppose 0 < x, y € H; splitx by yin G: x = x; + X,, withx; A x, =0,
x;€G(y) and x, > x, A y. Since x, A y=(n+ 1)y A x — ny A x, for a suf-
ficiently large positive integer n, x, A ye H. Also y — x, A ye H, and by the
proof of lemma 4, x; = x A k[y — x, A y], for a suitable natural number k,
so x, € H and hence x, € H.

By way of closing comments we should mention that s is not closed under
products or extensions, since the torsion class of hyper-archimedean I-groups is not.
On the other hand it is easy to show that 25 is closed with respect to lexicographic
extensions, and hence restricted wreath products.

The author also suspects in view of proposition 6, that the assumption of complete
distributivity on a pairwise splitting I-group should give some further restrictions on
the I-group. For example, it can be shown that if G is pairwise splitting, completely
distributive and has no infinite descending chains a, > a, > ... > a, > ... of
strictly positive elements, then each 0 < g € G exceeds a special element.
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